EECS 583 – Class 17 Register Allocation

University of Michigan

November 18, 2019

Announcements + Reading Material

- Today's class reading
 - "Register Allocation and Spilling Via Graph Coloring," G. Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler Construction, 1982.
- Signup sheet for final project presentations available next class

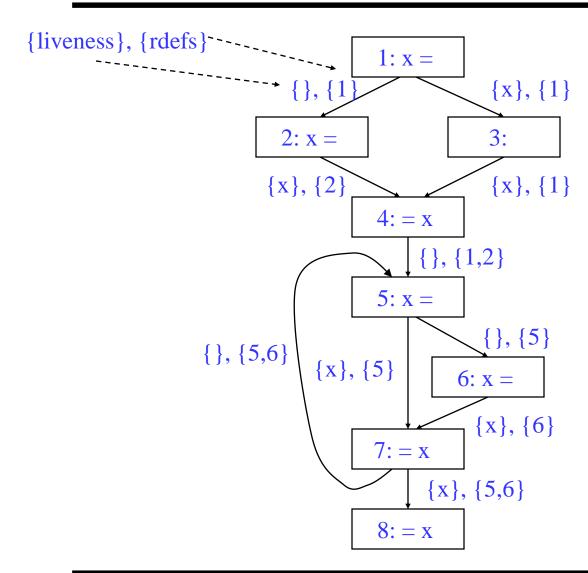
Register Allocation: Problem Definition

- Through optimization, assume an infinite number of virtual registers
 - » Now, must allocate these infinite virtual registers to a limited supply of hardware registers
 - » Want most frequently accessed variables in registers
 - Speed, registers much faster than memory
 - Direct access as an operand
 - » Any VR that cannot be mapped into a physical register is said to be <u>spilled</u>
- Questions to answer
 - What is the minimum number of registers needed to avoid spilling?
 - » Given n registers, is spilling necessary
 - » Find an assignment of virtual registers to physical registers
 - » If there are not enough physical registers, which virtual registers get spilled?

Live Range

- Value = definition of a register
- ❖ Live range = Set of operations
 - » 1 more or values connected by common uses
 - » A single VR may have several live ranges
- Live ranges are constructed by taking the intersection of reaching defs and liveness
 - » Initially, a live range consists of a single definition and all ops in a function in which that definition is live

Example – Constructing Live Ranges



Each definition is the seed of a live range.

Ops are added to the LR where both the defn reaches and the variable is live

LR1 for def $1 = \{1,3,4\}$

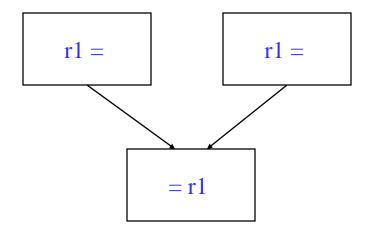
LR2 for def $2 = \{2,4\}$

LR3 for def $5 = \{5,7,8\}$

LR4 for def $6 = \{6,7,8\}$

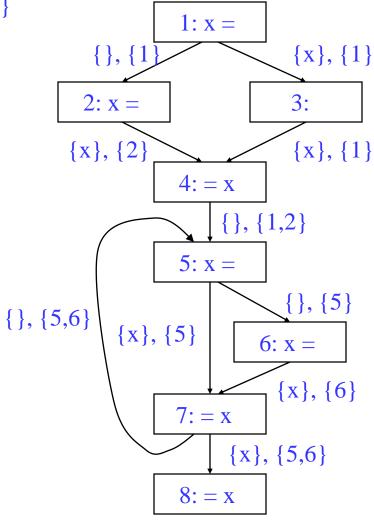
Merging Live Ranges

- If 2 live ranges for the same VR overlap, they must be merged to ensure correctness
 - » LRs replaced by a new LR that is the union of the LRs
 - » Multiple defs reaching a common use
 - » Conservatively, all LRs for the same VR could be merged
 - Makes LRs larger than need be, but done for simplicity
 - We will not assume this



Example – Merging Live Ranges

{liveness}, {rdefs}



LR1 for def $1 = \{1,3,4\}$ LR2 for def $2 = \{2,4\}$ LR3 for def $5 = \{5,7,8\}$ LR4 for def $6 = \{6,7,8\}$

