EECS 583 — Class 5
Finish If-conversion, Start on
Dataflow Analysis

University of Michigan

September 18, 2019

Reading Material + Announcements

< Reminder — HW 1 due Friday at midnight
» Submit uniquename_hw1.tgz file to:
* eecsb83a.eecs.umich.edu:/hwl_submissions

» Before asking questions: 1) Read all threads on piazza, 2) Think a bit
* Then, post question or talk to Sung if you are stuck

< Today’s class

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.
(Chapters: 10.5, 10.6 Edition 1; Chapters 9.2 Edition 2)

<« Material for next Monday

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.
(Chapters: 10.5, 10.6, 10.9, 10.10 Edition 1; Chapters 9.2, 9.3 Edition 2)

From Last Time: If-conversion

D)

()

Algorithm for generating predicated code
» Automate what we’ve been doing by hand

» Handle arbitrary complex graphs

e But, acyclic subgraph only!!

* Need a branch to get you back to the top of a loop
» Efficient

» Roots are from Vector computer days
» Vectorize a loop with an if-statement in the body

4 steps
» 1. Loop backedge coalescing
» 2. Control dependence analysis
» 3. Control flow substitution
» 4, CMPP compaction

» My version of Park & Schlansker

\/
*

J/
0’0

\/
*

From Last Time: Running Example — Initial

State

do {
b = load(a)
if (b<0){
If ((c>0) && (b > 13))
b=b+1
else
c=c+1
d=d+1
}
else {
e=e+l
If (c > 25) continue
}
a=a+t+l
} while (e < 34)

b++

BB1
bw>:0
BB2 BB3 | e++
c>0 c<=0 I
c>25
BB4 c<=25
b<=13
>13"
BB5 BB6 || c++
BB7 | d++
BB8 | at+
e<34

vye>=34

From Last Time: Running Example —

Backedge Coalescing

BB1

h<0 7 b>=0

BB2

BB3

e++

b++

c>25
c<=25

c++

a++

vye>=34

b++

BB1

b <w>: 0

BB2

BB3

e++

c<=25

c++

c>25

1 BB9

From Last Time: Control Dependences

< Recall

» Post dominator — BBX is post dominated by BBY if every path
from BBX to EXIT contains BBY

» Immediate post dominator — First breadth first successor of a
block that is a post dominator

< Control dependence — BBY is control dependent on BBX
Iff
» 1. There exists a directed path P from BBX to BBY with any
BBZ in P (excluding BBX and BBY) post dominated by BBY
» 2. BBX is not post dominated by BBY
< In English,

» A BB Is control dependent on the closest BB(s) that determine(s)
Its execution

» Its actually not a BB, it’s a control flow edge coming out of a BB

-5-

Running Example — CDs
BB1 First, nuke backedge(s)

b<0 b>=0 Second, nuke exit edges
/\ Then, Add pseudo en%ry/exit nodes
BB2 BB3 |e++ - Entry > nodes with no predecessors
- Exit = nodes with no successors
c<=25 c>25
Control deps (left is taken)
’ BB1.
b++| BBS5 BB6 || c++ BRB2:
\ / BB3:
.. BBA4.
BB5:
~. | BB6:
a++ | BBS8 BBY:
. e<34 | BRB9 BBS:

[BBO9:

Algorithm for Control Dependence Analysis

for each basic block x in region
for each outgoing control flow edge e of x
y = destination basic block of e
if (y not in pdom(x)) then

lub = ipdom(x)
if (e corresponds to a taken branch) then
X_id = -x.id
else
X_id = x.id Notes
endif
t=vy Compute cd(x) which contains those
while (t 1= lub) do BBs which x is control dependent on
cd(t) +=x_id;
t = ipdom(t) Iterate on per edge basis, adding
endwhile edge to each cd set it is a member of
endif
endfor

endfor

Running Example — Post Dominators

BB1

b <w>: 0

BB2

b++| BBS

BB3 |e++

c<=25

c>25

C++

e<34

pdom ipdom
BB1: 1,9, ex 9
BB2: 2,7,8,9,ex {
BB3: 3,9, ex 9
BB4: 4,7,8,9,ex 7
BB5: 5,7,8,9,ex 7
BB6: 6,7,8,9,ex 7
BB7: 7,8,9,ex 8
BB8: 8,9, ex 9
BB9: 9, ex ex

