
EECS 583 – Class 5

Finish If-conversion, Start on

Dataflow Analysis

University of Michigan

September 18, 2019

- 1 -

Reading Material + Announcements

 Reminder – HW 1 due Friday at midnight

» Submit uniquename_hw1.tgz file to:

 eecs583a.eecs.umich.edu:/hw1_submissions

» Before asking questions: 1) Read all threads on piazza, 2) Think a bit

 Then, post question or talk to Sung if you are stuck

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6 Edition 1; Chapters 9.2 Edition 2)

 Material for next Monday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Chapters: 10.5, 10.6, 10.9, 10.10 Edition 1; Chapters 9.2, 9.3 Edition 2)

- 2 -

From Last Time: If-conversion

 Algorithm for generating predicated code

» Automate what we’ve been doing by hand

» Handle arbitrary complex graphs

 But, acyclic subgraph only!!

 Need a branch to get you back to the top of a loop

» Efficient

 Roots are from Vector computer days

» Vectorize a loop with an if-statement in the body

 4 steps

» 1. Loop backedge coalescing

» 2. Control dependence analysis

» 3. Control flow substitution

» 4. CMPP compaction

 My version of Park & Schlansker

- 3 -

From Last Time: Running Example – Initial

State

BB2

BB4

BB7

BB6

do {

 b = load(a)

 if (b < 0) {

 if ((c > 0) && (b > 13))

 b = b + 1

 else

 c = c + 1

 d = d + 1

 }

 else {

 e = e + 1

 if (c > 25) continue

 }

 a = a + 1

} while (e < 34)

BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25

c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

- 4 -

From Last Time: Running Example –

Backedge Coalescing

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

BB9

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25

c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

- 5 -

From Last Time: Control Dependences

 Recall

» Post dominator – BBX is post dominated by BBY if every path

from BBX to EXIT contains BBY

» Immediate post dominator – First breadth first successor of a

block that is a post dominator

 Control dependence – BBY is control dependent on BBX

iff

» 1. There exists a directed path P from BBX to BBY with any

BBZ in P (excluding BBX and BBY) post dominated by BBY

» 2. BBX is not post dominated by BBY

 In English,

» A BB is control dependent on the closest BB(s) that determine(s)

its execution

» Its actually not a BB, it’s a control flow edge coming out of a BB

- 6 -

Running Example – CDs

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Control deps (left is taken)

BB1:

BB2:

BB3:

BB4:

BB5:

BB6:

BB7:

BB8:

BB9:

Entry

Exit

First, nuke backedge(s)

Second, nuke exit edges

Then, Add pseudo entry/exit nodes

 - Entry nodes with no predecessors

 - Exit nodes with no successors

- 7 -

Algorithm for Control Dependence Analysis

for each basic block x in region

 for each outgoing control flow edge e of x

 y = destination basic block of e

 if (y not in pdom(x)) then

 lub = ipdom(x)

 if (e corresponds to a taken branch) then

 x_id = -x.id

 else

 x_id = x.id

 endif

 t = y

 while (t != lub) do

 cd(t) += x_id;

 t = ipdom(t)

 endwhile

 endif

 endfor

endfor

Notes

Compute cd(x) which contains those

BBs which x is control dependent on

Iterate on per edge basis, adding

edge to each cd set it is a member of

- 8 -

Running Example – Post Dominators

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

 pdom ipdom

BB1: 1, 9, ex 9

BB2: 2, 7, 8, 9, ex 7

BB3: 3, 9, ex 9

BB4: 4, 7, 8, 9, ex 7

BB5: 5, 7, 8, 9, ex 7

BB6: 6, 7, 8, 9, ex 7

BB7: 7, 8, 9, ex 8

BB8: 8, 9, ex 9

BB9: 9, ex ex

Entry

Exit

- 9 -

Running Example – CDs Via Algorithm

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

x = 1

e = taken edge 1 2

y = 2

y not in pdom(x)

lub = 9

x_id = -1

t = 2

2 != 9

cd(2) += -1

t = 7

7 != 9

cd(7) += -1

t = 8

8 != 9

cd(8) += -1

t = 9

9 == 9

1 2 edge (aka –1)

- 10 -

Running Example – CDs Via Algorithm (2)

