EECS 583 — Class 15
Modulo Scheduling Reloaded

University of Michigan

November 6, 2019

Announcements + Reading Material

< Exam — Pushed back to Friday Nov 15, 10:40am - 12:30pm
» No additional classrooms available on Wednes, so forced to reschedule
» Chrysler Auditorium (rm 220)
» Let me know ASAP if you have a conflict!!

<+ Today’s class reading

» “Code Generation Schema for Modulo Scheduled Loops™, B. Rau, M.
Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992.

< Next class reading

» “Register Allocation and Spilling Via Graph Coloring,” G. Chaitin,
Proc. 1982 SIGPLAN Symposium on Compiler Construction, 1982,

From Last Time: Dependences in a Loop

< Need worry about 2 kinds
» Intra-iteration
» Inter-iteration

» Delay

» Minimum time interval between
the start of operations

» Operation read/write times

< Distance

» Number of iterations separating
the 2 operations involved

» Distance of 0 means intra-
iteration

< Recurrence manifests itself as a Edges annotated with tuple
circuit in the dependence graph

L)

L)

D)

<delay, distance>

From Last Time: Dynamic Single Assignment
(DSA) Form

Impossible to overlap iterations because each iteration writes to the same
register. So, we’ll have to remove the anti and output dependences.

Virtual rotating registers
* Each register is an infinite push down array (Expanded virtual reg or EVR)
* Write to top element, but can reference any element
* Remap operation slides everything down = r[n] changes to r[n+1]

A program is in DSA form if the same virtual register (EVR element) is never
assigned to more than 1x on any dynamic execution path

1: r3 = load(rl) 1: r3[-1] = load(r1[0])
2: 14 =r3* 26 2: I’4[-l] = I’3[-l] * 26
3: store (2, r4) 3: store (r2[0], r4[-1])
4:rl=r1+4 q 4:r1[-1] =r1[0] + 4
5:12=r2+4 5:r2[-1] =r2[0] + 4
6: p1 = cmpp (rl < r9) DSA 6: p1[-1] = cmpp (r1[-1] <r9)
7: brct p1 Loop conversion | remap rl, r2, r3, r4, pl

7: brct p1[-1] Loop

LLoop Dependence Example

: 13[-1] = load(r1[0])
:r4[-1] = r3[-1] * 26

. store (r2[0], r4[-1])

:r1[-1] =r1[0] + 4

:12[-1] =r2[0] + 4

6: p1[-1] = cmpp (r1[-1] <r9)
remap rl, r2, r3, r4, pl

7: brct p1[-1] Loop

g b~ wPN -

In DSA form, there are no
inter-iteration anti or output
dependences!

<delay, distance>

Class Problem

Latencies: Id=2,st=1,add=1,cmpp=1,br=1

1: r1[-1] = load(r2[0])

2:1r3[-1] =r1[1] —r1]2]

3: store (r3[-1], r2[0])

4:r2[-1] =r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)
remap rl, r2, r3

6: brct p1[-1] Loop

Draw the dependence graph
showing both intra and inter
iteration dependences

Minimum Initiation Interval (MII)

<« Remember, Il = number of cycles between the start of
successive iterations

< Modulo scheduling requires a candidate Il be selected
before scheduling iIs attempted
» Try candidate Il, see if it works
» If not, increase by 1, try again repeating until successful

<« MIIl i1s a lower bound on the Il
» MIl = Max(ResMIl, RecMlII)

» ResMII = resource constrained Ml
* Resource usage requirements of 1 iteration

» RecMII = recurrence constrained Ml
 Latency of the circuits in the dependence graph

ResMI|

Concept: If there were no dependences between the operations, what
IS the the shortest possible schedule?

