EECS 583 — Class 10
Classic and ILP Optimization

University of Michigan

October 7, 2019

Announcements & Reading Material

< Hopefully everyone is making some progress on HW 2
<+ Today’s class

» “Compiler Code Transformations for Superscalar-Based High-

Performance Systems,” S. Mahlke, W. Chen, J. Gyllenhaal, W.
Hwu, P, Chang, and T. Kiyohara, Proceedings of
Supercomputing '92, Nov. 1992, pp. 808-817

< Next class (code generation)

» “Machine Description Driven Compilers for EPIC Processors”,

B. Rau, V. Kathail, and S. Aditya, HP Technical Report, HPL-
98-40, 1998. (long paper but informative)

Course Project — Time to Start Thinking About This

< Mission statement: Design and implement something
“Interesting” 1n a compiler
» LLVM preferred, but others are fine
» Groups of 2-4 people (1 or 5 persons is possible in some cases)
» Extend existing research paper or go out on your own

< Topic areas (Not in any priority order)
» Automatic parallelization/SIMDization
» High level synthesis/FPGAs
» Approximate computing
» Memory system optimization
» Reliability
» Energy
» Security
» Dynamic optimization
» Optimizing for GPUs

Course Projects — Timetable

<+ Now
» Start thinking about potential topics, identify group members
< Oct 21-25 (week after fall break): Project discussions
» No class that week
» GSls and I will meet with each group, slot signups in class Wed Oct 17
» ldeas/proposal discussed at meeting

» Short written proposal (a paragraph plus some references) due
Wednesday, Oct 30 from each group, submit via email

» Nov 11 — End of semester: Research presentations

» Each group present a research paper related to their project (15 mins + 5
mins Q&A) — more later on content of presentation

» Late Nov
» Optional quick discussion with each group on progress, slots after class
» Dec 12-17: Project demos
» Each group, 20 min slot - Presentation/Demo/whatever you like
» Turn in short report on your project

-3-

Sample Project Ideas (Traditional)

<+ Memory system
Cache profiler for LLVM IR — miss rates, stride determination
Data cache prefetching, cache bypassing, scratch pad memories

Data layout for improved cache behavior
Advanced loads — move up to hide latency

< Control/Dataflow optimization
» Superblock formation
» Make an LLVM optimization smarter with profile data
» Implement optimization not in LLVM
< Reliability
» AVF profiling, vulnerability analysis
» Selective code duplication for soft error protection
» Low-cost fault detection and/or recovery
» Efficient soft error protection on GPUs/SIMD

>

v

>

v

>

v

>

v

-4 -

Sample Project Ideas (Traditional cont)
<+ Energy
» Minimizing instruction bit flips
» Deactivate parts of processor (FUs, registers, cache)
» Use different processors (e.g., big.LITTLE)

< Security/Safety
» Efficient taint/information flow tracking
» Automatic mitigation methods — obfuscation for side channels
» Preventing control flow exploits
» Rule compliance checking (driving rules for AV software)
» Run-time safety verification

< Dealing with pointers
» Memory dependence analysis — try to improve on LLVM

» Using dependence speculation for optimization or code
reordering

Sample Project Ideas (Parallelism)

< Optimizing for GPUs
» Dumb OpenCL/CUDA - smart OpenCL/CUDA - selection of
threads/blocks and managing on-chip memory

» Reducing uncoalesced memory accesses — measurement of
uncoalesced accesses, code restructuring to reduce these

» Matlab - CUDA/OpenCL
» Kernel partitioning across multiple GPUs

< Parallelization/SIMDization

» DOALL loop parallelization, dependence breaking
transformations

» DSWP parallelization
» Access-execute program decomposition

More Project ldeas

< Dynamic optimization (Dynamo, LLVM, Dalvik VM)
» Run-time DOALL loop parallelization
» Run-time program analysis for reliability/security
» Run-time profiling tools (cache, memory dependence, etc.)
< Binary optimizer
» Arm binary to LLVM IR, de-register allocation
< High level synthesis

» Custom instructions - finding most common instruction patterns,
constrained by inputs/outputs

» Int/FP precision analysis, Float to fixed point
» Custom data path synthesis
» Customized memory systems (e.g., sparse data structs)

And Yet a Few More

< Approximate computing
» New approximation optimizations (lookup tables, loop
perforation, tiling)
» Impact of local approximation on global program outcome
» Program distillation - create a subset program with equivalent
memory/branch behavior
< Machine learning
» Using ML to guide optimizations (e.g., unroll factors)
» Using ML to guide optimization choices (which optis/order)

<+ Remember, don’t be constrained by my suggestions, you
can pick other topics!

