
EECS 583 – Class 4

If-conversion

University of Michigan

September 16, 2019

- 1 -

Announcements & Reading Material

 HW 1 – Deadline Friday Sept 20, midnight

» Talk to Sung this week if you are having troubles with LLVM

» Refer to EECS 583 piazza group for tips and answers to questions

 Today’s class

» “The Program Dependence Graph and Its Use in Optimization”,

J. Ferrante, K. Ottenstein, and J. Warren, ACM TOPLAS, 1987

 This is a long paper – the part we care about is the control dependence

stuff. The PDG is interesting and you should skim it over.

 “On Predicated Execution”, Park and Schlansker, HPL Technical Report,

1991.

 Material for Wednesday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Sections: 10.5, 10.6 Edition 1) (Sections 9.2 Edition 2)

- 2 -

From Last Time: Class Problem - Answer

Find the traces. Assume a threshold probability of 60%.

BB2

BB4

BB7

BB5

BB1

BB3

20 80

100

450

20 80

BB6

BB8

BB9

51 49

49

10

41

10

41

BB2

BB4

BB7

BB5

BB1

BB3

20 80

100

450

20 80

BB6

BB8

BB9

51 49

49

10

41

10

41

Each color represents

a trace.

- 3 -

An Alternative to Branches: Predicated Execution

 Hardware mechanism that allows operations to be
conditionally executed

 Add an additional boolean source operand (predicate)
» ADD r1, r2, r3 if p1

 if (p1 is True), r1 = r2 + r3

 else if (p1 is False), do nothing (Add treated like a NOP)

 p1 referred to as the guarding predicate

 Predicated on True means always executed

 Omitted predicated also means always executed

 Provides compiler with an alternative to using branches to
selectively execute operations
» If statements in the source

» Realize with branches in the assembly code

» Could also realize with conditional instructions

» Or use a combination of both

- 4 -

Predicated Execution Example

BB1

BB2

BB4

BB3

a = b + c

if (a > 0)

e = f + g

else

e = f / g

h = i - j

add a, b, c

bgt a, 0, L1

div e, f, g

jump L2

L1: add e, f, g

L2: sub h, i, j

BB1

BB1

BB3

BB3

BB2

BB4

Traditional branching code

BB1

BB2

BB3

BB4

add a, b, c if T

p2 = a > 0 if T

p3 = a <= 0 if T

div e, f, g if p3

add e, f, g if p2

sub h, i, j if T

BB1

BB1

BB1

BB3

BB2

BB4

Predicated code

p2  BB2

p3  BB3

- 5 -

What About Nested If-then-else’s?

BB1

BB2

BB4

BB3

a = b + c

if (a > 0)

if (a > 25)

e = f + g

else

e = f * g

else

e = f / g

h = i - j

add a, b, c

bgt a, 0, L1

div e, f, g

jump L2

L1: bgt a, 25, L3

mpy e, f, g

jump L2

L3: add e, f, g

L2: sub h, i, j

BB1

BB1

BB3

BB3

BB2

BB6

BB6

BB5

BB4

Traditional branching code

BB5 BB6

- 6 -

Nested If-then-else’s – No Problem

a = b + c

if (a > 0)

if (a > 25)

e = f + g

else

e = f * g

else

e = f / g

h = i - j

BB1

BB2

BB3

BB4

BB5

BB6

add a, b, c if T

p2 = a > 0 if T

p3 = a <= 0 if T

div e, f, g if p3

p5 = a > 25 if p2

p6 = a <= 25 if p2

mpy e, f, g if p6

add e, f, g if p5

sub h, i, j if T

BB1

BB1

BB1

BB3

BB3

BB3

BB6

BB5

BB4

Predicated code

What do we assume to make this work ??

if p2 is False, both p5 and p6 are False

So, predicate setting instruction should set result to False if guarding

predicate is false!!!

- 7 -

Benefits/Costs of Predicated Execution

BB1

BB2

BB4

BB3 BB1

BB2

BB3

BB4

BB5

BB6

BB7BB5

BB7

BB6

Benefits:

- No branches, no mispredicts

- Can freely reorder independent

operations in the predicated block

- Overlap BB2 with BB5 and BB6

Costs (execute all paths)

-worst case schedule length

-worst case resources required

- 8 -

HPL-PD Compare-to-Predicate Operations (CMPPs)

 How do we compute predicates

» Compare registers/literals like a branch would do

» Efficiency, code size, nested conditionals, etc

 2 targets for computing taken/fall-through conditions with

1 operation

p1, p2 = CMPP.cond.D1a.D2a (r1, r2) if p3

p1 = first destination predicate

p2 = second destination predicate

cond = compare condition (ie EQ, LT, GE, …)

