To appear in ASPLOS-V Conference Proceedings, October 1992

Sentinel Scheduling for VLIW and Superscalar Processors

Scott A. Mahlke William Y. Chen Wen-mei W. Hwu
Center for Reliable and High-Performance Computing
University of Illinois

Urbana-Champaign, 1L 61801

Abstract

Speculative execution is an important source of parallelism
for VLIW and superscalar processors. A serious challenge
with compiler-controlled speculative execution is to accu-
rately detect and report all program execution errors at the
time of occurrence. In this paper, a set of architectural fea-
tures and compile-time scheduling support referred to as sen-
tinel scheduling 1s introduced. Sentinel scheduling provides
an effective framework for compiler-controlled speculative
execution that accurately detects and reports all exceptions.
Sentinel scheduling also supports speculative execution of
store instructions by providing a store buffer which allows
probationary entries. Experimental results show that sen-
tinel scheduling is highly effective for a wide range of VLIW
and superscalar processors.

1 Introduction

Instruction level parallelism (ILP) within basic blocks is
extremely limited. An effective VLIW or superscalar ma-
chine must schedule instructions across basic block bound-
aries to achieve higher performance. When branch condi-
tions may be determined early, scheduling techniques such
as software pipelining [1] [2] [3] are effective for exposing
ILP. Also, predicated instructions can be used in conjunc-
tion with software pipeline loop scheduling [4] or straight-line
code scheduling [5] to mask out the effects of unnecessary in-
structions from alternate paths of control. For applications
in which branch conditions cannot be determined early, spec-
ulative execution of instructions is an important source of
ILP [6] [7] [8]

Speculative execution refers to executing an instruction
before knowing that its execution is required. Such an in-
struction will be referred to as a speculative instruction.
Speculative execution may either be engineered at run-time
using dynamic scheduling or at compile-time. This paper fo-

B. Ramakrishna Rau Michael S. Schlansker
Hewlett Packard Laboratories
Palo Alto, CA 94303

cuses on compile-time engineered speculative execution, or
speculative code motion.

There are two problems associated with speculative code
motion. The first problem is that the result value of a specu-
lative instruction that was not required to execute must not
affect the execution of the subsequent instructions. This can
be effectively achieved by compile-time renaming transfor-
mations. A more serious problem with speculative execution
is correctly detecting exceptions that occur. An exception
that occurred for a speculative instruction which was not
supposed to execute must be ignored. On the other hand,
an exception for a speculative instruction that was supposed
to execute must be signaled. Accurately detecting and re-
porting exceptions are required to identify program execu-
tion errors at the time of occurrence. Also, recovery from an
excepting speculative instruction should be possible.

In this paper, a set of architectural features and compile-
time scheduling support, collectively referred to as sentinel
scheduling, is described. Sentinel scheduling provides an ef-
fective framework for speculative execution, while also pro-
viding a means to accurately detect and report exceptions
that occur for speculatively executed instructions.

2 Background and Related Work

Varying degrees of speculative code motion can be supported
with different scheduling models. In this section, three ex-
isting scheduling models, restricted percolation, instruction
boosting, and general percolation, along with their support
for detecting and reporting exceptions are discussed. An ef-
ficient structure to perform scheduling across basic blocks is
a superblock. All scheduling techniques in this paper will be
described based on the superblock structure, however they
can be easily generalized to other structures. For example,
trace scheduling [9], modulo scheduling [1], and enhanced
pipelining [10] may effectively utilize the speculative execu-
tion models discussed in this paper. Tirumalai et al. showed
that modulo scheduling of while loops depend on speculative
support to achieve high performance [7]. Without specu-
lative support, dependences limit the amount of execution
overlap between loop iterations.

2.1 Superblock Scheduling

Superblock scheduling is an extension of trace scheduling [9]
which reduces some of the bookkeeping complexity [8]. A
superblock is a block of instructions in which control may

only enter from the top but may leave at one or more exit
points. Superblock scheduling consists of two steps, depen-
dence graph construction and list scheduling. The depen-
dence graph represents the control and data dependences
between instructions within a superblock. Control depen-
dences are used to reflect to major restrictions to specu-
latively moving or percolating an instruction, [/, before a
branch, BR: (1) the destination of I is not used before it
is redefined when BR is taken,’ and (2) I will not cause
an exception that alters the execution result of the program
when BR is taken.