Running Example — CDs Via Algorithm

1 > 2 edge (aka —1)
BB1

x=1
b<W>:O e=takenedgel > 2
y=2
BB2 BB3 | e y not in pdom(x)
lub=9
c<=25 \c>25 X 1d=-1
t=2
| 21=9
b++ | BB5 BB6 || c++ cd(2) +=-1
t=7
\ / 71=9
BB/ | d++ Cd(7) +=-1
t=8
~ | 81=9
at+ | BB8 cd(8) +=-1
| e<34 | BB9 t=9
CBiy—— —

Running Example — CDs Via Algorithm (2)

3 = 8 edge (aka -3)
BB1

X=3
b<w>:0 e =takenedge 3 > 8
=8
BB2 BB3 | e znot in pdom(x)
lub=9
c<=25 c>25 x_id = -3
t=38
| 81=9
b++| BB5 BB6 || c++ cd(8) +=-3
t=9
\ / 9 ==
BB7 | d+ Class ProblemA: 1 - 3 edge (aka 1)
\ | Class ProblemB: 7 = 8 edge (aka -7)
at+ | BB8

T e<34 s BBg

-10 -

b++

BB1

b <w>: 0

BB2

BB3

e++

c<=

25

c++

c>25

Running Example — CDs Via Algorithm (3)

Control deps (left is taken)

e<34 . BB9

-11 -

BB1: none
BB2: -1
BB3:1
BB4: -2
BB5: -4
BB6: 2, 4
BB7: -1
BBS: -1, -3
BB9: none

Step 3: Control Flow Substitution

< Go from branching code - sequential predicated code
< 5 baby steps

» 1. Create predicates

» 2. CMPP insertion

» 3. Guard operations

» 4. Remove branches

» 5. Initialize predicates

-12 -

Predicate Creation

< R/K calculation — Mapping predicates to blocks
» Paper more complicated than it really is
» K =unique sets of control dependences
» Create a new predicate for each element of K

» R(bb) = predicate that represents CD set for bb, ie the bb’s
assigned predicate (all ops in that bb guarded by R(bb))

K ={{-15 {1} -2}, {-4}, {24}, {-1,-3}}

predicates= pl, p2, p3, p4, p5, P6

bb = 1, 2, 3, 4, 5 6, 7, 8, 9
CD(bb) ={{none}, {-1}, {1}, {-2}, {-4}, {2,4}, {-1}, {-1,-3}, {none}

R(bb) T pl p2 p3 p4d p5 pl P6 T

-13-

CMPP Creation/Insertion

< For each control dependence set

» For each edge in the control dependence set
e ldentify branch condition that causes edge to be traversed

e Create CMPP to compute corresponding branch condition
¢ OR-type — handles worst case
¢ guard = True
+ destination = predicate assigned to that CD set
+ Insert at end of BB that is the source of the edge

K ={{-15 {1}, -2}, {-4}, {24}, {-1,-3}}
predicates= pl, p2, p3, p4, p>5, P6

Example: p1 =cmpp.ON (b <0) if T — BBl

béﬁL///“\\Jz>:0

-14 -

Running Example — CMPP Creation

K ={{-1}, {1}, {-2}, {-4}. {2.4}, {-1,-3}}
p’s= pl, p2, p3, p4, pS, pbé o1 = cmpp.ON (b < 0) if T