Loop Invariant Code Motion (LICM)

< Move operations whose source BB1
operands do not change within 1.r1=3
the loop to the loop preheader 2.15=&A
» Execute them only 1x per
invocation of the loop] |
» Be careful with memory BB2 (3. r4 = load(r5)
operations! 4 7 =14 * 3
» Be careful with ops not :
executed every iteration BB3 / \ BB4
5.18=r2+1 B
6.1r7=r8*r4 fre=reel
BBS|8.r1=rl+17
BB6 |9. store (r1, r3)

LICM (2)

< Rules BB1
» X can be moved 1.r1=3
» src(X) not modified in loop body 2.15=&A
» X is the only op to modify dest(X)

» for all uses of dest(X), X is in the
available defs set

» for all exit BB, if dest(X) is live on the BB2 3. r4 = load(r5)
exit edge, X is in the available defs set on 4.r7 =r4* 3
the edge
» if X not executed on every iteration, then BB3 / \ BB4
X must provably not cause exceptions 5.r8=r2+1 2 13=12 41
» if X'is a load or store, then there are no 6.r7=r8*r4 ol =1

writes to address(X) in loop \ /

BB5|8.r1=rl+r7

BB6 |9. store (rl, r3)

-10 -

Global Variable Migration

J/
0‘0

/
0‘0

Assign a global variable
temporarily to a register for the
duration of the loop

» Load in preheader
» Store at exit points

Rules
» X is a load or store

» address(X) not modified in the
loop

» If X not executed on every
iteration, then X must provably
not cause an exception

» All memory ops in loop whose
address can equal address(X)
must always have the same
address as X

BB1

BB2 |1. r4 = load(r5)

2.r14=r4 +1
/ \ BB4
3. r8 = load(r5)
417 =18 %14 5. store(r5, r4)

>~

BB

6. store(r5,r7)

BB6

Induction Variable Strength Reduction

< Create basic induction
variables from derived
Induction variables

< Induction variable
» BIV (i++)
* 0,1,2,3/4,...
» DIV (=1*4)
* 0,4,8,12, 16, ...
» DIV can be converted into a
BIV that is incremented by 4
< Issues

» Initial and increment vals
» Where to place increments

-12 -

BB1

BB2

1.r5=r4-3
2.14=r4+1

3 / \ BB4

3.r7=rd>r9

T~

BB

514.r6=r4 << 2

BB6

Induction Variable Strength Reduction (2)

<% Rules

»

»

»

»

»

»

Xisa*, <<, + or—operation
src1(X) is a basic ind var
src2(X) is invariant

No other ops modify dest(X)
dest(X) != src(X) for all srcs
dest(X) is a register

< Transformation

»

»

»

»

»

Insert the following into the preheader

* new_reg = RHS(X)
If opcode(X) is not add/sub, insert to the
bottom of the preheader

e new_inc = inc(src1(X)) opcode(X) src2(X)
else

e new_inc = inc(src1(X))
Insert the following at each update of
src1(X)

° new_reg +=new_inc
Change X - dest(X) = new_reg

BB1

BB2

1.r5=r4 -3
2.14d=r4+1

3 / \ BB4

3.r7=r4*r9

BB

T~

514.r6=r4 << 2

BB6

-13-

Class Problem

BB1 | 1.

]

BB2

9.
10

11.
12,
13.
14,
15.
16.

r5=r5+1
r1l=r5*2
ri0=rll1+2
r12 = load (r10+0)
rN=rl<<1

r4 =r9-10

r3 = load(r4+4)
r3=r3+1
store(r4+0, r3)
r/f=r3<<2

r6 = load(r7+0)
r13=r2-1
rt=r1+1
r2=r2+1

|

Optimize this applying
induction var str reduction

-14 -

BB3

r13, r12, r6, r10
liveout

Class Problem Solution

Optimize this applying
induction var str reduction

]

rt=0

r2=0
r1ll=r5*2
rt09=rl<<1
r1=0 r113=r2-1
r2=0
]
I=r5+1
75 =5 = r111 =rl111 + 2
rtl=r5*2 r1l1 =rill
rio=ri11+2 ri0o=rll+2
r12 = load (r10+0) r12 = load (r10+0)
(9=rl<<1 r9 =r109
r4 =r9-10
r4=r9-10 (3 = load(r4+4)
r3 = load(r4+4) 3=r3+1
r3=r3+1 store(r4+0, r3)
store(r4+0, r3) r7=r3<<2
r7=r3<<2 ré = load(r7+0)
r6 = load(r7+0) LSS
_ rt=r1+1
ri3=rz2-1 r109 = r109 + 2
rt=r1+1 =12 +1
r2=r2+1 (113 =r113 + 1
7 — v
— r13, r12, r6, r10
-15- liveout

ri3, r12, r6, r10
liveout

Note, after copy
propagation, r10
and r4 can be
strength reduced
as well.