Simple resource model

A processor has a set of resources R. For each resourcerinR
there is count(r) specifying the number of identical copies

ResMIl = MAX (uses(r) / count(r))

forallrin R

uses(r) = number of times the resource is used in 1 iteration

In reality its more complex than this because operations can have
multiple alternatives (different choices for resources it could be
assigned to), but we will ignore this for now

-7-

ResMII Example

resources: 4 issue, 2 alu, 1 mem, 1 br
latencies: add=1, mpy=3,ld=2,st=1,br=1

1:r3 =load(rl)

2:14=13* 26

3: store (r2, r4)

Arl=rl+4 ALU: usedby2,4,5,6

512 =12 +4 = 4o0ps/2units=2
6: p1 = cmpp (rl < r9) Mem: used by 1, 3 _

7: bret p1 Loop 2> 20ps/1lunit=2

Br: used by 7
2> lop/lunit=1

ResMIl = MAX(2,2,1) = 2

RecMI|

Approach: Enumerate all irredundant elementary circuits in the
dependence graph

RecMIl = MAX (delay(c) / distance(c))

forallcinC

delay(c) = total latency in dependence cycle ¢ (sum of delays)
distance(c) = total iteration distance of cycle ¢ (sum of distances)

3,1
1,0 ‘ K+2 3 4 cycles,
k+3

v RecMIl =4

delay(c) =1+3=4
distance(c) =0+1=1
RecMIl =4/1=4

RecMII Example

1: r3 =load(rl)

2: 14 =r3* 26 4>4:1/1=1

3: store (r2, r4) 5->5:1/1=1
4:r1l=rl+4 4>1-2>4:1/1=1
5:12=r2+4 52>3->51/1=1

6: pl =cmpp (r1 <r9)

7: brct pl Loop RecMIl = MAX(1,1,1,1)=1

Then,

MI1 = MAX(ResMII, RecMII)
MIl = MAX(2,1) = 2

<delay, distance>

Class Problem

Latencies: Ild=2,st=1,add=1,cmpp=1,br=1
Resources: 1 ALU, 1 MEM, 1 BR

1: r1[-1] = load(r2[0])

2:1r3[-1] =r1[1] —r1]2]

3: store (r3[-1], r2[0])

4:r2[-1] =r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)
remap rl, r2, r3

6: brct p1[-1] Loop

Calculate RecMII, ResMII, and Ml

-11 -

Modulo Scheduling Process

< Use list scheduling but we need a few twists
» Il is predetermined — starts at MII, then is incremented

» Cyclic dependences complicate matters
 Estart/Priority/etc.

e Consumer scheduled before producer is considered
¢ There is a window where something can be scheduled!

» Guarantee the repeating pattern

< 2 constraints enforced on the schedule
» Each iteration begin exactly Il cycles after the previous one

» Each time an operation is scheduled in 1 iteration, it is tentatively
scheduled in subsequent iterations at intervals of Il

e MRT used for this

-12 -

Priority Function

Height-based priority worked well for acyclic scheduling, makes sense
that it will work for loops as well

Acyclic: 0, if X has no successors
Height(X) =
((Height(Y) + Delay(X,Y)), otherwise
fo

rally = succ(X)

Cyclic: 0, if X has no successors
HeightR(X) =
MAX ((HeightR(Y) + EffDelay(X,Y)), otherwise
fo

rall Y = succ(X)

EffDelay(X,Y) = Delay(X,Y) — lI*Distance(X,Y)

-13-

Calculating Height

1. Insert pseudo edges from all nodes to branch with
latency = 0, distance = 0 (dotted edges)

2. Compute Il, For this example assume Il = 2

3. HeightR(4) =

4. HeightR(3) = 00 .77

5. HeightR(2) = @)051 1

6. HeightR(1)

-14 -

The Scheduling Window

With cyclic scheduling, not all the predecessors may be scheduled,
so a more flexible earliest schedule time is:

0, if X is not scheduled
E(Y)= MAX

for all X = pred(Y) MAX (0, SchedTime(X) + EffDeIay(X,Y)),

otherwise

where EffDelay(X,Y) = Delay(X,Y) — II*Distance(X,Y)

Every Il cycles a new loop iteration will be initialized, thus every Il

cycles the pattern will repeat. Thus, you only have to look in a
window of size Il, if the operation cannot be scheduled there, then

it cannot be scheduled.
Latest schedule time(Y) = L(Y) =E(Y) + 11 -1

-15 -

LLoop Prolog and Epilog

Prolog

Kernel

Epilog

Only the kernel involves executing full width of operations

Prolog and epilog execute a subset (ramp-up and ramp-down)

-16 -

Separate Code for Prolog and Epilog

Loop body
with 4 ops

OO m™>

=)

AQ Prolog -
Al BO fill the
A2 Bl CO p1pe
A B C D Kernel
Bn Cn-1 Dn-2 Epilog -
Cn Dn-1 drain the
Dn pipe

Generate special code before the loop (preheader) to fill the pipe
and special code after the loop to drain the pipe.