The different code scheduling models observe varying com-
binations of the two restrictions. For all scheduling models,
restriction (1) can be overcome by compile-time renaming
transformations. After the appropriate control dependences
are eliminated according to the model used, list scheduling
using the dependence graph, instruction latencies, and re-
source constraints is performed to determine which instruc-
tions are scheduled together.

2.2 Restricted Percolation Scheduling Model

The scheduler enforces both restrictions (1) and (2) when
using the restricted percolation scheduling model [8]. Thus,
only instructions which the compiler can guarantee to never
cause execution-altering exceptions are candidates for spec-
ulative code motion. For conventional processors, memory
load, memory store, integer divide, and all floating point
instructions are potential trap-causing instructions. With
these constraints, conventional exception detection does not
need to be altered with this scheduling model. The limiting
factor of restricted percolation is the inability to move po-
tential trap-causing instructions with long latency, such as
load instructions, above branches.

2.3 Imstruction Boosting Scheduling Model

The scheduler enforces neither restriction when using the in-
struction boosting scheduling model [6]. The restrictions are
overcome by providing sufficient hardware storage to buffer
results until the branches an instruction moved past are com-
mitted. If all branches are found to be correctly predicted,
the machine state is updated by the boosted instructions’
effects. If one or more of the branches are incorrectly pre-
dicted, the buffered results are thrown away. Two sets of
buffer storage are required for this scheduling model, shadow
register files and shadow store buffers. The shadow regis-
ter files hold the results of all boosted instructions which
write into a register, while the shadow store buffers hold
the results of all boosted store instructions. To boost an
instruction above N branches, N shadow register files and N
shadow store buffers are required. Therefore, the number of
branches an instruction can be boosted above is limited to
a small number.

Exceptions for boosted instructions are detected by mark-
ing in the appropriate shadow structure whether an excep-
tion occurred during execution. Then, when the machine

INote that instructions in a superblock are placed sequentially
by the compiler, therefore instructions following a conditional
branch within a superblock are in the branch’s fall-through path.

state is updated for a correctly predicted branch, exceptions
that occurred are signaled. An exception that occurred for a
boosted instruction whose result is thrown away is ignored.

2.4 Ignoring Exceptions with the General Per-
colation Scheduling Model

The scheduler removes restriction (2) using the general per-
colation model [8]. Exceptions that may alter program exe-
cution are avoided by converting all speculative instructions
which potentially cause traps into non-trapping or silent ver-
sions of those instructions. Memory stores, though, are not
allowed to be speculative instructions. In order to support
this scheduling model, an instruction set must contain a
silent version of all trapping opcodes. When an exception
occurs to a silent instruction, the memory system or func-
tion unit simply ignores the exception and writes a garbage
value into the destination register. The consequence of us-
ing this value is unpredictable, and is likely to lead to a later
exception or an incorrect execution result.

The inability to always detect exceptions and deter-
mine the excepting instruction limits the application of this
scheduling model. Colwell et al. detect some exceptions
by writing NaN into the destination register of any non-
trapping instruction which produces an exception [11]. The
use of NaN is then signaled by any trapping instruction.
This method, however, has difficulties determining the orig-
inal excepting instruction, and is not guaranteed to signal
an exception if the result of a speculative exception-causing
instruction is conditionally used. Also, an equivalent integer
NaN must be provided for this method to work for integer
instructions.

In summary, instruction boosting provides an effective
framework for speculative code motion of instructions and
identification of exceptions that occur for speculative in-
structions. However, the hardware overhead is very large,
and the number of branches an instruction can be boosted
above is limited to a small number. General percolation, on
the other hand, achieves nearly the same performance level
of instruction boosting [8] with a much lower implementation
cost. The problem is that there is no guarantee of detecting
exceptions and determining the cause of an exception. In the
next section, a new scheduling model referred to as sentinel
scheduling is introduced. With a modest amount of architec-
tural support, sentinel scheduling permits all the scheduling
freedom of general percolation, while allowing exceptions to
be always detected and the excepting instruction accurately

identified.

