
EECS 583 – Class 13

Superblock Scheduling

University of Michigan

October 28, 2019

- 1 -

Announcements & Reading Material
 Project proposals

» Due Wednesday, Oct 30, 11:59pm

» 1 paragraph summary of what you plan to work on

 Topic, what are you going to do, what is the goal, 1-2 references

» Email to me & Sung & Armand, cc all your group members

 Midterm exam

» Originally scheduled for Wed Nov 6

» Moved to Wed Nov 13 in class. Likely in this room and another (or 2) so stay

tuned for your room assignment.

» More on review session and the content later. Prior exams will be posted!

 Today’s class

» “The Importance of Prepass Code Scheduling for Superscalar and Superpipelined

Processors,” P. Chang et al., IEEE Transactions on Computers, 1995, pp. 353-370.

 Next class

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”, B. Rau,

MICRO-27, 1994, pp. 63-74.

- 2 -

From Last Time: Dependence Graph

Properties - Estart

 Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency) for each predecessor node

» Example
1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

- 3 -

From Last Time: Lstart

 Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency) for each successor node

» Example 1

2

54

3

6

87

1
2

12

3

2
3

2

1

3

- 4 -

From Last Time: Critical Path

 Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical operations from node with no

predecessors to exit node, can be multiple crit paths

1

2

54

3

6

87

1
2

12

3

2

3

2

1

3

- 5 -

From Last Time: Height-Based Priority

 Height-based is the most common

» priority(op) = MaxLstart – Lstart(op) + 1

2

3

5

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

10

1
1

8, 8

7

10, 1

0, 5

1

2

- 6 -

List Scheduling (aka Cycle Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 time = -1

 while (UNSCHEDULED is not empty)

» time++

» READY = UNSCHEDULED ops whose incoming dependences

have been satisfied

» Sort READY using priority function

» For each op in READY (highest to lowest priority)

 op can be scheduled at current time? (are the resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED/READY sets

 No, continue

- 7 -

Cycle Scheduling Example

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

2m

3m

5m

4

6

98

2
2

1

22

2
1

2

0, 0

2, 2 2, 3

4, 4

6, 6

4, 7 7, 7

10

1
1

8, 8

7m

10, 1

0, 5

1

2

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

op priority

1 8

2 9

3 7

4 6

5 5

6 3

7 4

8 2

9 2

10 1

- 8 -

List Scheduling (Operation Scheduler)

 Build dependence graph, calculate priority

 Add all ops to UNSCHEDULED set

 while (UNSCHEDULED not empty)
» op = operation in UNSCHEDULED with highest priority

» For time = estart to some deadline

 Op can be scheduled at current time? (are resources free?)

 Yes, schedule it, op.issue_time = time

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED

 No, continue

» Deadline reached w/o scheduling op? (could not be scheduled)
 Yes, unplace all conflicting ops at op.estart, add them to

UNSCHEDULED

 Schedule op at estart

 Mark resources busy in RU_map relative to issue time

 Remove op from UNSCHEDULED

- 9 -

Homework Problem – Operation Scheduling

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

65

8

10

9m

2

2

11

11

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,45,5

6,6

1

RU_map

time ALU MEM

0

1

2

3

4

5

6

7

8

9

Schedule

time Ready Placed

0

1

2

3

4

5

6

7

8

9

- 10 -

Homework Problem – Answer

1m

2

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

ALU = 1 cycle

2m

4m

7

3

65

8

10

9m

2

2

11

11

1

2

1. Calculate height-based priorities

2. Schedule using Operation scheduler

0,1

2,3

3,5
3,4

4,4

2,2

0,0

0,45,5

6,6

1

RU_map

time ALU MEM

0 X

1 X

2 X

3 X X

4 X

5 X

6 X

7 X

8 X

Schedule
Time Placed

0 2

1 1

2 4

3 3, 9

4 6

5 7

6 5

7 8

8 10

Op priority

1 6

2 7

3 4

4 5

5 2

6 3

7 3

8 2

9 3

10 1

- 11 -

Generalize Beyond a Basic Block

 Superblock

» Single entry

» Multiple exits (side exits)

» No side entries

 Schedule just like a BB

» Priority calculations needs change

» Dealing with control deps

- 12 -

Lstart in a Superblock

 Not a single Lstart any more

» 1 per exit branch (Lstart is a vector!)