Peel off I1-1 iterations for the prolog. Complete I1-1 iterations

in epilog

-17 -

Removing Prolog/Epilog

- ~~

/ y 11=3
\ 5 Prolog
Kernel
Disable using__ / y .
predicated execution Epilog

-
~—_ -

Execute loop kernel on every iteration, but for prolog and epilog
selectively disable the appropriate operations to fill/drain the pipeline

-18 -

Kernel-only Code Using Rotating Predicates

A0
Al BO
A2 Bl1 CO

A B C D - AifP[0] BifP[1] C ifP[2] D if P[3]

Bn Cn-1 Dn-2

Cn Dn-1
Dn . :
/ P referred to as the staging predicate
P[O] P[1] P[2] P[3]
1 0 0 0 A
1 1 0 0 A B
1 1 1 0 A B C
1 1 1 1 A B C D
0 1 1 1 B C D
0 0 1 1 - C D
0 0 0 1 D

-19 -

Modulo Scheduling Architectural Support

< Loop requiring N iterations

» Will take N + (S — 1) where S is the number of stages
< 2 special registers created

» LC: loop counter (holds N)

» ESC: epilog stage counter (holds S)

< Software pipeline branch operations

» Initialize LC = N, ESC = S in loop preheader

» All rotating predicates are cleared
» SWP-BR

e While LC >0, decrement LC and RRB, P[0] = 1, branch to top of
loop

+ This occurs for prolog and kernel

e If LC =0, then while ESC > 0, decrement RRB and write a 0 into
P[0], and branch to the top of the loop

+ This occurs for the epilog

-20 -

COCoOoOoO0OOoOFR,NW

Execution History With LC/ESC

LC =3, ESC = 3 /* Remember O relative!! */
Clear all rotating predicates
P[0]=1

AifP[0]; BifP[1]; CifP[2]; D if P[3]; P[0] = BRF.B.B.F;

C ESC P[0] P[] P[2] P[3]
3 1 0 0 0 A
3 1 1 0 0 A B
3 1 1 1 0 A B
3 1 1 1 1 A B
2 0 1 1 1 i B
1 0 0 1 1 i i
0 0 0 0 1 i i

4 iterations, 4 stages, Il =1, Note 4 + 4 —1 iterations of kernel executed

-21 -

OO0 O0

O O 00O

Modulo Scheduling Example

resources: 4 issue, 2 alu, 1 mem, 1 br
latencies: add=1, mpy=3,ld=2,st=1,br=1

Stepl: Compute to loop into

for (j=0; j<100; j++) form that uses LC
b[j] = a[j] * 26
LC =99
Loop:| 1:r3 = load(r1) Loop: ; 2 _ Irgaf(gré)
. —_— * | B
2: 14 =13 %26 3: store (12, r4)
3: store (r2, r4) A rl=rl+4
4:rl=rl1+4 5:r2:r2+4
Sir2=r2+4 7: brlc Loop
6: pl=cmpp (r1 <r9)
7: brct pl Loop

-922.-

Example — Step 2

resources: 4 issue, 2 alu, 1 mem, 1 br
latencies: add=1, mpy=3,ld=2,st=1,br=1

Step 2: DSA convert

LC =99 LC =99

Loop: | 1:r3 =load(rl) Loop: | 1:r3[-1] = load(r1[0])
2:14=13* 26 2: r4[-1] = r3[-1] * 26
3: store (r2, r4) 3: store (r2[0], r4[-1])
4:r1=r1+4 ‘ 4:r1[-1] = r1[0] + 4
5:r2=r2+4 5:r2[-1] =r2[0] + 4
7: brlc Loop remap rl, r2,r3, r4