P2 =cmpp.ON (b>=0)if T
BB1

p6 =cmpp.ON (b <0)if T

b <W>: 0
p3=cmpp.ON (c>0)if T
Ele — SérJr: cmpp.ON (c<=25)if T

pPS=cmpp.ON (c<=0)if T
2 c<=0

p4 =cmpp.ON (b >13) if T
p5 = cmpp.ON (b <=13) if T BB4
b>13|

b++| BBS BB6 || c++

c<=25 c>25

—e<34 | BRo

-15 -

Control Flow Substitution — The Rest

< Guard all operations in each bb by R(bb)
» Including the newly inserted CMPPs
< Nuke all the branches

» EXxcept exit edges and backedges
< Initialize each predicate to O in first BB

bb = 1, 2, 3, 4, b5 6, 7, 8, 9
CD(bb) = {{none}, {-1}, {1}, {-2}, {-4}, {2,4}, {-1}, {-1,-3}, {none}
R(bb) = T pl p2 p3 p4d p5 pl P6 T

-16 -

Running Example — Control Flow Substitution

b++

BB1

b<fl///’\\\li>:0

BB2

BB3 |e++

c<=25

c>25

c++

e<34

1 BB9

Loop:
Pl=p2=p3=p4=p5=p6=0
b=Iload(a) if T
pl=cmpp.ON (b <0)if T
p2 =cmpp.ON (b>=0)if T
P6 =cmpp.ON (b <O0)If T
p3 =cmpp.ON (c > 0) if p1
pP5 = cmpp.ON (c <=0) If pl
p4 = cmpp.ON (b > 13) if p3
pP5 = cmpp.ON (b <= 13) if p3
b=Db+1if p4
c=c+1ifp5
d=d+1ifpl
P6 = cmpp.ON (c <= 25) if p2
e=e+1ifp2
a=a+1ifpb6
bge e, 34, Done if p6
jump Loop if T

Done:

-17 -

Step 4. CMPP Compaction

< Convert ON CMPPs to UN

» All singly defined predicates don’t need to be OR-type
» OR of 1 condition - Just compute it !!

» Remove initialization (Unconditional don’t require init)

< Reduce number of CMPPs

» Utilize 2nd destination slot

» Combine any 2 CMPPs with:
e Same source operands
e Same guarding predicate
e Same or opposite compare conditions

-18 -

Running Example - CMPP Compaction

Loop:
Pl=p2=p3=p4=p5=p6=0
b=1load(a) if T
pl=cmpp.ON (b <O0)if T

P2 =cmpp.ON (b >=0) If T
P6 = cmpp.ON (b < Q) if T

p3 =cmpp.ON (c >0) if pl
p5 =cmpp.ON (c <=0) if pl
p4 = cmpp.ON (b > 13) if p3
pP5 = cmpp.ON (b <= 13) if p3
b=b+1if p4

c=c+1lifp5

d=d+1ifpl

P6 = cmpp.ON (c <= 25) if p2
e=e+1ifp2

a=a+1ifp6

bge e, 34, Done if p6

jump Loop if T

Done:

-19 -

Loop:

pS=p6=0

b=Iload(a) if T

p1,p2 = cmpp.UN.UC (b<O0)If T
p6 = cmpp.ON (b <0)if T

p3,p5 = cmpp.UN.OC (c > 0) if pl
p4,p5 = cmpp.UN.OC (b > 13) if p3
b=b+1ifp4

c=c+1ifp5

d=d+1ifpl

pP6 = cmpp.ON (c <= 25) if p2
e=e+1ifp2

a=a+1lifp6

bge e, 34, Done if p6

jump Loop if T

Done:

