
EECS 583 – Class 13

Superblock Scheduling

University of Michigan

October 28, 2019

- 1 -

Announcements & Reading Material
 Project proposals

» Due Wednesday, Oct 30, 11:59pm

» 1 paragraph summary of what you plan to work on

 Topic, what are you going to do, what is the goal, 1-2 references

» Email to me & Sung & Armand, cc all your group members

 Midterm exam

» Originally scheduled for Wed Nov 6

» Moved to Wed Nov 13 in class. Likely in this room and another (or 2) so stay

tuned for your room assignment.

» More on review session and the content later. Prior exams will be posted!

 Today’s class

» “The Importance of Prepass Code Scheduling for Superscalar and Superpipelined

Processors,” P. Chang et al., IEEE Transactions on Computers, 1995, pp. 353-370.

 Next class

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”, B. Rau,

MICRO-27, 1994, pp. 63-74.

- 2 -

From Last Time: Dependence Graph

Properties - Estart

 Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency) for each predecessor node

» Example
1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

- 3 -

From Last Time: Lstart

 Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency) for each successor node

» Example 1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

- 4 -

From Last Time: Critical Path

 Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical operations from node with no

predecessors to exit node, can be multiple crit paths

1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

- 5 -

From Last Time: Height-Based Priority

 Height-based is the most common

» priority(op) = MaxLstart – Lstart(op) + 1

2

3

5

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

10

1
1

8, 8

7

10, 1

0, 5

1

2

- 6 -

List Scheduling (aka Cycle Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 time = -1

 while (UNSCHEDULED is not empty)

» time++

» READY = UNSCHEDULED ops whose incoming dependences

have been satisfied

» Sort READY using priority function

» For each op in READY (highest to lowest priority)

 op can be scheduled at current time? (are the resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED/READY sets

 No, continue

- 7 -

Cycle Scheduling Example

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

2m

3m

5m

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

10

1
1

8, 8

7m

10, 1

0, 5

1

2

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

- 8 -

List Scheduling (Operation Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 while (UNSCHEDULED not empty)
» op = operation in UNSCHEDULED with highest priority

» For time = estart to some deadline

 Op can be scheduled at current time? (are resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED

 No, continue

» Deadline reached w/o scheduling op? (could not be scheduled)
 Yes, unplace all conflicting ops at op.estart, add them to

UNSCHEDULED

 Schedule op at estart

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED

- 9 -

Homework Problem – Operation Scheduling

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

65

8

10

9m

2

2

11

11

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,45,5

6,6

1

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

- 10 -

Homework Problem – Answer

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

65

8

10

9m

2

2

11

11

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,45,5

6,6

1

RU_map

time ALU MEM

0 X

1 X

2 X

3 X X

4 X

5 X

6 X

7 X

8 X

Schedule
Time Placed

0 2

1 1

2 4

3 3, 9

4 6

5 7

6 5

7 8

8 10

Op priority

1 6

2 7

3 4

4 5

5 2

6 3

7 3

8 2

9 3

10 1

- 11 -

Generalize Beyond a Basic Block

 Superblock

» Single entry

» Multiple exits (side exits)

» No side entries

 Schedule just like a BB

» Priority calculations needs change

» Dealing with control deps

- 12 -

Lstart in a Superblock

 Not a single Lstart any more

» 1 per exit branch (Lstart is a vector!)

» Exit branches have probabilities
1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1
op Estart Lstart0 Lstart1

1

2

3

4

5

6

1

- 13 -

Operation Priority in a Superblock

 Priority – Dependence height and speculative yield

» Height from op to exit * probability of exit

» Sum up across all exits in the superblock

1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1

op Lstart0 Lstart1 Priority

1

2

3

4

5

6

1

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1))
valid late times for op

- 14 -

Dependences in a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

* Data dependences

shown, all are reg flow

except 1 6 is reg anti

* Dependences define

precedence ordering of

operations to ensure

correct execution

semantics

* What about control

dependences?

* Control dependences

define precedence of

ops with respect to

branches

Superblock

Note: Control flow in red bold

- 15 -

Conservative Approach to Control Dependences

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock
* Make branches

barriers, nothing

moves above or below

branches

* Schedule each BB in

SB separately

* Sequential schedules

* Whole purpose of a

superblock is lost

Note: Control flow in red bold

- 16 -

Upward Code Motion Across Branches

 Restriction 1a (register op)

» The destination of op is not in

liveout(br)

» Wrongly kill a live value

 Restriction 1b (memory op)

» Op does not modify the memory

» Actually live memory is what

matters, but that is often too hard to

determine

 Restriction 2

» Op must not cause an exception that

may terminate the program execution

when br is taken

» Op is executed more often than it is

supposed to (speculated)

» Page fault or cache miss are ok

 Insert control dep when either

restriction is violated

…

if (x > 0)

y = z / x

…

1: branch x <= 0

2: y = z / x

control flow graph

- 17 -

Downward Code Motion Across Branches

 Restriction 1 (liveness)

» If no compensation code

 Same restriction as before,
destination of op is not liveout

» Else, no restrictions

 Duplicate operation along both
directions of branch if
destination is liveout

 Restriction 2 (speculation)

» Not applicable, downward
motion is not speculation

 Again, insert control dep when the
restrictions are violated

 Part of the philosphy of
superblocks is no compensation
code inseration hence R1 is
enforced!