D1a = action specifier for first destination

D2a = action specifier for second destination

(r1,r2) = data inputs to be compared (ie r1 < r2)

p3 = guarding predicate

- 9 -

CMPP Action Specifiers

Guarding

predicate

0

0

1

1

Compare

Result

0

1

0

1

UN

0

0

0

1

UC

0

0

1

0

ON

-

-

-

1

OC

-

-

1

-

AN

-

-

0

-

AC

-

-

-

0

UN/UC = Unconditional normal/complement

This is what we used in the earlier examples

guard = 0, both outputs are 0

guard = 1, UN = Compare result, UC = opposite

ON/OC = OR-type normal/complement

AN/AC = AND-type normal/complement

- 10 -

OR-type, AND-type Predicates

p1 = 0

p1 = cmpp_ON (r1 < r2) if T

p1 = cmpp_OC (r3 < r4) if T

p1 = cmpp_ON (r5 < r6) if T

p1 = (r1 < r2) | (!(r3 < r4)) |

(r5 < r5)

Wired-OR into p1

p1 = 1

p1 = cmpp_AN (r1 < r2) if T

p1 = cmpp_AC (r3 < r4) if T

p1 = cmpp_AN (r5 < r6) if T

p1 = (r1 < r2) & (!(r3 < r4)) &

(r5 < r5)

Wired-AND into p1

Talk about these later – used

for control height reduction

Generating predicated code

for some source code requires

OR-type predicates

- 11 -

Use of OR-type Predicates

BB1

BB5

BB4

BB3

a = b + c

if (a > 0 && b > 0)

e = f + g

else

e = f / g

h = i - j

add a, b, c

ble a, 0, L1

ble b, 0, L1

add e, f, g

jump L2

L1: div e, f, g

L2: sub h, i, j

BB1

BB1

BB5

BB2

BB2

BB3

BB4

Traditional branching code

BB1

BB5

BB2

BB3

BB4

add a, b, c if T

p3, p5 = cmpp.ON.UC a <= 0 if T

p3, p2 = cmpp.ON.UC b <= 0 if p5

div e, f, g if p3

add e, f, g if p2

sub h, i, j if T

BB1

BB1

BB5

BB3

BB2

BB4

Predicated code

p2  BB2

p3  BB3

p5  BB5

BB2

- 12 -

Homework Problem – Answer on next slide

but don’t cheat!

if (a > 0) {

if (b > 0)

r = t + s

else

u = v + 1

y = x + 1

}

a. Draw the CFG

b. Predicate the code removing

all branches

- 13 -

Homework Problem Answer

if (a > 0) {

if (b > 0)

r = t + s

else

u = v + 1

y = x + 1

}

a. Draw the CFG

b. Predicate the code removing

all branches

u = v + 1r = t + s

y = x + 1

b > 0 b <= 0

a > 0
a <= 0

p1 = cmpp.UN(a > 0) if T

p2, p3 = cmpp.UNUC(b > 0) if p1

r = t + s if p2

u = v + 1 if p3

y = x + 1 if p1

- 14 -

If-conversion

 Algorithm for generating predicated code
» Automate what we’ve been doing by hand

» Handle arbitrary complex graphs

 But, acyclic subgraph only!!

 Need a branch to get you back to the top of a loop

» Efficient

 Roots are from Vector computer days
» Vectorize a loop with an if-statement in the body

 4 steps
» 1. Loop backedge coalescing

» 2. Control dependence analysis

» 3. Control flow substitution

» 4. CMPP compaction

 My version of Park & Schlansker

- 15 -

Running Example – Initial State

BB2

BB4

BB7

BB6

do {

b = load(a)

if (b < 0) {

if ((c > 0) && (b > 13))

b = b + 1

else

c = c + 1

d = d + 1

}

else {

e = e + 1

if (c > 25) continue

}

a = a + 1

} while (e < 34)

BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25

c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

- 16 -

Step 1: Backedge Coalescing

 Recall – Loop backedge is branch from inside the loop
back to the loop header

 This step only applicable for a loop body

» If not a loop body  skip this step

 Process
» Create a new basic block

 New BB contains an unconditional branch to the loop header

» Adjust all other backedges to go to new BB rather than header

 Why do this?
» Heuristic step – Not essential for correctness

 If-conversion cannot remove backedges (only forward edges)

 But this allows the control logic to figure out which backedge you
take to be eliminated

» Generally this is a good thing to do

- 17 -

Running Example – Backedge Coalescing

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

BB9

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25

c > 25

e < 34

e >= 34

d++

a++

e++

b++ c++

- 18 -

Step 2: Control Dependence Analysis (CD)