ILP Optimization

< Traditional optimizations
» Redundancy elimination
» Reducing operation count

< |LP (instruction-level parallelism) optimizations

» Increase the amount of parallelism and the ability to overlap
operations

» Operation count is secondary, often trade parallelism for extra
Instructions (avoid code explosion)
< [LP Increased by breaking dependences
» True or flow = read after write dependence
» [False or (anti/output) = write after read, write after write

-16 -

Back Substitution

< Generation of expressions by

compiler frontends is very y=a+b+c—d+e—f;
sequential
» Account for operator
precedence 1.r9=rl+r2
» Apply left-to-right within 2.r10=r9 + r3
same precedence 3 r11=1r10 - r4
< Back substitution 4,.r12=r1l+r5
» Create larger expressions 5.r13=rl12-r6

* |lteratively substitute RHS
expression for LHS variable Subs r12:

» Note — may correspond to r3=r11+r5-r6
multiple source statements Subs ri1:
» Enable subsequent optis r3=r10-rd4+r5—-ré6
< Optimization Subs r10
» Re-compute expression in a ri3=r9+r3-rd+rd5-r6
more favorable manner Subs r9

r13=rl1+r2+r3—-r4+r5-r6

-17 -

Tree Height Reduction

+ Re-compute expression as a original: ~ r9=rl+r2
balanced binary tree r10=r9+r3
r11=r10-r4

» Obey precedence rules

» Essentially re-parenthesize 12 f riL+15
» Combine literals if possible after back subs: r13=rlz-ro
Effects r13=r1+r2+r3-r4+r5-r6
» Height reduced (n terms)
e n-1 (assuming unit latency) 1+ 12 r3_r4 5 —r6

e ceil(log2(n))

» Number of operations remains final code
constant
» Cost + tl=rl1+r2
v t2=r3-r4
* Temporary registers “live
longer \ t3=r5-1r16
t4=11+12
+

» Watch out for
e Always ok for integer arithmetic r13=t4 +1t3
e Floating-point — may not be!! |

r13

-18 -

Class Problem

Assume: +=1,*=3

operand 0 0 O 1 2 0
arrival times rit r2 r3 r4 5 16

1.r10=rl1*r2

2.111=r10+r3
3.r12=r11+r4
4.r13=r12-r5
5.r14=r13 +r6

Back susbstitute
Re-express in tree-height reduced form
Account for latency and arrival times

-19 -

Optimizing Unrolled Loops

loop:

Unroll = replicate loop body

rl = load(r2)
r3 = load(r4)
rI5=rl*r3
r6=r6+r5
r2=r2+4
rd=r4+4

if (r4 < 400) goto loop

n-1 times.

Hope to enable overlap of
operation execution from
different iterations

Not possible!

unroll 3 times

-20 -

loop: rl=load(r2)

iterl

iter2

iter3

r3 =load(r4)
r=rl*r3
r6=r6+rS
r2=r2+4
rd=r4+4

rl =load(r2)
r3 =load(r4)
r5=rl1*r3
re=r6+rbd
r2=r2+4
rd=rd+4

rl =load(r2)

r3 = load(r4)
rs=rl1*r3
re=r6+rb
r2=r2+4

ri=r4 +4

if (r4 <400) goto loop

Register Renaming on Unrolled Loop

loop: rl=load(r2)

iterl

iter2

iter3

r3 =load(r4)
rs=rl*r3
re=ré+rd5
r2=r2+4
rdi=r4+4

rl =load(r2)
r3 =load(r4)
rS=rl1*r3
r6=r6+rb
r2=r2+4
ri=rd4d+4

rl =load(r2)

r3 =load(r4)
r’=rl1*r3
re=r6+r5
r2=r2+4
ri=rd+4

if (r4 <400) goto loop

loop:

iterl

iter2

iter3

rl =load(r2)
r3 =load(r4)
rs=rl*r3
re=r6+r5
r2=r2+4
rd=r4+4

ril =load(r2)
r13 = load(r4)
ris=rl1l*ri3
re =ré6+ris
r2=r2+4
rd=rd+4

r21 =load(r2)

r23 = load(r4)
r25=r21*r23

re =r6+r25
r2=r2+4

ri=r4 +4

if (r4 <400) goto loop

Register Renaming is Not Enough!