Homework Problem — Answer on Next Slide

if(a>0){
r=t+s
if(b>0]c>0)
u=v+1
else if (d > 0)
X=y+1
else
z=z+1

a. Draw the CFG
b. Compute CD
c. If-convert the code

-20 -

Homework Problem Answer

I BB CD
It(a>0){ BB1 1 ;
[=1%S a>0 - 1
if(b>0]c>0) 3 K
BB2 4 3
u=v+1 c 23
else if (d > 0) o0 S ;14
X=y+1 BB3) 3)
else |
z=z+1 BB4 BB5
’ <=0~ \d>0 p3=0
BB7 pl=CMPP.UN (a>0)if T
r=t+sifpl
\ / p2,p3 = CMPP.UC.ON (b > 0) if p1
p4,p3 = CMPP.UC.ON (c > 0) if p2
BB8 u=v+1ifp3
a. Draw the CFG 25_@;5: 1Cil:c/Igg’.UC.UN (d>0) if p4
b. Compute CD 2274 1if ps

c. If-convert the code

=21 -

When to Apply If-conversion?

< Positives | 10
» Remove branch |
 No disruption to sequential fetch BB1
* No prediction or mispredict 90 30
* No draining of pipeline for /\20
mispredict BB?2 BB3
* No use of branch resource
» Increase potential for operation 8N. A/ZO
overlap BB4
* Creates larger basic blocks
e Convert control dependences into lV
data dependences BB5 90
» Enable more aggressive compiler
xforms 1N |
e Software pipelining BB6
* Height reduction

10

-22 -

Negative 1: Resource Usage

Instruction execution is additive Case 1: Each BB requires 3 resources
for all BBs that are if-converted, thus Assume processor has 2 resources
require more processor resources

} 100 No IC; 1*3 + .6*3 + 4*3 + 1*3 =9
9/2=45=5cycles
BB1 BE1 IC: 1(3+3+3+3)=12
60 12 /2 =6 cycles
/\40 BB2 if p1
852 BB3 # BB3 | Case 2: Each BB requires 3 resources
if p2
6N AAO Assume processor has 6 resources
BB4
BB4 NO IC: 1%3 + .6%3 + 4%3 + 1%3 = 0

100 9/6=15=2cycles
\ IC: 1(3+3+3+3) = 12
12 /6 =2 cycles

-23 -

Negative 2: Dependence Height

Dependence height is max of Case 1: height(bbl) = 1, height(bb2) = 3
for all BBs that are if-converted Height(bb3) = 9, height(bb4) = 2

(dep height = schedule length

with infinite resources) NoIC: 1*1+ .6*3+ .4*9+1*2=8.4

IC: 1*1 + 1*MAX(3,9) + 1*3 =13

100
60 i 5Bl Case 2: height(bb1) = 1, height(bb2) = 3
40 smaior | Height(ob3) = 3. height(bbd) = 2
s — # No IC: 1*1 + .6*3 + .4*3 + 1*2 =6
BB3 if p2 . . . =
60, 40
BB4 BIEL IC: 1*1 + 1*MAX(3,3) + 1*2 =6

-24 -

Negative 3: Hazard Presence

Hazard = operation that forces Case 1: Hazard in BB3
the compiler to be conservative,
so limited reordering or optimization, No IC : SB out of BB1, 2, 4, operations
e.g., subroutine call, pointer store, ... In BB4 free to overlap with those in
BB1 and BB2
100 IC: operations in BB4 cannot overlap
! With those in BB1 (BB2 ok)
BB1 BB1
60 40

BB2 if p1

BB2 BB3 #
BB3 if p2

60~ 40

BB4
\ 100

BB4

-25-

Deciding When/What To If-convert

Resources

» Small resource usage ideal for less
important paths

Dependence height
» Matched heights are ideal
» Close to same heights is ok

Remember everything is relative for

resources and dependence height !

Hazards

» Avoid hazards unless on most
important path

Estimate of benefit
» Branches/Mispredicts removed
» Fudge factor

Read more about Hyperblock
Formation if you are interested

- 26 -

} 100

BB1

60 40

B

BB1

B3

BB2 if p1

B2 B
60N, 4
BB4

\ 100

0

BB3 if p2

BB4

For More on If-conversion

’0

» See

» "Effective Compiler Support for Predicated Execution using the
Hyperblock™, S. Mahlke et al., MICRO-25, 1992.