Merge LR1 and LR2, LR3 and LR4

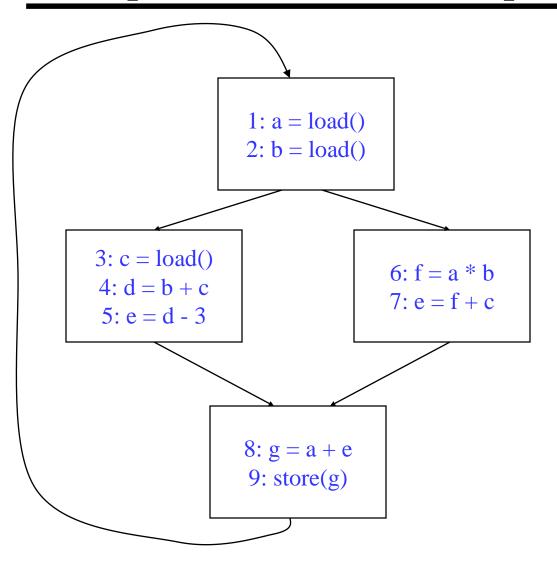
$$LR5 = \{1,2,3,4\}$$

 $LR6 = \{5,6,7,8\}$

Interference

- Two live ranges interfere if they share one or more ops in common
 - » Thus, they cannot occupy the same physical register
 - » Or a live value would be lost
- Interference graph
 - » Undirected graph where
 - Nodes are live ranges
 - There is an edge between 2 nodes if the live ranges interfere
 - » What's not represented by this graph
 - Extent of interference between the LRs
 - Where in the program is the interference

Example – Interference Graph



$$lr(a) = \{1,2,3,4,5,6,7,8\}$$

$$lr(b) = \{2,3,4,6\}$$

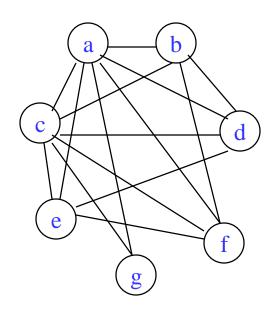
$$lr(c) = \{1,2,3,4,5,6,7,8,9\}$$

$$lr(d) = \{4,5\}$$

$$lr(e) = \{5,7,8\}$$

$$lr(f) = \{6,7\}$$

$$lr\{g\} = \{8,9\}$$



Graph Coloring

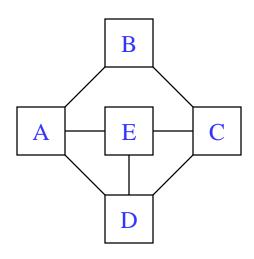
- ❖ A graph is <u>n-colorable</u> if every node in the graph can be colored with one of the n colors such that 2 adjacent nodes do not have the same color
 - » Model register allocation as graph coloring
 - » Use the fewest colors (physical registers)
 - » Spilling is necessary if the graph is not n-colorable where n is the number of physical registers
- Optimal graph coloring is NP-complete for n > 2
 - » Use heuristics proposed by compiler developers
 - "Register Allocation Via Coloring", G. Chaitin et al, 1981
 - "Improvement to Graph Coloring Register Allocation", P. Briggs et al, 1989
 - » <u>Observation</u> a node with degree < n in the interference can always be successfully colored given its neighbors colors</p>

Coloring Algorithm

- ❖ 1. While any node, x, has < n neighbors</p>
 - » Remove x and its edges from the graph
 - » Push x onto a stack
- ❖ 2. If the remaining graph is non-empty
 - » Compute cost of spilling each node (live range)
 - For each reference to the register in the live range
 - Cost += (execution frequency * spill cost)
 - » Let NB(x) = number of neighbors of x
 - » Remove node x that has the smallest cost(x) / NB(x)
 - Push x onto a stack (mark as spilled)
 - » Go back to step 1
- While stack is non-empty
 - » Pop x from the stack
 - » If x's neighbors are assigned fewer than R colors, then assign x any unsigned color, else leave x uncolored

Example – Finding Number of Needed Colors

How many colors are needed to color this graph?



Try n=1, no, cannot remove any nodes

Try n=2, no again, cannot remove any nodes

Try n=3,

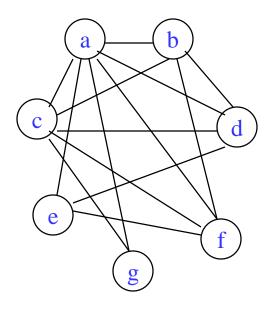
Remove B

Then can remove A, C

Then can remove D, E

Thus it is 3-colorable

Example – Do a 3-Coloring



$$lr(a) = \{1,2,3,4,5,6,7,8\}$$

$$refs(a) = \{1,6,8\}$$

$$lr(b) = \{2,3,4,6\}$$

$$refs(b) = \{2,4,6\}$$

$$lr(c) = \{1,2,3,4,5,6,7,8,9\}$$

$$refs(c) = \{3,4,7\}$$

$$lr(d) = \{4,5\}$$

$$refs(d) = \{4,5\}$$

$$lr(e) = \{5,7,8\}$$

$$refs(e) = \{5,7,8\}$$

$$refs(f) = \{6,7\}$$

$$lr\{g\} = \{8,9\}$$

$$refs(g) = \{8,9\}$$

8}	Profile freqs
6}	1,2 = 100 $3,4,5 = 75$
7}	6,7 = 25 8,9 = 100
}	0,5 = 100
8}	Assume each spill requires 1 operation