3 The Sentinel Scheduling Model

In this section, a scheduling model referred to as sentinel
scheduling is introduced. Sentinel scheduling combines a set
of architectural features with sufficient compile time sup-
port to accurately detect and report exceptions for compiler-
scheduled speculative instructions. The basic idea behind
this technique is to provide a sentinel for each potential
exception-causing instruction that is speculatively executed.
The sentinel can either be an existing instruction in the pro-
gram or a newly created instruction. The sentinel reports

any exceptions that were caused by the speculative instruc-
tion. In the following subsections, the model of execution,
the required architectural support, the algorithm for sentinel
scheduling, and several important issues are described.

3.1 Model of Execution

Conceptually, each instruction, [, can be divided into two
parts, the non-excepting part that performs the actual op-
eration, and the sentinel part that flags an exception if nec-
essary. The non-excepting part of I can be speculatively
executed, provided the sentinel part of [remains in I’s orig-
inal basic block or home block. The sentinel part of I can
be eliminated if there is another instruction, J, in I’s home
block which uses the result of /. The sentinel part of J will
signal any exceptions caused by both [and J, which makes
it a shared sentinel between [and J. This argument can be
applied recursively until an instruction that has no use in its
home block is encountered.? Such an instruction is termed
an unprotected instruction. If an unprotected instruction is
speculatively executed, an explicit instruction must be cre-
ated to act as the sentinel part of that instruction. The
explicit sentinel is restricted to remain in the instruction’s
home block.

Since some instructions may never result in exceptions,
e.g., integer add, the sentinel part of some unprotected in-
structions is not necessary. The sentinel part of an unpro-
tected instruction which cannot cause an exception is only
necessary if it is used to report an exception for a previous
speculative instruction.

3.2 Architectural Support

In order to support sentinel scheduling, several extensions
are required to the processor architecture. The first exten-
sion is an additional bit in the opcode field of an instruction
to represent a speculatively executed instruction. This ad-
ditional bit is referred to as the speculative modifier of the
instruction. The compiler sets the speculative modifier for
all instructions that are moved above one or more branches.
A second extension is an exception tag added to each regis-
ter in the register file. The exception tag is used to signal
an exception that occurred when a speculative instruction
is executed.” The exception tag associated with each regis-
ter must be preserved along with the data portion of that
register whenever the contents of the register are temporar-
ily stored to memory, e.g., register spill, function call, or
context switch. The third extension i1s to provide special
load and store instructions to save both the exception tag
and data of a register. These instructions do not signal ex-
ceptions according to the exception tag in order to facilitate
saving/restoring registers containing an exception condition.

?Note that a post dominating use is sufficient to guarantee all
exceptions will be detected. However, a use in the home block
is required in our implementation to facilitate earlier reporting of
exceptions, re-executing less instructions for recovery, and reduc-
ing register lifetimes.

3Note that the minimum exception tag required is a single bit.
However, in many cases a larger tag is useful to indicate the type
of exception to assist in debugging and exception handling.

A summary of exception detection using the sentinel
scheduling model is shown in Table 1. For each instruction,
I, three inputs are examined, the speculative modifier of I,
the exception tag of the source registers of I, and whether 7
results in an exception. A single bit is used for the exception
tag to simplify this discussion.

Execution of a Speculative Instruction. When [is a
speculative instruction, exceptions will not be signaled im-
mediately. If all the source register exception tags of I are
reset, conventional execution results when [does not cause
an exception. When [does cause an exception, the excep-
tion tag of the destination register is set, and the program
counter (pc) of I is copied into the data field of the destina-
tion register. The pc of I can be obtained from a PC History
Queue which keeps a record of the last m pc values to en-
able reporting exceptions with non-uniform latency function
units [11] [4]. If one or more of the source register exception
tags of I are set, an exception propagation occurs. This is
independent of whether I causes an exception or not. For
this case, the destination register exception tagis set and the
data of the source register with exception tag set is copied
into the destination register. If more than one of the source
registers of I have their exception tag set, the data field of
the first such source i1s copied into the destination register.
The implications regarding this issue will be discussed in
Section 3.6.