» Exit branches have probabilities
1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1
op Estart Lstart0 Lstart1

1

2

3

4

5

6

1

- 13 -

Operation Priority in a Superblock

 Priority – Dependence height and speculative yield

» Height from op to exit * probability of exit

» Sum up across all exits in the superblock

1

2

4

1

3

1

3

5

6

Exit0 (25%)

Exit1 (75%)

1

2

1

op Lstart0 Lstart1 Priority

1

2

3

4

5

6

1

Priority(op) = SUM(Probi * (MAX_Lstart – Lstarti(op) + 1))
valid late times for op

- 14 -

Dependences in a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

* Data dependences

shown, all are reg flow

except 1 6 is reg anti

* Dependences define

precedence ordering of

operations to ensure

correct execution

semantics

* What about control

dependences?

* Control dependences

define precedence of

ops with respect to

branches

Superblock

Note: Control flow in red bold

- 15 -

Conservative Approach to Control Dependences

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock
* Make branches

barriers, nothing

moves above or below

branches

* Schedule each BB in

SB separately

* Sequential schedules

* Whole purpose of a

superblock is lost

Note: Control flow in red bold

- 16 -

Upward Code Motion Across Branches

 Restriction 1a (register op)

» The destination of op is not in

liveout(br)

» Wrongly kill a live value

 Restriction 1b (memory op)

» Op does not modify the memory

» Actually live memory is what

matters, but that is often too hard to

determine

 Restriction 2

» Op must not cause an exception that

may terminate the program execution

when br is taken

» Op is executed more often than it is

supposed to (speculated)

» Page fault or cache miss are ok

 Insert control dep when either

restriction is violated

…

if (x > 0)

y = z / x

…

1: branch x <= 0

2: y = z / x

control flow graph

- 17 -

Downward Code Motion Across Branches

 Restriction 1 (liveness)

» If no compensation code

 Same restriction as before,
destination of op is not liveout

» Else, no restrictions

 Duplicate operation along both
directions of branch if
destination is liveout

 Restriction 2 (speculation)

» Not applicable, downward
motion is not speculation

 Again, insert control dep when the
restrictions are violated

 Part of the philosphy of
superblocks is no compensation
code inseration hence R1 is
enforced!

…

a = b * c

if (x > 0)

else

…

1: a = b * c

2: branch x <= 0

control flow graph

- 18 -

Add Control Dependences to a Superblock

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

1

2

3

5

6

4

7

8

9

Superblock Assumed liveout sets

{r1}

{r2}

{r5}

Notes: All branches are control

dependent on one another.

If no compensation, all ops dependent

on last branch

All ops

have cdep

to op 9!

- 19 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

Draw the dependence graph

- 20 -

Relaxing Code Motion Restrictions

 Upward code motion is generally

more effective

» Speculate that an op is useful (just

like an out-of-order processor with

branch pred)

» Start ops early, hide latency, overlap

execution, more parallelism

 Removing restriction 1

» For register ops – use register

renaming

» Could rename memory too, but

generally not worth it

 Removing restriction 2

» Need hardware support (aka

speculation models)

 Some ops don’t cause exceptions

 Ignore exceptions

 Delay exceptions

1: branch x <= 0

2: y = z / x

R1: y is not in liveout(1)

R2: op 2 will never cause

an exception when op1

is taken

- 21 -

Restricted Speculation Model

 Most processors have 2

classes of opcodes

» Potentially exception

causing

 load, store, integer

divide, floating-point

» Never excepting

 Integer add, multiply,

etc.

 Overflow is detected, but

does not terminate

program execution

 Restricted model

» R2 only applies to

potentially exception

causing operations

» Can freely speculate all

never exception ops (still

limited by R1 however)

1

2

3

5

6

4

7

8

9

We assumed

restricted

speculation

when this

graph was

drawn.