loop: rl=load(r2) < Still not much overlap possible
r3 =load(r4) . Probl
r5=rl1*r3 * FTobIEms
iterl ré6=r6+r5 » I2,r4, r6 sequentialize the
r2=r2+4 iterations
ra=ra+ad » Need to rename these
r1l = load(r2) . D ialized : :
r13 = load(r4) < 2 speclalized renaming optis
tor r15=r11*ri3 » Accumulator variable
ré =r6 +ri5 expansion (r6)
r2=r2+4 . . .
- » Induction variable expansion
rd=r4 +4
-------------------- (r2, rd)

r21 = load(r2)

r23 = load(r4)
r25=r21*r23

re =r6 +r25
r2=r2+4
ri=r4+4

if (r4 <400) goto loop

iter3

-922.-

Accumulator Variable Expansion

rl6=r26=0

loop: rl=load(r2)

iterl

iter2

iter3

r3 =load(r4)
rs=rl*r3
re=ré+rd5
r2=r2+4
ri=r4+4

r1l = load(r2)
r13 = load(r4)
ri5=rl1l*ri3
rl6 =rl6 +rilb
r2=r2+4
ri=r4d+4

r21 = load(r2)

r23 = load(r4)
r25=r21*r23

r26 =r26 +r25
r2=r2+4
ri=r4+4

if (r4 <400) goto loop

re=r6+rl6 +r26

-23-

/
0‘0

Accumulator variable
» X=X+YyorxXx=x-y
» where y is loop variant!!

Create n-1 temporary
accumulators

Each iteration targets a
different accumulator

Sum up the accumulator
variables at the end

May not be safe for floating-
point values

Induction Variable Expansion

r12=r2+4,r22=r2+8

ri4=ra+4,r24=r4+8 « Induction variable
rl6=r26=0
loop: rl=load(r2) » X=X+YOrxX=x-y

r3 = load(r4) » where y is loop invariant!!
rs=rl*r3 N _ _

iterl r6=r6+r5 X Cre_ate n-1 additional induction
r2=r2+12 variables
rd=r4 +12

.................... < [Each iteration uses and
r1l = load(rl2)

r13 = load(r14) modifies a different induction

opp IS =FLL*FI3 variable
ri6=ri6 +ris < Initialize induction variables to
ri2=rl2+12 TR ..

+ +2*
r4sridsiz INIt, |_n|t step, Init+2 s_te_p, etc.

r21 = load(r22) <« Step increased to n*original
r23 = load(r24) step

: r25=r21*r23 . : .

iter3 o8 _ o5 4 (o5 3 !\Iow Iterations are completely
(22 =122 + 12 independent !!
r24=r24+12

if gr4 < 4002 goto IooE

rb=r6+rl6+r26 -24 -

Better Induction Variable Expansion

ri6=r26=0 _ _

loop: rl=load(r2) < With base+displacement
r3 = load(r4) addressing, often don’t need
rs=rl*r3

additional induction variables

» Just change offsets in each
____________________ iterations to reflect step

ril = load(r2+4) » Change final increments to n
ri3 = load(r4+4) * original step

r15=ril1 *ri3

rl6 =rl6 +rilb

iterl re=r6+r5

iter2

r21 = load(r2+8)

r23 = load(r4+8)
r25=r21*r23

r26 =r26 +r25
r2=r2+12

ri=r4 +12

if (r4 <400) goto loop

re=r6+rl6+r26

-25-

iter3

Homework Problem

loop: loop:
rl =load(r2) rl =load(r2)
r=r6+3 ‘ r=r6+3
re=r5+rl re=r5+rl
r2=r2+4 r2=r2+4
If (r2 <400) goto loop rl1 = load(r2)
r=r6+3
re=r5+rl
r2=r2+4
rl =load(r2)
r’=r6+3
Optimize the unrolled re=r5+rl
loop r2=r2+4
If (r2 <400) goto loop
Renaming

Tree height reduction
Ind/Acc expansion

- 26 -