7: brlc Loop

-23-

Example — Step 3

resources: 4 issue, 2 alu, 1 mem, 1 br Step3: Draw dependence graph
latencies: add=1, mpy:B’ Id=2,st=1,br=1 Calculate MlII

LC =99 00

Loop: : 13[-1] = load(r1[0])
:r4[-1] = r3[-1] * 26
. store (r2[0], r4[-1])
' r1[-1] = r1[0] + 4
:12[-1] = r2[0] + 4 00
remap rl, r2, r3, r4
7: brlc Loop

RecMIl =1
RESMII =2
MIl =2

ok~

- 24 -

Step 4 — Calculate priorities (MAX height

to pseudo stop node)

lter?2

Iterl

1:H=5

1:H=5

2:H=3

2:H=3

3:H=0

3:H=0

4:H=4

4:H=0

5 H=0

5:H=0

7:H=0

7:H=0

-25-

Example — Step 5

resources: 4 issue, 2 alu, 1 mem, 1 br Schedule brlcattime Il - 1
latencies: add=1, mpy=3,ld=2,st=1,br=1

Unrolled
Rolled Schedule

Schedule
LC =99

Loop: : 13[-1] = load(r1[0])

: r4[-1] = r3[-1] * 26 0

. store (r2[0], r4[-1]) 117

or A WD - O

r1[-1]=r1[0] + 4
:12[-1] =r2[0] + 4

ok~

remap rl, r2, r3, r4 6
7: brlc Loop alu0 alul mem br

MRT

- 26 -

Example — Step 6

Step6: Schedule the highest priority op

Opl:E=0,L=1
Place at time 0 (0 % 2)

LC =99

Unrolled
Rolled Schedule

Schedule

Loop: : 13[-1] = load(r1[0])

:r4[-1] = r3[-1] * 26 0

: store (r2[0], r4[-1]) 1
:r1[-1] =r1[0] + 4

A WD -

5:r2[-1] =r2[0] + 4
remap rl, r2,r3,r4
7: brlc Loop

-27 -

or A WD - O

6

aluo alul mem br

0 X

MRT

Example — Step 7

Step7: Schedule the highest priority op

Op4:E=0,L=1
Place at time 0 (0 % 2)

LC =99

Unrolled
Rolled Schedule

Schedule
1 4

Loop: : 13[-1] = load(r1[0])

:r4[-1] = r3[-1] * 26 0

: store (r2[0], r4[-1]) 1
:r1[-1] =r1[0] + 4

A WD -

5:r2[-1] =r2[0] + 4
remap rl, r2,r3,r4
7: brlc Loop

-28 -

or A WD - O

6

aluo alul mem br

X
0 X MRT

Example — Step 8

Step8: Schedule the highest priority op

Op2:E=2,L=3
Place at time 2 (2 % 2)

LC =99

Rolled
Schedule

Loop: : 13[-1] = load(r1[0])

:r4[-1] = r3[-1] * 26 0

: store (r2[0], r4[-1]) 1
:r1[-1] =r1[0] + 4

ok~

:12[-1] =r2[0] + 4
remap rl, r2,r3,r4
7: brlc Loop

-29-

Unrolled
Schedule

1

4

or A WD - O

6

alu0 alul mem

br

0| X

X

X

MRT

Example — Step 9

Step9: Schedule the highest priority op

Op3:E=5L=6
Place at time 5 (5 % 2) Unrolled
Rolled Schedule
LC =99 Schedule 0o [1 2
Loop: | 1:r3[-1] = load(r1[0]) ; 2
2: r4[-1] = r3[-1] * 26 o|l 2 4
3: store (r2[0], r4[-1]) 1 3
4: r1[-1] = r1[0] + 4 4
5:12[-1] =r2[0] + 4 5 3
remap rl, r2, r3, r4 6
7: brlc Loop alu0 alul mem br
X | X
0 X MRT
1 X | X