This is why

there is no

cdep between

4 6 and

4 8

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

{r5}

- 22 -

General Speculation Model

 2 types of exceptions

» Program terminating (traps)

 Div by 0, illegal address

» Fixable (normal and handled
at run time)

 Page fault, TLB miss

 General speculation

» Processor provides non-
trapping versions of all
operations (div, load, etc)

» Return some bogus value (0)
when error occurs

» R2 is completely ignored,
only R1 limits speculation

» Speculative ops converted
into non-trapping version

» Fixable exceptions handled as
usual for non-trapping ops

1

2

3

5

6

4

7

8

9

Remove

edge from

4 to 7

1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r2 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 – 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2

{r1}

{r2}

- 23 -

Programming Implications of General Spec

 Correct program

» No problem at all

» Exceptions will only result

when branch is taken

» Results of excepting

speculative operation(s) will

not be used for anything

useful (R1 guarantees this!)

 Program debugging

» Non-trapping ops make this

almost impossible

» Disable general speculation

during program debug phase

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

4: *w = z

- 24 -

Class Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Starting with the graph assuming restricted

speculation, what edges can be removed if

general speculation support is provided?

2. With more renaming, what dependences could

be removed?

- 25 -

Sentinel Speculation Model

 Ignoring all speculative exceptions

is painful

» Debugging issue (is a program ever

fully correct?)

 Also, handling of all fixable

exceptions for speculative ops can

be slow

» Extra page faults

 Sentinel speculation

» Mark speculative ops (opcode bit)

» Exceptions for speculative ops are

noted, but not handed immediately

(return garbage value)

» Check for exception conditions in

the “home block” of speculative

potentially excepting ops

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check exception

4: *w = z

- 26 -

Delaying Speculative Exceptions

 3 things needed

» Record exceptions

» Check for exceptions

» Regenerate exception

 Re-execute ops including

dependent ops

 Terminate execution or process

exception

 Recording them

» Extend every register with an extra

bit

 Exception tag (or NAT bit)

 Reg data is garbage when set

 Bit is set when either

 Speculative op causes exception

 Speculative op has a NAT’d

source operand (exception

propagation)

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check exception

4: *w = z

- 27 -

Delaying Speculative Exceptions (2)

 Check for exceptions

» Test NAT bit of appropriate

register (last register in dependence

chain) in home block

» Explicit checks

 Insert new operation to check NAT

» Implicit checks

 Non-speculative use of register

automatically serves as NAT check

 Regenerate exception

» Figure out the exact cause

» Handle if possible

» Check with NAT condition

branches to “recovery code”

» Compiler generates the recovery

code specific to each check

1: branch x == 0

2: y = *x

3: z = y + 4

4: *w = z

2’: y = *x

3’: z = y + 4

1: branch x == 0

check NAT(z)

4: *w = z

- 28 -

Delaying Speculative Exceptions (3)

2’: y = *x

3’: z = y + 4

1: branch x == 0

branch NAT(z) fixup

4: *w = z

2’’: y = *x

3’’: z = y + 4

jump done

fixup:

done:

Recovery code

In recovery code, the exception condition

will be regenerated as the excepting op

is re-executed with the same inputs

If the exception can be handled, it is, all

dependent ops are re-executed, and execution

is returned to point after the check

If the exception is a program error,

execution is terminated in the recovery

code

Recovery code consists of chain

of operations starting with a

potentially excepting speculative

op up to its corresponding check

- 29 -

Implicit vs Explicit Checks

 Explicit
» Essentially just a conditional branch

» Nothing special needs to be added to the processor

» Problems

 Code size

 Checks take valuable resources

 Implicit
» Use existing instructions as checks

» Removes problems of explicit checks

» However, how do you specify the address of the recovery block?,
how is control transferred there?

» Hardware table

 Indexed by PC

 Indicates where to go when NAT is set

 IA-64 uses explicit checks

- 30 -

Homework Problem

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Move ops 5, 6, 8 as far up in the SB

as possible assuming sentinel speculation

support and register renaming

2. Insert the necessary checks and

recovery code (assume ld, st, and div

can cause exceptions)