 Control flow – Execution transfer from 1 BB to another
via a taken branch or fallthrough path

 Dependence – Ordering constraint between 2 operations
» Must execute in proper order to achieve the correct result

» O1: a = b + c

» O2: d = a – e

» O2 dependent on O1

 Control dependence – One operation controls the
execution of another
» O1: blt a, 0, SKIP

» O2: b = c + d

» SKIP:

» O2 control dependent on O1

 Control dependence analysis derives these dependences

- 19 -

Control Dependences

 Recall

» Post dominator – BBX is post dominated by BBY if every path

from BBX to EXIT contains BBY

» Immediate post dominator – First breadth first successor of a

block that is a post dominator

 Control dependence – BBY is control dependent on BBX

iff

» 1. There exists a directed path P from BBX to BBY with any

BBZ in P (excluding BBX and BBY) post dominated by BBY

» 2. BBX is not post dominated by BBY

 In English,

» A BB is control dependent on the closest BB(s) that determine(s)

its execution

» Its actually not a BB, it’s a control flow edge coming out of a BB

- 20 -

Control Dependence Example

BB2

BB4

BB6

BB5

BB1

BB3

BB7

Control dependences

BB1:

BB2:

BB3:

BB4:

BB5:

BB6:

BB7:

T F

T F

Notation

positive BB number = fallthru direction

negative BB number = taken direction

- 21 -

Running Example – CDs

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Control deps (left is taken)

BB1:

BB2:

BB3:

BB4:

BB5:

BB6:

BB7:

BB8:

BB9:

Entry

Exit

First, nuke backedge(s)

Second, nuke exit edges

Then, Add pseudo entry/exit nodes

- Entry  nodes with no predecessors

- Exit  nodes with no successors

- 22 -

Algorithm for Control Dependence Analysis

for each basic block x in region

for each outgoing control flow edge e of x

y = destination basic block of e

if (y not in pdom(x)) then

lub = ipdom(x)

if (e corresponds to a taken branch) then

x_id = -x.id

else

x_id = x.id

endif

t = y

while (t != lub) do

cd(t) += x_id;

t = ipdom(t)

endwhile

endif

endfor

endfor

Notes

Compute cd(x) which contains those

BBs which x is control dependent on

Iterate on per edge basis, adding

edge to each cd set it is a member of

- 23 -

Running Example – Post Dominators

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

pdom ipdom

BB1: 1, 9, ex 9

BB2: 2, 7, 8, 9, ex 7

BB3: 3, 9, ex 9

BB4: 4, 7, 8, 9, ex 7

BB5: 5, 7, 8, 9, ex 7

BB6: 6, 7, 8, 9, ex 7

BB7: 7, 8, 9, ex 8

BB8: 8, 9, ex 9

BB9: 9, ex ex

Entry

Exit

- 24 -

Running Example – CDs Via Algorithm

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

x = 1

e = taken edge 1  2

y = 2

y not in pdom(x)

lub = 9

x_id = -1

t = 2

2 != 9

cd(2) += -1

t = 7

7 != 9

cd(7) += -1

t = 8

8 != 9

cd(8) += -1

t = 9

9 == 9

1  2 edge (aka –1)

- 25 -

Running Example – CDs Via Algorithm (2)

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

x = 3

e = taken edge 3  8

y = 8

y not in pdom(x)

lub = 9

x_id = -3

t = 8

8 != 9

cd(8) += -3

t = 9

9 == 9

3  8 edge (aka -3)

Class ProblemA: 1  3 edge (aka 1)

Class ProblemB: 7  8 edge (aka -7)

- 26 -

Running Example – CDs Via Algorithm (3)

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

Control deps (left is taken)

BB1: none

BB2: -1

BB3: 1

BB4: -2

BB5: -4

BB6: 2, 4

BB7: -1

BB8: -1, -3

BB9: none

- 27 -

Step 3: Control Flow Substitution

 Go from branching code  sequential predicated code

 5 baby steps

» 1. Create predicates

» 2. CMPP insertion

» 3. Guard operations

» 4. Remove branches

» 5. Initialize predicates

- 28 -

Predicate Creation

 R/K calculation – Mapping predicates to blocks

» Paper more complicated than it really is

» K = unique sets of control dependences

» Create a new predicate for each element of K

» R(bb) = predicate that represents CD set for bb, ie the bb’s

assigned predicate (all ops in that bb guarded by R(bb))

