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Announcements + Reading Material

 Today’s class reading

» “Register Allocation and Spilling Via Graph Coloring,” G. 

Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler 

Construction, 1982.

 Signup sheet for final project presentations available next 

class
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Register Allocation: Problem Definition

 Through optimization, assume an infinite number of 
virtual registers
» Now, must allocate these infinite virtual registers to a limited 

supply of hardware registers

» Want most frequently accessed variables in registers

 Speed, registers much faster than memory

 Direct access as an operand

» Any VR that cannot be mapped into a physical register is said to 
be spilled

 Questions to answer
» What is the minimum number of registers needed to avoid 

spilling?

» Given n registers, is spilling necessary

» Find an assignment of virtual registers to physical registers

» If there are not enough physical registers, which virtual registers 
get spilled?



- 3 -

Live Range

 Value = definition of a register

 Live range = Set of operations

» 1 more or values connected by common uses

» A single VR may have several live ranges

 Live ranges are constructed by taking the intersection of 

reaching defs and liveness

» Initially, a live range consists of a single definition and all ops in 

a function in which that definition is live
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Example – Constructing Live Ranges

1: x = 

2: x = 3:  

4: = x 

5: x = 

6: x = 

7: = x  

8: = x 

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}

LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Each definition is the

seed of a live range.

Ops are added to the LR

where both the defn reaches

and the variable is live
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Merging Live Ranges

 If 2 live ranges for the same VR overlap, they must be 

merged to ensure correctness

» LRs replaced by a new LR that is the union of the LRs

» Multiple defs reaching a common use

» Conservatively, all LRs for the same VR could be merged

 Makes LRs larger than need be, but done for simplicity

 We will not assume this

r1 = r1 = 

= r1 
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Example – Merging Live Ranges

1: x = 

2: x = 3:  

4: = x 

5: x = 

6: x = 

7: = x  

8: = x 

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}
LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Merge LR1 and LR2,

LR3 and LR4

LR5 = {1,2,3,4}

LR6 = {5,6,7,8}
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Interference

 Two live ranges interfere if they share one or more ops in 

common

» Thus, they cannot occupy the same physical register

» Or a live value would be lost

 Interference graph

» Undirected graph where

 Nodes are live ranges

 There is an edge between 2 nodes if the live ranges interfere

» What’s not represented by this graph

 Extent of interference between the LRs

 Where in the program is the interference
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Example – Interference Graph

1: a = load()

2: b = load()

3: c = load()

4: d = b + c

5: e = d - 3

6: f = a * b

7: e = f + c

8: g = a + e

9: store(g)

a

g

c

f

d

b

e

lr(a) = {1,2,3,4,5,6,7,8}

lr(b) = {2,3,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

lr(d) = {4,5}

lr(e) = {5,7,8}

lr(f) = {6,7}

lr{g} = {8,9}
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Graph Coloring

 A graph is n-colorable if every node in the graph can be 

colored with one of the n colors such that 2 adjacent 

nodes do not have the same color

» Model register allocation as graph coloring

» Use the fewest colors (physical registers)

» Spilling is necessary if the graph is not n-colorable where n is the 

number of physical registers

 Optimal graph coloring is NP-complete for n > 2

» Use heuristics proposed by compiler developers

 “Register Allocation Via Coloring”, G. Chaitin et al, 1981

 “Improvement to Graph Coloring Register Allocation”, P. Briggs et 

al, 1989

» Observation – a node with degree < n in the interference can 

always be successfully colored given its neighbors colors
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Coloring Algorithm

 1. While any node, x, has < n neighbors
» Remove x and its edges from the graph

» Push x onto a stack

 2. If the remaining graph is non-empty
» Compute cost of spilling each node (live range)

 For each reference to the register in the live range

 Cost +=  (execution frequency * spill cost)

» Let NB(x) = number of neighbors of x

» Remove node x that has the smallest cost(x) / NB(x)

 Push x onto a stack (mark as spilled)

» Go back to step 1

 While stack is non-empty
» Pop x from the stack

» If x’s neighbors are assigned fewer than R colors, then assign x 
any unsigned color, else leave x uncolored
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Example – Finding Number of Needed Colors

A

B

E

D

C

How many colors are needed to color this graph?

Try n=1, no, cannot remove any nodes

Try n=2, no again, cannot remove any nodes

Try n=3,

Remove B

Then can remove A, C

Then can remove D, E

Thus it is 3-colorable
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Example – Do a 3-Coloring

a

g

c

f

d

b

e

a b c d e f g

cost 225 200 175 150 200 50 200

neighbors 6 4 5 4 3 4 2

cost/n 37.5 50 35 37.5 66.7 12.5 100

lr(a) = {1,2,3,4,5,6,7,8}

refs(a) = {1,6,8}

lr(b) = {2,3,4,6}

refs(b) = {2,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

refs(c) = {3,4,7}

lr(d) = {4,5}

refs(d) = {4,5}

lr(e) = {5,7,8}

refs(e) = {5,7,8}

lr(f) = {6,7}

refs(f) = {6,7}

lr{g} = {8,9}

refs(g) = {8,9}

Profile freqs

1,2 = 100

3,4,5 = 75

6,7 = 25

8,9 = 100

Assume each

spill requires

1 operation
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Example – Do a 3-Coloring (2)

a

g

c

f

d

b

e

Remove all nodes < 3 neighbors

So, g can be removed

a

c

f

d

b

e

Stack

g
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Example – Do a 3-Coloring (3)

Now must spill a node

Choose one with the smallest

cost/NB  f is chosen

a

c d

b

e

Stack

f (spilled)

g

a

c

f

d

b

e
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Example – Do a 3-Coloring (4)

a

c d

b

Stack

e

f (spilled)

g

a

c d

b

e

Remove all nodes < 3 neighbors

So, e can be removed
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Example – Do a 3-Coloring (5)

a

d

b

Stack

c (spilled)

e

f (spilled)

g

Now must spill another node

Choose one with the smallest

cost/NB  c is chosen

a

c d

b
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Example – Do a 3-Coloring (6)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

Remove all nodes < 3 neighbors

So, a, b, d can be removed

a

d

b

Null
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Example – Do a 3-Coloring (7)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

a

g

c

f

d

b

e

Have 3 colors: red, green, blue, pop off the stack assigning colors

only consider conflicts with non-spilled nodes already popped off stack

d  red

b  green (cannot choose red)

a  blue (cannot choose red or green)

c  no color (spilled)

e  green (cannot choose red or blue)

f  no color (spilled)

g  red (cannot choose blue)



- 19 -

Example – Do a 3-Coloring (8)

1: blue = load()

2: green = load()

3: spill1 = load()

4: red = green + spill1

5: green = red - 3

6: spill2 = blue * green

7: green = spill2 + spill1

8: red = blue + green

9: store(red)

d  red

b  green

a  blue

c  no color 

e  green

f  no color

g  red

Notes: no spills in the blocks

executed 100 times.  Most spills

in the block executed 25 times.

Longest lifetime (c) also spilled