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

x = 3

e = taken edge 3 8

y = 8

y not in pdom(x)

lub = 9

x_id = -3

t = 8

8 != 9

cd(8) += -3

t = 9

9 == 9

3 8 edge (aka -3)

Class ProblemA: 1 3 edge (aka 1)

Class ProblemB: 7 8 edge (aka -7)

- 11 -

Running Example – CDs Via Algorithm (3)

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

Control deps (left is taken)

BB1: none

BB2: -1

BB3: 1

BB4: -2

BB5: -4

BB6: 2, 4

BB7: -1

BB8: -1, -3

BB9: none

- 12 -

Step 3: Control Flow Substitution

 Go from branching code sequential predicated code

 5 baby steps

» 1. Create predicates

» 2. CMPP insertion

» 3. Guard operations

» 4. Remove branches

» 5. Initialize predicates

- 13 -

Predicate Creation

 R/K calculation – Mapping predicates to blocks

» Paper more complicated than it really is

» K = unique sets of control dependences

» Create a new predicate for each element of K

» R(bb) = predicate that represents CD set for bb, ie the bb’s

assigned predicate (all ops in that bb guarded by R(bb))

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

predicates = p1, p2, p3, p4, p5, p6

bb = 1, 2, 3, 4, 5, 6, 7, 8, 9

CD(bb) = {{none}, {-1}, {1}, {-2}, {-4}, {2,4}, {-1}, {-1,-3}, {none}

R(bb) = T p1 p2 p3 p4 p5 p1 p6 T

- 14 -

CMPP Creation/Insertion

 For each control dependence set

» For each edge in the control dependence set

 Identify branch condition that causes edge to be traversed

 Create CMPP to compute corresponding branch condition

 OR-type – handles worst case

 guard = True

 destination = predicate assigned to that CD set

 Insert at end of BB that is the source of the edge

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

predicates = p1, p2, p3, p4, p5, p6

Example: p1 = cmpp.ON (b < 0) if T BB1

b < 0 b >= 0

- 15 -

Running Example – CMPP Creation

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

p’s = p1, p2, p3, p4, p5, p6

p4 = cmpp.ON (b > 13) if T

p5 = cmpp.ON (b <= 13) if T

p1 = cmpp.ON (b < 0) if T

p2 = cmpp.ON (b >= 0) if T

p6 = cmpp.ON (b < 0) if T

p3 = cmpp.ON (c > 0) if T

p5 = cmpp.ON (c <= 0) if T p6 = cmpp.ON (c <= 25) if T

- 16 -

Control Flow Substitution – The Rest

 Guard all operations in each bb by R(bb)

» Including the newly inserted CMPPs

 Nuke all the branches

» Except exit edges and backedges

 Initialize each predicate to 0 in first BB

bb = 1, 2, 3, 4, 5, 6, 7, 8, 9

CD(bb) = {{none}, {-1}, {1}, {-2}, {-4}, {2,4}, {-1}, {-1,-3}, {none}

R(bb) = T p1 p2 p3 p4 p5 p1 p6 T

- 17 -

Running Example – Control Flow Substitution

BB2

BB4

BB7

BB6 BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0 c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Loop:

 p1 = p2 = p3 = p4 = p5 = p6 = 0

 b = load(a) if T

 p1 = cmpp.ON (b < 0) if T

 p2 = cmpp.ON (b >= 0) if T

 p6 = cmpp.ON (b < 0) if T

 p3 = cmpp.ON (c > 0) if p1

 p5 = cmpp.ON (c <= 0) if p1

 p4 = cmpp.ON (b > 13) if p3

 p5 = cmpp.ON (b <= 13) if p3

 b = b + 1 if p4

 c = c + 1 if p5

 d = d + 1 if p1

 p6 = cmpp.ON (c <= 25) if p2

 e = e + 1 if p2

 a = a + 1 if p6

 bge e, 34, Done if p6

 jump Loop if T

Done:
e >= 34

- 18 -

Step 4: CMPP Compaction

 Convert ON CMPPs to UN

» All singly defined predicates don’t need to be OR-type

» OR of 1 condition Just compute it !!!