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

predicates = p1, p2, p3, p4, p5, p6

bb = 1, 2, 3, 4, 5, 6, 7, 8, 9

CD(bb) = {{none}, {-1}, {1}, {-2}, {-4}, {2,4}, {-1}, {-1,-3}, {none}

R(bb) = T p1 p2 p3 p4 p5 p1 p6 T

- 29 -

CMPP Creation/Insertion

 For each control dependence set

» For each edge in the control dependence set

 Identify branch condition that causes edge to be traversed

 Create CMPP to compute corresponding branch condition

 OR-type – handles worst case

 guard = True

 destination = predicate assigned to that CD set

 Insert at end of BB that is the source of the edge

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

predicates = p1, p2, p3, p4, p5, p6

Example: p1 = cmpp.ON (b < 0) if T BB1

b < 0 b >= 0

- 30 -

Running Example – CMPP Creation

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Entry

Exit

K = {{-1}, {1}, {-2}, {-4}, {2,4}, {-1,-3}}

p’s = p1, p2, p3, p4, p5, p6

p4 = cmpp.ON (b > 13) if T

p5 = cmpp.ON (b <= 13) if T

p1 = cmpp.ON (b < 0) if T

p2 = cmpp.ON (b >= 0) if T

p6 = cmpp.ON (b < 0) if T

p3 = cmpp.ON (c > 0) if T

p5 = cmpp.ON (c <= 0) if T p6 = cmpp.ON (c <= 25) if T

- 31 -

Control Flow Substitution – The Rest

 Guard all operations in each bb by R(bb)

» Including the newly inserted CMPPs

 Nuke all the branches

» Except exit edges and backedges

 Initialize each predicate to 0 in first BB

bb = 1, 2, 3, 4, 5, 6, 7, 8, 9

CD(bb) = {{none}, {-1}, {1}, {-2}, {-4}, {2,4}, {-1}, {-1,-3}, {none}

R(bb) = T p1 p2 p3 p4 p5 p1 p6 T

- 32 -

Running Example – Control Flow Substitution

BB2

BB4

BB7

BB6BB5

BB1

BB3

BB8

b < 0 b >= 0

c <= 0c > 0

b > 13
b <= 13

c <= 25 c > 25

e < 34

d++

a++

e++

b++ c++

BB9

Loop:

p1 = p2 = p3 = p4 = p5 = p6 = 0

b = load(a) if T

p1 = cmpp.ON (b < 0) if T

p2 = cmpp.ON (b >= 0) if T

p6 = cmpp.ON (b < 0) if T

p3 = cmpp.ON (c > 0) if p1

p5 = cmpp.ON (c <= 0) if p1

p4 = cmpp.ON (b > 13) if p3

p5 = cmpp.ON (b <= 13) if p3

b = b + 1 if p4

c = c + 1 if p5

d = d + 1 if p1

p6 = cmpp.ON (c <= 25) if p2

e = e + 1 if p2

a = a + 1 if p6

bge e, 34, Done if p6

jump Loop if T

Done:
e >= 34

- 33 -

Step 4: CMPP Compaction

 Convert ON CMPPs to UN

» All singly defined predicates don’t need to be OR-type

» OR of 1 condition  Just compute it !!!

» Remove initialization (Unconditional don’t require init)

 Reduce number of CMPPs

» Utilize 2nd destination slot

» Combine any 2 CMPPs with:

 Same source operands

 Same guarding predicate

 Same or opposite compare conditions

- 34 -

Running Example - CMPP Compaction

Loop:

p1 = p2 = p3 = p4 = p5 = p6 = 0

b = load(a) if T

p1 = cmpp.ON (b < 0) if T

p2 = cmpp.ON (b >= 0) if T

p6 = cmpp.ON (b < 0) if T

p3 = cmpp.ON (c > 0) if p1

p5 = cmpp.ON (c <= 0) if p1

p4 = cmpp.ON (b > 13) if p3

p5 = cmpp.ON (b <= 13) if p3

b = b + 1 if p4

c = c + 1 if p5

d = d + 1 if p1

p6 = cmpp.ON (c <= 25) if p2

e = e + 1 if p2

a = a + 1 if p6

bge e, 34, Done if p6

jump Loop if T

Done:

Loop:

p5 = p6 = 0

b = load(a) if T

p1,p2 = cmpp.UN.UC (b < 0) if T

p6 = cmpp.ON (b < 0) if T

p3,p5 = cmpp.UN.OC (c > 0) if p1

p4,p5 = cmpp.UN.OC (b > 13) if p3

b = b + 1 if p4

c = c + 1 if p5

d = d + 1 if p1

p6 = cmpp.ON (c <= 25) if p2

e = e + 1 if p2

a = a + 1 if p6

bge e, 34, Done if p6

jump Loop if T

Done:

- 35 -

Homework Problem – Answer Next Time

if (a > 0) {

r = t + s

if (b > 0 || c > 0)

u = v + 1

else if (d > 0)

x = y + 1

else

z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