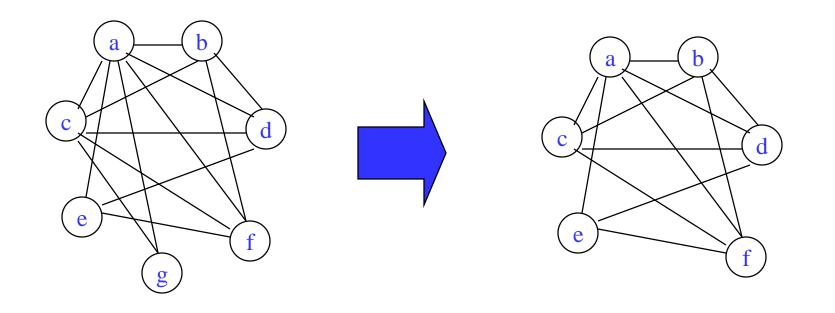
	a	b	C	d	e	f	g
cost	225	200	175	150	200	50	200
neighbors	6	4	5	4	3	4	2
cost/n	37.5	50	35	37.5	66.7	12.5	100

Example – Do a 3-Coloring (2)

Remove all nodes < 3 neighbors

Stack g

So, g can be removed

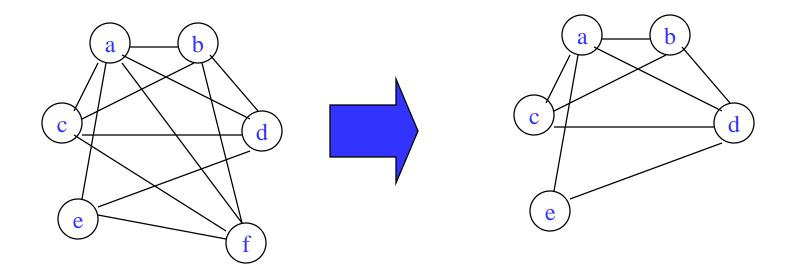


Example – Do a 3-Coloring (3)

Now must spill a node

Choose one with the smallest $cost/NB \rightarrow f$ is chosen

Stack f (spilled) g

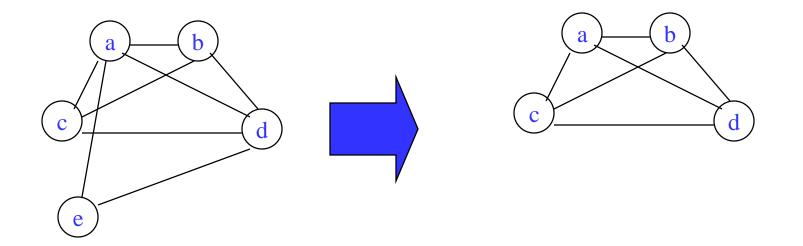


Example – Do a 3-Coloring (4)

Remove all nodes < 3 neighbors

So, e can be removed

Stack
e
f (spilled)
g

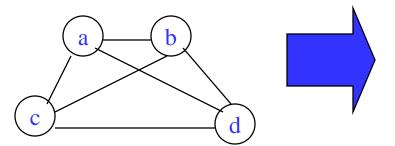


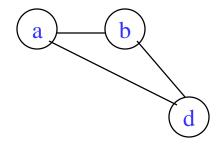
Example – Do a 3-Coloring (5)

Now must spill another node

Choose one with the smallest $cost/NB \rightarrow c$ is chosen

Stack c (spilled) e f (spilled) g



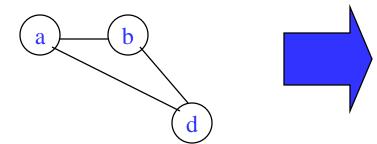


Example – Do a 3-Coloring (6)

Remove all nodes < 3 neighbors

So, a, b, d can be removed

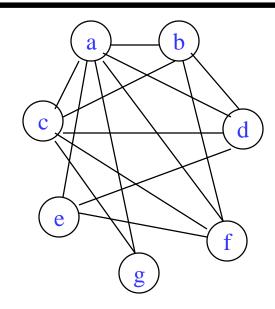
Stack
d
b
a
c (spilled)
e
f (spilled)
g



Null

Example – Do a 3-Coloring (7)

Stack d b a c (spilled) e f (spilled) g



Have 3 colors: red, green, blue, pop off the stack assigning colors only consider conflicts with non-spilled nodes already popped off stack

- $d \rightarrow red$
- b → green (cannot choose red)
- $a \rightarrow blue (cannot choose red or green)$
- $c \rightarrow no color (spilled)$
- e → green (cannot choose red or blue)
- f → no color (spilled)
- $g \rightarrow red$ (cannot choose blue)

Example – Do a 3-Coloring (8)