-30 -

Example — Step 10

Stepl10: Schedule the highest priority op

Op5:E=5,L=6
Place at time 5 (5 % 2) Unrolled
Rolled Schedule
LC =99 Schedule 0o [1 2
Loop: | 1:r3[-1] = load(r1[0]) ; 2
2: r4[-1] = r3[-1] * 26 ol 2 4
3: store (r2[0], r4[-1]) 1 3
4:r1[-1] = r1[0] + 4 4
5: r2[-1] = r2[0] + 4 5353
remap rl, r2, r3, r4 6
7: brlc Loop alu0 alul mem br
X [X
0 X MRT
1] x X | X

-31 -

Loop:

Example — Step 11

Stepll: calculate ESC, SC = ceiling(max unrolled sched length / ii)
unrolled sched time of branch = rolled sched time of br + (ii*esc)

SC=6/2=3,ESC=SC-1
timeofbr=1+2*2=5

LC =99

ok~

7.

: 13[-1] = load(r1[0])
:r4[-1] = r3[-1] * 26
. store (r2[0], r4[-1])
:r1[-1] =r1[0] + 4
:12[-1] =r2[0] + 4
remap rl, r2,r3,r4

brlc Loop

-32-

Unrolled
Rolled Schedule
Schedule o1 2
1
2 4 2| 2
3
3 5 4
513 5 7
6
alu0 alul mem br
0% |* |X MRT
11X X | X

Example — Step 12

Finishing touches - Sort ops, initialize ESC, insert BRF and staging predicate,
initialize staging predicate outside loop

Staging predicate, each

LC =99 successive stage increment
ESC=2 the index of the staging predicate
p1[0]=1 by 1, stage 1 gets px[0]
Loop: | 1:r3[-1] =load(r1[0]) if p1[O] Unrolled
2: r4[-1] = r3[-1] * 26 if p1[1] Schedule
4:r1[-1] = r1[0] + 4 if p1[0] _
3: store (r2[0], r4[-1]) if p1[2] o1l 4 Stage 1
5:r2[-1] = r2[0] + 4 if p1[2] 1 _
7: brlc Loop if p1[2] 2 | 2 Stage 2
3 _
4 Stage 3
513 5 7 _
6

-33-

Example — Dynamic Execution of the Code

time: ops executed

LC =99
ESC=2 0:1,4
p1[0] =1 1
2124
Loop: 1: r3[-1] = load(r1[0]) if p1[0] 3
2: r4[-1] = r3[-1] * 26 if p1[1] 4:1,2,4
4:r1[-1] =r1[0] + 4 if p1[O0] 5:35,7
3: store (r2[0], r4[-1]) if p1[2] 6124
5: 12[-1] = r2[0] + 4 if p1[2] 7. 3’5'7
7: brlc Loop if p1[2] TooTAmEEERToos
198:1,2,4
Total time = II(num_iteration + num_stages — 1) 199035
= 2(100 + 3 — 1) = 204 cycles 200: 2
_..201:3.5.7
202: -
203 3,5,7

-34 -

Homework Problem

latencies: add=1, mpy=3,ld=2,st=1,br=1

How many resources of each type are
required to achieve an 11=1 schedule?
for (j=0; j<100; j++)
b[j] = a[j] * 26 If the resources are non-pipelined,
how many resources of each type are
required to achieve 11=1

LC =99
Assuming pipelined resources, generate
Loop: | 1:r3=load(rl) the 11=1 modulo schedule.

2:14 =13 * 26

3: store (r2, r4)

4:rl=rl+4

5:12=r2+4

7: brlc Loop

-35 -

What if We Don’t Have Hardware Support
for Modulo Scheduling?

< No predicates

» Predicates enable kernel-only code by selectively
enabling/disabling operations to create prolog/epilog

» Now must create explicit prolog/epilog code segments

< No rotating registers
» Register names not automatically changed each iteration

» Must unroll the body of the software pipeline, explicitly
rename
e Consider each register lifetime 1 in the loop
e Kmin = min unroll factor = MAXi (ceiling((Endi — Starti) / 1))
e Create Kmin static names to handle maximum register lifetime

» Apply modulo variable expansion

-36 -

