
EECS 583 – Class 16

Finish Modulo Scheduling

Exam Review

University of Michigan

November 11, 2019

- 1 -

Announcements

 Exam – 2 options, you can choose
» Option 1: Wed Nov 13 10:40-12:30 – 2246 SRB (during class)

» Option 2: Fri Nov 15 10:40-12:30 – 220 Chrysler

 If there is a notable difference in mean score between Wed and

Fri results

» We will consider this fact when determining final grades and make

adjustments

 Covers through modulo scheduling, no register allocation

- 2 -

Loop Prolog and Epilog

Prolog

Epilog

Kernel

Only the kernel involves executing full width of operations

Prolog and epilog execute a subset (ramp-up and ramp-down)

II = 3

- 3 -

A0

A1 B0

A2 B1 C0

A B C D

Bn Cn-1 Dn-2

Cn Dn-1

Dn

Separate Code for Prolog and Epilog

A

B

C

D

Loop body

with 4 ops

Prolog -

fill the

pipe

Kernel

Epilog -

drain the

pipe

Generate special code before the loop (preheader) to fill the pipe

and special code after the loop to drain the pipe.

Peel off II-1 iterations for the prolog. Complete II-1 iterations

in epilog

- 4 -

Removing Prolog/Epilog

Prolog

Epilog

Kernel

II = 3

Disable using

predicated execution

Execute loop kernel on every iteration, but for prolog and epilog

selectively disable the appropriate operations to fill/drain the pipeline

- 5 -

Kernel-only Code Using Rotating Predicates
A0

A1 B0

A2 B1 C0

A B C D

Bn Cn-1 Dn-2

Cn Dn-1

Dn

P[0] P[1] P[2] P[3]

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

…

0 1 1 1

0 0 1 1

0 0 0 1

A if P[0] B if P[1] C if P[2] D if P[3]

A - - -

A B - -

A B C -

A B C D

…

- B C D

- - C D

- - - D

P referred to as the staging predicate

- 6 -

Modulo Scheduling Architectural Support

 Loop requiring N iterations
» Will take N + (S – 1) where S is the number of stages

 2 special registers created
» LC: loop counter (holds N)

» ESC: epilog stage counter (holds S)

 Software pipeline branch operations
» Initialize LC = N, ESC = S in loop preheader

» All rotating predicates are cleared

» SWP-BR

 While LC > 0, decrement LC and RRB, P[0] = 1, branch to top of
loop

 This occurs for prolog and kernel

 If LC = 0, then while ESC > 0, decrement RRB and write a 0 into
P[0], and branch to the top of the loop

 This occurs for the epilog

- 7 -

Execution History With LC/ESC

LC ESC P[0] P[1] P[2] P[3]

3 3 1 0 0 0 A

2 3 1 1 0 0 A B

1 3 1 1 1 0 A B C

0 3 1 1 1 1 A B C D

0 2 0 1 1 1 - B C D

0 1 0 0 1 1 - - C D

0 0 0 0 0 1 - - - D

A if P[0]; B if P[1]; C if P[2]; D if P[3]; P[0] = BRF.B.B.F;

LC = 3, ESC = 3 /* Remember 0 relative!! */

Clear all rotating predicates

P[0] = 1

4 iterations, 4 stages, II = 1, Note 4 + 4 –1 iterations of kernel executed

- 8 -

Modulo Scheduling Example

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop: Loop:

LC = 99

Step1: Compute to loop into

form that uses LC

- 9 -

Example – Step 11

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step11: calculate ESC, SC = ceiling(max unrolled sched length / ii)

unrolled sched time of branch = rolled sched time of br + (ii*esc)

SC = 6 / 2 = 3, ESC = SC – 1

time of br = 1 + 2*2 = 5

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

2 2

3

3

X

4

4

X

5

X

5 7

0

1

2

3

4

5

6

- 10 -

Example – Step 12

1: r3[-1] = load(r1[0]) if p1[0]

2: r4[-1] = r3[-1] * 26 if p1[1]

4: r1[-1] = r1[0] + 4 if p1[0]

3: store (r2[0], r4[-1]) if p1[2]

5: r2[-1] = r2[0] + 4 if p1[2]