» "Control CPR: A Branch Height Reduction Optimization for
EPIC Processors", M. Schlansker et al., PLDI-99, 1999.

-27 -

Hyperblock Performance Evaluation

<« O =BB code
» |P = Structural if-conversion

» All innermost loops, acyclic SEME regions
<« PP = Selective if-conversion

bab ol

- 28 -

New Topic
Dataflow Analysis!

_ooking Inside the Basic Blocks:
Dataflow Analysis + Optimization

rt=r2+r3
re=r4—-rb

0.0

r6=r2+r3
r‘'=rd—-rb5

Control flow analysis

» Treat BB as black box

» Just care about branches
Now

» Start looking at ops in BBs

» What’s computed and where
Classical optimizations

» Want to make the
computation more efficient

Ex: Common Subexpression
Elimination (CSE)
» 1sr2 + r3 redundant?
» Isr4 —r5 redundant?
» What if there were 1000 BB’s
» Dataflow analysis !!

Dataflow Analysis Introduction

Dataflow analysis — Collection of information
that summarizes the creation/destruction of
values in a program. Used to identify legal
optimization opportunities.

Pick an arbitrary point in the program

Which VRs contain useful
data values? (liveness or upward
exposed uses)

Which definitions may reach

rt=r2+r3
re=r4—-rb
r6=r2+r3
r‘'=rd—-rb5

_— this point? (reaching defns)

Which definitions are guaranteed
to reach this point? (available defns)

Which uses below are exposed?
(downward exposed uses)

-31-

Live Variable (Liveness) Analysis

< Defn: For each point p in a program and each variable y,
determine whether y can be used before being redefined

starting at p

- Algorithm sketch

» Foreach BB, yis live if it is used before defined in the BB or it is
live leaving the block

» Backward dataflow analysis as propagation occurs from uses
upwards to defs

<+ 4 sets
» GEN = set of external variables consumed in the BB
» KILL = set of external variable uses killed by the BB
 equivalent to set of variables defined by the BB
» IN = set of variables that are live at the entry point of a BB
» OUT = set of variables that are live at the exit point of a BB
3.

&

D)

D)

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do
GEN(X) =0
KILL(X) =0
for each operation in reverse sequential order in X, op, do
for each destination operand of op, dest, do
GEN(X) -= dest
KILL(X) += dest
endfor
for each source operand of op, src, do
GEN(X) +=src
KILL(X) -=src
endfor
endfor
endfor

-33-

Example — GEN/KILL Liveness Computation

OUT = Union(IN(succs))

IN = GEN + (OUT — KILL
BBL 1 v1=MEM[r2+0] ()

2.r2=MEM]rl + 1]
3.r8=r1*r2

T

4.rl=rl1+5 7.r2=0
5.r3=r5-rl 8r7—r1+r2
6.r7=r3*2 r3=4

\/

10: r3=r3+r7
11: r1=r2-r8
12:r3=rl1*2

BB2

-34 -

Compute IN/OUT Sets for all BBs

Initialize IN(X) to O for all basic blocks X
change =1
while (change) do
change =0
for each basic block in procedure, X, do
old _IN = IN(X)
OUT(X) = Union(IN(Y)) for all successors Y of X
IN(X) = GEN(X) + (OUT(X) — KILL(X))
if (old_IN '=IN(X)) then
change =1
endif
endfor
endfor

-35-

Example — Liveness Computation

BB1

1. rl = MEM]r2+0]
2.r2=MEM]rl + 1]
3.r8=rl1*r2

T

BB2 4.rl=rl1+5 7.r2=0
5.r3=r5-rl 8r7—r1+r2
6.r7=r3*2 r3=4

OUT = Union(IN(succs))
IN = GEN + (OUT — KILL)

\/

10: r3=r3+r7
11: r1=r2-r8
12:r3=rl1*2

-36 -