…

a = b * c

if (x > 0)

else

…

1: a = b * c

2: branch x <= 0

control flow graph

- 18 -

Add Control Dependences to a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock Assumed liveout sets

{r1}

{r2}

{r5}

Notes: All branches are control

dependent on one another.

If no compensation, all ops dependent

on last branch

All ops

have cdep

to op 9!

- 19 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

Draw the dependence graph

- 20 -

Relaxing Code Motion Restrictions

 Upward code motion is generally

more effective

» Speculate that an op is useful (just

like an out-of-order processor with

branch pred)

» Start ops early, hide latency, overlap

execution, more parallelism

 Removing restriction 1

» For register ops – use register

renaming

» Could rename memory too, but

generally not worth it

 Removing restriction 2

» Need hardware support (aka

speculation models)

 Some ops don’t cause exceptions

 Ignore exceptions

 Delay exceptions

1: branch x <= 0

2: y = z / x

R1: y is not in liveout(1)

R2: op 2 will never cause

an exception when op1

is taken

- 21 -

Restricted Speculation Model

 Most processors have 2

classes of opcodes

» Potentially exception

causing

 load, store, integer

divide, floating-point

» Never excepting

 Integer add, multiply,

etc.

 Overflow is detected, but

does not terminate

program execution

 Restricted model

» R2 only applies to

potentially exception

causing operations

» Can freely speculate all

never exception ops (still

limited by R1 however)

1

2

3

5

6

4

7

8

9

We assumed

restricted

speculation

when this

graph was

drawn.

This is why

there is no

cdep between

4  6 and

4 8

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

{r5}

- 22 -

General Speculation Model

 2 types of exceptions

» Program terminating (traps)

 Div by 0, illegal address

» Fixable (normal and handled
at run time)

 Page fault, TLB miss

 General speculation

» Processor provides non-
trapping versions of all
operations (div, load, etc)

» Return some bogus value (0)
when error occurs

» R2 is completely ignored,
only R1 limits speculation

» Speculative ops converted
into non-trapping version

» Fixable exceptions handled as
usual for non-trapping ops

1

2

3

5

6

4

7

8

9

Remove

edge from

4 to 7

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

- 23 -

Programming Implications of General Spec

 Correct program

» No problem at all

» Exceptions will only result

when branch is taken

» Results of excepting

speculative operation(s) will

not be used for anything

useful (R1 guarantees this!)

 Program debugging

» Non-trapping ops make this

almost impossible

» Disable general speculation

during program debug phase

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

4: *w = z

- 24 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Starting with the graph assuming restricted

speculation, what edges can be removed if

general speculation support is provided?

2. With more renaming, what dependences could

be removed?

- 25 -

Sentinel Speculation Model

 Ignoring all speculative exceptions

is painful

» Debugging issue (is a program ever

fully correct?)

 Also, handling of all fixable

exceptions for speculative ops can

be slow

» Extra page faults

 Sentinel speculation

» Mark speculative ops (opcode bit)

» Exceptions for speculative ops are

noted, but not handed immediately

(return garbage value)

» Check for exception conditions in

the “home block” of speculative

potentially excepting ops

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check exception

4: *w = z

- 26 -

Delaying Speculative Exceptions

 3 things needed

» Record exceptions

» Check for exceptions

» Regenerate exception

 Re-execute ops including

dependent ops

 Terminate execution or process

exception

 Recording them

» Extend every register with an extra

bit

 Exception tag (or NAT bit)

 Reg data is garbage when set

 Bit is set when either

 Speculative op causes exception

 Speculative op has a NAT’d

source operand (exception

propagation)

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check exception

4: *w = z

- 27 -

Delaying Speculative Exceptions (2)

 Check for exceptions

» Test NAT bit of appropriate

register (last register in dependence

chain) in home block

» Explicit checks

 Insert new operation to check NAT

» Implicit checks

 Non-speculative use of register

automatically serves as NAT check

 Regenerate exception

» Figure out the exact cause

» Handle if possible

» Check with NAT condition

branches to “recovery code”

» Compiler generates the recovery

code specific to each check

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check NAT(z)

4: *w = z

- 28 -

Delaying Speculative Exceptions (3)

2’: y = *x

3’: z = y + 4

1: branch x == 0

branch NAT(z) fixup

4: *w = z

2’’: y = *x

3’’: z = y + 4

jump done

fixup:

done:

Recovery code

In recovery code, the exception condition

will be regenerated as the excepting op

is re-executed with the same inputs

If the exception can be handled, it is, all

dependent ops are re-executed, and execution

is returned to point after the check

If the exception is a program error,

execution is terminated in the recovery

code

Recovery code consists of chain

of operations starting with a

potentially excepting speculative

op up to its corresponding check

- 29 -

Implicit vs Explicit Checks

 Explicit
» Essentially just a conditional branch

» Nothing special needs to be added to the processor

» Problems

 Code size

 Checks take valuable resources

 Implicit
» Use existing instructions as checks

» Removes problems of explicit checks

» However, how do you specify the address of the recovery block?,
how is control transferred there?

» Hardware table

 Indexed by PC

 Indicates where to go when NAT is set

 IA-64 uses explicit checks

- 30 -

Homework Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Move ops 5, 6, 8 as far up in the SB

as possible assuming sentinel speculation

support and register renaming

2. Insert the necessary checks and

recovery code (assume ld, st, and div

can cause exceptions)