7: brlc Loop if p1[2]

Loop:

LC = 99

ESC = 2

p1[0] = 1

Finishing touches - Sort ops, initialize ESC, insert BRF and staging predicate,

initialize staging predicate outside loop

Unrolled

Schedule

1

2

3

4

5 7

Stage 1

Stage 2

Stage 3

Staging predicate, each

successive stage increment

the index of the staging predicate

by 1, stage 1 gets px[0]

0

1

2

3

4

5

6

- 11 -

Example – Dynamic Execution of the Code

1: r3[-1] = load(r1[0]) if p1[0]

2: r4[-1] = r3[-1] * 26 if p1[1]

4: r1[-1] = r1[0] + 4 if p1[0]

3: store (r2[0], r4[-1]) if p1[2]

5: r2[-1] = r2[0] + 4 if p1[2]

7: brlc Loop if p1[2]

Loop:

LC = 99

ESC = 2

p1[0] = 1

0: 1, 4

1:

2: 1,2,4

3:

4: 1,2,4

5: 3,5,7

6: 1,2,4

7: 3,5,7

…

198: 1,2,4

199: 3,5,7

200: 2

201: 3,5,7

202: -

203 3,5,7

time: ops executed

Total time = II(num_iteration + num_stages – 1)

= 2(100 + 3 – 1) = 204 cycles

- 12 -

Homework Problem

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

How many resources of each type are

required to achieve an II=1 schedule?

If the resources are non-pipelined,

how many resources of each type are

required to achieve II=1

Assuming pipelined resources, generate

the II=1 modulo schedule.

- 13 -

Homework Problem – Answers in Red

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

How many resources of each type are

required to achieve an II=1 schedule?

For II=1, each operation needs a dedicated resource,

so: 3 ALU, 2 MEM, 1 BR

If the resources are non-pipelined,

how many resources of each type are

required to achieve II=1

Instead of 1 ALU to do the multiplies, 3 are needed,

and instead of 1 MEM to do the loads, 2 are needed.

Hence: 5 ALU, 3 MEM, 1 BR

Assuming pipelined resources, generate

the II=1 modulo schedule.

See next few slides

- 14 -

Problem continued

1

2

3

4

5

7

1,1

3,0

2,0

1,1

1,1

1,1

1,1

RecMII = 1

RESMII = 1

MII = MAX(1,1) = 11: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Dependence graph (same as example in class)

0,0

0,0

DSA converted code below (same

as example in class)

Assume II=1 so resources are: 3 ALU, 2 MEM, 1 BR

Priorities

1: H = 5

2: H = 3

3: H = 0

4: H = 4

5: H = 0

7: H = 0

- 15 -

Problem continued

resources: 3 alu, 2 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

alu0 alu1 m2 br

MRT
0 X

0 7

Rolled

Schedule

Unrolled

Schedule

0

1

2

3

4

5

6

m1alu2

Scheduling steps:

Schedule brlc at time II-1

Schedule op1 at time 0

Schedule op4 at time 0

Schedule op2 at time 2

Schedule op3 at time 5

Schedule op5 at time 5

Schedule op7 at time 5

1

1

X X X X X

4 2 3 5

4

2

3 5 7

stage 1

stage 2

stage 3

stage 4

stage 5

stage 6

- 16 -

Problem continued

r3[-1] = load(r1[0]) if p1[0]; r4[-1] = r3[-1] * 26 if p1[2]; store (r2[0], r4[-1]) if p1[5]; r1[-1] = r1[0] + 4 if p1[0]; r2[-1] = r2[0] + 4 if p1[5]; brf Loop

Loop:

LC = 99

The final loop consists of a single MultiOp containing 6 operations,

each predicated on the appropriate staging predicate. Note register allocation

still needs to be performed.

Exam Review

- 18 -

Midterm Exam

 Where
» This room on Wednes

» OR Chrysler Auditorium on Fri

» Start at 10:40 promptly

 What to expect
» Open notes (bring whatever you like), but no laptops

» Apply techniques we discussed in class

» Reason about solving compiler problems – how/why things are done

» A couple of thinking problems

» No LLVM code

» Reasonably long so don’t get stuck on a single problem

- 19 -

Midterm Exam – Continued

 3 exams (F12-F13, F18) are posted on the course website

» Note – Past exams may not accurately predict future exams!!