» Remove initialization (Unconditional don’t require init)

 Reduce number of CMPPs

» Utilize 2nd destination slot

» Combine any 2 CMPPs with:

 Same source operands

 Same guarding predicate

 Same or opposite compare conditions

- 19 -

Running Example - CMPP Compaction

Loop:

 p1 = p2 = p3 = p4 = p5 = p6 = 0

 b = load(a) if T

 p1 = cmpp.ON (b < 0) if T

 p2 = cmpp.ON (b >= 0) if T

 p6 = cmpp.ON (b < 0) if T

 p3 = cmpp.ON (c > 0) if p1

 p5 = cmpp.ON (c <= 0) if p1

 p4 = cmpp.ON (b > 13) if p3

 p5 = cmpp.ON (b <= 13) if p3

 b = b + 1 if p4

 c = c + 1 if p5

 d = d + 1 if p1

 p6 = cmpp.ON (c <= 25) if p2

 e = e + 1 if p2

 a = a + 1 if p6

 bge e, 34, Done if p6

 jump Loop if T

Done:

Loop:

 p5 = p6 = 0

 b = load(a) if T

 p1,p2 = cmpp.UN.UC (b < 0) if T

 p6 = cmpp.ON (b < 0) if T

 p3,p5 = cmpp.UN.OC (c > 0) if p1

 p4,p5 = cmpp.UN.OC (b > 13) if p3

 b = b + 1 if p4

 c = c + 1 if p5

 d = d + 1 if p1

 p6 = cmpp.ON (c <= 25) if p2

 e = e + 1 if p2

 a = a + 1 if p6

 bge e, 34, Done if p6

 jump Loop if T

Done:

- 20 -

Homework Problem – Answer on Next Slide

if (a > 0) {

 r = t + s

 if (b > 0 || c > 0)

 u = v + 1

 else if (d > 0)

 x = y + 1

 else

 z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

- 21 -

Homework Problem Answer

if (a > 0) {

 r = t + s

 if (b > 0 || c > 0)

 u = v + 1

 else if (d > 0)

 x = y + 1

 else

 z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

BB2

BB3

BB1

BB5

BB6 BB7

BB4

BB8

a <= 0 a > 0

b > 0

b <= 0

c <= 0
c > 0

d > 0 d <= 0

BB CD

1 -

2 1

3 -2

4 -3

5 2,3

6 -4

7 4

8 -

p3 = 0

p1 = CMPP.UN (a > 0) if T

r = t + s if p1

p2,p3 = CMPP.UC.ON (b > 0) if p1

p4,p3 = CMPP.UC.ON (c > 0) if p2

u = v + 1 if p3

p5,p6 = CMPP.UC.UN (d > 0) if p4

x = y + 1 if p6

z = z + 1 if p5

- 22 -

When to Apply If-conversion?

 Positives

» Remove branch

 No disruption to sequential fetch

 No prediction or mispredict

 No draining of pipeline for
mispredict

 No use of branch resource

» Increase potential for operation
overlap

 Creates larger basic blocks

 Convert control dependences into
data dependences

» Enable more aggressive compiler
xforms

 Software pipelining

 Height reduction

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 23 -

Negative 1: Resource Usage

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: Each BB requires 3 resources

Assume processor has 2 resources

No IC: 1*3 + .6*3 + .4*3 + 1*3 = 9

 9 / 2 = 4.5 = 5 cycles

IC: 1(3 + 3 + 3+ 3) = 12

 12 / 2 = 6 cycles

100

Instruction execution is additive

for all BBs that are if-converted, thus

require more processor resources

Case 2: Each BB requires 3 resources

Assume processor has 6 resources

No IC: 1*3 + .6*3 + .4*3 + 1*3 = 9

 9 / 6 = 1.5 = 2 cycles

IC: 1(3+3+3+3) = 12

 12 / 6 = 2 cycles

BB1

BB2 if p1

BB3 if p2

BB4

- 24 -

Negative 2: Dependence Height

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: height(bb1) = 1, height(bb2) = 3

Height(bb3) = 9, height(bb4) = 2

No IC: 1*1 + .6*3 + .4*9 + 1*2 = 8.4

IC: 1*1 + 1*MAX(3,9) + 1*3 = 13

100

Dependence height is max of

for all BBs that are if-converted

(dep height = schedule length

with infinite resources)

