
EECS 583 – Class 17

Register Allocation

University of Michigan

November 18, 2019

- 1 -

Announcements + Reading Material

 Today’s class reading

» “Register Allocation and Spilling Via Graph Coloring,” G.

Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler

Construction, 1982.

 Signup sheet for final project presentations available next

class

- 2 -

Register Allocation: Problem Definition

 Through optimization, assume an infinite number of
virtual registers
» Now, must allocate these infinite virtual registers to a limited

supply of hardware registers

» Want most frequently accessed variables in registers

 Speed, registers much faster than memory

 Direct access as an operand

» Any VR that cannot be mapped into a physical register is said to
be spilled

 Questions to answer
» What is the minimum number of registers needed to avoid

spilling?

» Given n registers, is spilling necessary

» Find an assignment of virtual registers to physical registers

» If there are not enough physical registers, which virtual registers
get spilled?

- 3 -

Live Range

 Value = definition of a register

 Live range = Set of operations

» 1 more or values connected by common uses

» A single VR may have several live ranges

 Live ranges are constructed by taking the intersection of

reaching defs and liveness

» Initially, a live range consists of a single definition and all ops in

a function in which that definition is live

- 4 -

Example – Constructing Live Ranges

1: x =

2: x = 3:

4: = x

5: x =

6: x =

7: = x

8: = x

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}

LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Each definition is the

seed of a live range.

Ops are added to the LR

where both the defn reaches

and the variable is live

- 5 -

Merging Live Ranges

 If 2 live ranges for the same VR overlap, they must be

merged to ensure correctness

» LRs replaced by a new LR that is the union of the LRs

» Multiple defs reaching a common use

» Conservatively, all LRs for the same VR could be merged

 Makes LRs larger than need be, but done for simplicity

 We will not assume this

r1 = r1 =

= r1

- 6 -

Example – Merging Live Ranges

1: x =

2: x = 3:

4: = x

5: x =

6: x =

7: = x

8: = x

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}
LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Merge LR1 and LR2,

LR3 and LR4

LR5 = {1,2,3,4}

LR6 = {5,6,7,8}

- 7 -

Interference

 Two live ranges interfere if they share one or more ops in

common

» Thus, they cannot occupy the same physical register

» Or a live value would be lost

 Interference graph

» Undirected graph where

 Nodes are live ranges

 There is an edge between 2 nodes if the live ranges interfere

» What’s not represented by this graph

 Extent of interference between the LRs

 Where in the program is the interference

- 8 -

Example – Interference Graph

1: a = load()

2: b = load()

3: c = load()

4: d = b + c

5: e = d - 3

6: f = a * b

7: e = f + c

8: g = a + e

9: store(g)

a

g

c

f

d

b

e

lr(a) = {1,2,3,4,5,6,7,8}

lr(b) = {2,3,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

lr(d) = {4,5}

lr(e) = {5,7,8}

lr(f) = {6,7}

lr{g} = {8,9}

- 9 -

Graph Coloring

 A graph is n-colorable if every node in the graph can be

colored with one of the n colors such that 2 adjacent

nodes do not have the same color

» Model register allocation as graph coloring

» Use the fewest colors (physical registers)

» Spilling is necessary if the graph is not n-colorable where n is the

number of physical registers

 Optimal graph coloring is NP-complete for n > 2

» Use heuristics proposed by compiler developers

 “Register Allocation Via Coloring”, G. Chaitin et al, 1981

 “Improvement to Graph Coloring Register Allocation”, P. Briggs et

al, 1989

» Observation – a node with degree < n in the interference can

always be successfully colored given its neighbors colors

- 10 -

Coloring Algorithm

 1. While any node, x, has < n neighbors
» Remove x and its edges from the graph

» Push x onto a stack

 2. If the remaining graph is non-empty
» Compute cost of spilling each node (live range)

 For each reference to the register in the live range

 Cost += (execution frequency * spill cost)

» Let NB(x) = number of neighbors of x

» Remove node x that has the smallest cost(x) / NB(x)

 Push x onto a stack (mark as spilled)

» Go back to step 1

 While stack is non-empty
» Pop x from the stack

» If x’s neighbors are assigned fewer than R colors, then assign x
any unsigned color, else leave x uncolored

- 11 -

Example – Finding Number of Needed Colors

A

B

E

D

C

How many colors are needed to color this graph?

Try n=1, no, cannot remove any nodes

Try n=2, no again, cannot remove any nodes

Try n=3,

Remove B

Then can remove A, C

Then can remove D, E

Thus it is 3-colorable

- 12 -

Example – Do a 3-Coloring

a

g

c

f

d

b

e

a b c d e f g

cost 225 200 175 150 200 50 200

neighbors 6 4 5 4 3 4 2

cost/n 37.5 50 35 37.5 66.7 12.5 100

lr(a) = {1,2,3,4,5,6,7,8}

refs(a) = {1,6,8}

lr(b) = {2,3,4,6}

refs(b) = {2,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

refs(c) = {3,4,7}

lr(d) = {4,5}

refs(d) = {4,5}

lr(e) = {5,7,8}

refs(e) = {5,7,8}

lr(f) = {6,7}

refs(f) = {6,7}

lr{g} = {8,9}

refs(g) = {8,9}

Profile freqs

1,2 = 100

3,4,5 = 75

6,7 = 25

8,9 = 100

Assume each

spill requires

1 operation

- 13 -

Example – Do a 3-Coloring (2)

a

g

c

f

d

b

e

Remove all nodes < 3 neighbors

So, g can be removed

a

c

f

d

b

e

Stack

g

- 14 -

Example – Do a 3-Coloring (3)

Now must spill a node

Choose one with the smallest

cost/NB f is chosen

a

c d

b

e

Stack

f (spilled)

g

a

c

f

d

b

e

- 15 -

Example – Do a 3-Coloring (4)

a

c d

b

Stack

e

f (spilled)

g

a

c d

b

e

Remove all nodes < 3 neighbors

So, e can be removed

- 16 -

Example – Do a 3-Coloring (5)

a

d

b

Stack

c (spilled)

e

f (spilled)

g

Now must spill another node

Choose one with the smallest

cost/NB c is chosen

a

c d

b

- 17 -

Example – Do a 3-Coloring (6)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

Remove all nodes < 3 neighbors

So, a, b, d can be removed

a

d

b

Null

- 18 -

Example – Do a 3-Coloring (7)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

a

g

c

f

d

b

e

Have 3 colors: red, green, blue, pop off the stack assigning colors

only consider conflicts with non-spilled nodes already popped off stack

d red

b green (cannot choose red)

a blue (cannot choose red or green)

c no color (spilled)

e green (cannot choose red or blue)

f no color (spilled)

g red (cannot choose blue)

- 19 -

Example – Do a 3-Coloring (8)

1: blue = load()

2: green = load()

3: spill1 = load()

4: red = green + spill1

5: green = red - 3

6: spill2 = blue * green

7: green = spill2 + spill1

8: red = blue + green

9: store(red)

d red

b green

a blue

c no color

e green

f no color

g red

Notes: no spills in the blocks

executed 100 times. Most spills

in the block executed 25 times.

Longest lifetime (c) also spilled