 Office hours

» Armand: Mon (Today) 1-3pm

» Sung: Tue 11-1

» Scott: Tue 2:00-3:00

 Studying

» Yes, you should study even though its open notes

 Lots of material that you have likely forgotten from early this semester

 Refresh your memories

 No memorization required, but you need to be familiar with the material to finish the

exam

» Go through lecture notes, especially the examples!

» If you are confused on a topic, go through the reading

» Go through the practice exams (Don’t look at the answer) as the final step

- 20 -

Exam Topics

 Control flow analysis

» Control flow graphs, Dom/pdom, Loop detection

» Trace selection, superblocks

 Predicated execution

» Control dependence analysis, if-conversion

 Dataflow analysis

» Liveness, reaching defs, DU/UD chains, available defs/exprs

» Static single assignment

 Optimizations

» Classical: Dead code elim, constant/copy prop, CSE, LICM, induction

variable strength reduction

» ILP optimizations - unrolling, tree height reduction,

induction/accumulator expansion – Just understand the concepts

» Speculative optimization – like HW2

- 21 -

Exam Topics - Continued

 Acyclic scheduling

» Dependence graphs, Estart/Lstart/Slack, list scheduling

» Code motion across branches, speculation, exceptions

» Can ignore sentinel scheduling (delayed exceptions)

 Software pipelining

» DSA form, ResMII, RecMII, modulo scheduling

» Make sure you can modulo schedule a loop!

» Execution control with LC, ESC

 Can ignore register allocation

 Can ignore automatic parallelization

- 22 -

Question 3 – Fall 2018

 When a compiler scheduler wants to speculate an

instruction, name one issue that it must consider to

preserve correctness of the resulting code.

- 23 -

Question 6 – Fall 2018

 Draw a control flow graph (CFG) consisting of 5 nodes

(A, B, C, D, and E) that satisfies the 4 properties below.

(10 pts)

» A dominates all nodes.

» B only dominates C and itself.

» D only post dominates C and itself.

» E post dominates all nodes

- 24 -

Question 9 – Fall 2018

 In the following control flow graph (CFG), place the 4

instructions (I-IV) such that the following conditions are

met: at most 1 instruction is added to each basic block

(BB); each instruction is placed at the beginning of a BB;

after correctly placing all the instructions, the following

optimizations should be applicable to the resulting code at

least one time each: a) Forward Copy Propagation, b)

Common Subexpression Elimination, c) Loop-Invariant

Code Motion, and d) Dead Code Elimination. Do not

worry about the impact of where you place the

instructions on the execution results of the code segment.

You may assume any relevant registers are properly

initialized and the loads/stores are known to go to

different addresses.

- 25 -

Question 9 – Fall 2018 (Continued)

BB2

r4 = r2 * 7

BB3

r2 = 3

BB4

BB5

r3 = load (r1)

store (r4, r3)

BB1

BB6

store (r5, 0)

I. r1 = r1 + 1

II. r5 = r8 * 7

III. r8 = r2

IV. r2 = r4 + 1

- 26 -

Question 11 – Fall 2018

 You are building a new compiler where you will have no memory

dependence analysis capabilities. The only intelligence that you have

is that you can differentiate stack/heap accesses. To enable some

optimizations of loads (i.e., CSE or LICM), you decide to build a

dataflow analysis pass to summarize the presence of heap/stack store

instructions to avoid scanning basic blocks repeatedly. Your dataflow

is defined as follows: A heap (stack) store is present if there exists at

least one store to the heap (stack) starting from p and ending at q.

When no heap (stack) store is present, you will be able to freely

optimize loads between p and q.

p

store (stack, r1)

q

Stack store is present

Heap store is present

store (stack, r1) store (heap, r2)

p

q

Stack store is present

- 27 -

Question 11 (continued)

 (a) Is this a forward or backward dataflow analysis

problem?

 (b) Is this an all-path or any path dataflow analysis

problem?

 (c) Define GEN and KILL sets to compute store presence.

Hint: Consider the use of special variables: heap and

stack