BB1

BB2 if p1

BB3 if p2

BB4

Case 2: height(bb1) = 1, height(bb2) = 3

Height(bb3) = 3, height(bb4) = 2

No IC: 1*1 + .6*3 + .4*3 + 1*2 = 6

IC: 1*1 + 1*MAX(3,3) + 1*2 = 6

- 25 -

Negative 3: Hazard Presence

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: Hazard in BB3

No IC : SB out of BB1, 2, 4, operations

In BB4 free to overlap with those in

BB1 and BB2

IC: operations in BB4 cannot overlap

With those in BB1 (BB2 ok)

100

Hazard = operation that forces

the compiler to be conservative,

so limited reordering or optimization,

e.g., subroutine call, pointer store, …

BB1

BB2 if p1

BB3 if p2

BB4

- 26 -

Deciding When/What To If-convert
 Resources

» Small resource usage ideal for less

important paths

 Dependence height

» Matched heights are ideal

» Close to same heights is ok

 Remember everything is relative for

resources and dependence height !

 Hazards

» Avoid hazards unless on most

important path

 Estimate of benefit

» Branches/Mispredicts removed

» Fudge factor

 Read more about Hyperblock

Formation if you are interested

BB2

BB4

BB1

BB3

60 40

100

60 40

100

BB1

BB2 if p1

BB3 if p2

BB4

- 27 -

For More on If-conversion

 See

» "Effective Compiler Support for Predicated Execution using the

Hyperblock", S. Mahlke et al., MICRO-25, 1992.

» "Control CPR: A Branch Height Reduction Optimization for

EPIC Processors", M. Schlansker et al., PLDI-99, 1999.

- 28 -

Hyperblock Performance Evaluation

 O = BB code

 IP = Structural if-conversion

» All innermost loops, acyclic SEME regions

 PP = Selective if-conversion

New Topic

Dataflow Analysis!

- 30 -

Looking Inside the Basic Blocks:

Dataflow Analysis + Optimization

 Control flow analysis

» Treat BB as black box

» Just care about branches

 Now

» Start looking at ops in BBs

» What’s computed and where

 Classical optimizations

» Want to make the

computation more efficient

 Ex: Common Subexpression

Elimination (CSE)

» Is r2 + r3 redundant?

» Is r4 – r5 redundant?

» What if there were 1000 BB’s

» Dataflow analysis !!

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

- 31 -

Dataflow Analysis Introduction

Which VRs contain useful

data values? (liveness or upward

exposed uses)

Which definitions may reach

this point? (reaching defns)

Which definitions are guaranteed

to reach this point? (available defns)

Which uses below are exposed?

(downward exposed uses)

Pick an arbitrary point in the program

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

Dataflow analysis – Collection of information

that summarizes the creation/destruction of

values in a program. Used to identify legal

optimization opportunities.

- 32 -

Live Variable (Liveness) Analysis

 Defn: For each point p in a program and each variable y,

determine whether y can be used before being redefined

starting at p

 Algorithm sketch

» For each BB, y is live if it is used before defined in the BB or it is

live leaving the block

» Backward dataflow analysis as propagation occurs from uses

upwards to defs

 4 sets

» GEN = set of external variables consumed in the BB

» KILL = set of external variable uses killed by the BB

 equivalent to set of variables defined by the BB

» IN = set of variables that are live at the entry point of a BB

» OUT = set of variables that are live at the exit point of a BB

- 33 -

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do

 GEN(X) = 0

 KILL(X) = 0

 for each operation in reverse sequential order in X, op, do

 for each destination operand of op, dest, do

 GEN(X) -= dest

 KILL(X) += dest

 endfor

 for each source operand of op, src, do

 GEN(X) += src

 KILL(X) -= src

 endfor

 endfor

endfor

- 34 -

Example – GEN/KILL Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

- 35 -

Compute IN/OUT Sets for all BBs

initialize IN(X) to 0 for all basic blocks X

change = 1

while (change) do

 change = 0

 for each basic block in procedure, X, do

 old_IN = IN(X)

 OUT(X) = Union(IN(Y)) for all successors Y of X

 IN(X) = GEN(X) + (OUT(X) – KILL(X))

 if (old_IN != IN(X)) then

 change = 1

 endif

 endfor

endfor

- 36 -

Example – Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9: r3 = 4

10: r3 = r3 + r7

11: r1 = r2 – r8

12: r3 = r1 * 2

BB1

BB2 BB3

BB4