Execution of a Non-speculative Instruction. If [is
not a speculative instruction, conventional execution results
if all source registers have their exception tags reset. When
I causes an exception, the exception is signaled immediately,
and [is reported as the exception-causing instruction. Con-
versely, when one or more of the source register exception
tags are set, an exception has occurred for a speculatively
executed instruction for which [serves as the sentinel. The
exception is, therefore, signaled and the data contents of the
source register with its exception tag set is reported as the
pc of the exception-causing instruction. Again, if more than
one source register has its exception tag set, the data field
of the first such source operand is reported as the pc of the
exception causing instruction.

Additional Sentinel Instruction. The final exten-
sion to the processor is an additional instruction called
check_exception(reg). This instruction is inserted as the
explicit sentinel for unprotected instructions which are spec-
ulatively executed. This instruction does not perform any
computation, but rather is merely used to check the excep-
tion tag of its source register. For most processors, a new
opcode does not need to be created, but rather a move in-
struction can be used instead. The destination register of
the move is either set to the same as the source register or
to a register hardwired to 0, such as RO in the MIPS R2000.

3.3 Sentinel Superblock Scheduling Algorithm

As previously discussed, code scheduling within a superblock
consists of two major steps, dependence graph construction
and list scheduling. An algorithm to perform sentinel su-
perblock scheduling is included in the Appendix.

The first step of the scheduling algorithm is dependence
graph construction and reduction. The initial dependence

| spec | sre(I).excepttag 7 | I causes except. || dest(1).except_tag | dest(l).data |

except. signal |

0 0 0 0 result of 1 none

0 0 0 - yes, except. pc = pc of [

0 1 0 0 - yes, except. pc = src(l).data §
0 1 1 0 - yes, except. pc = src(l).data §
1 0 0 0 result of 1 none

1 0 1 1 pc of T none

1 1 0 1 src(f).data § | none

1 1 1 1 src(f).data § | none

T union of all source operand exception tags of [

1 the first source operand of I whose exception tag is set

Table 1: Exception detection with sentinel scheduling.

graph contains dependence arcs to represent all data and
control dependences between instructions in the superblock.
Dependence graph reduction removes control dependences
between branches and instructions to enable speculative
code motion allowed by the scheduling model. With the sen-
tinel scheduling model, only restriction (1) (Section 2.1) is
enforced. Therefore, a control dependence arc from a branch
instruction, BR, to another instruction, I, is removed if the
location written to by [is not used before being redefined
when BR is taken. As with general percolation, memory
stores are not allowed to be moved above branches. However
in the next section, an extension to remove this constraint
will be discussed. Dependence graph reduction also identifies
those instructions in the superblock which are unprotected.
The second step of the scheduling algorithm consists of a
modified version of list scheduling. The scheduler is modified
so that when an unprotected instruction, 7, is moved above a
branch, a sentinel instruction is inserted into I’s home block.
Control dependences are added to restrict the sentinel to
remain in /’s home block. The sentinel is then added to the
list of unscheduled instructions and list scheduling resumes.
Finally, the compiler sets the speculative modifier of all those
instructions that moved above a branch in the superblock.

3.4 Sentinel Scheduling Example

To illustrate sentinel scheduling and exception detection
with sentinel scheduling, consider the assembly code frag-
ment shown in Figure 1(a). For simplicity, it will be assumed
in this example that each instruction requires one cycle to
execute, and the processor has no limitations on the number
of instructions that can be issued in the same cycle. Also,
it will be assumed that memory loads and stores are the
only instructions that may cause exceptions. After depen-
dence graph reduction, instructions E and F' are identified
as unprotected, since they are the last uses of the potential
trap-causing instructions, B and C, respectively.

The code segment after scheduling is shown in Figure 1(b).
Four instructions (B, C, D, and FE) are moved above a
branch, therefore their speculative modifiers are set.
struction F| though, is unprotected, so an explicit sentinel
(instruction G) must be inserted into E’s home block to
serve as a sentinel. Since instruction F'is not speculatively
executed, an explicit sentinel is not inserted for it. In the
final schedule, instructions F' and G serve as sentinels for

In-

A: if (r2==0) goto L1 x B[1]: r1 = mem(r240)
B: rl = mem(r240) x C[1]: r3 = mem(r4+0)
C: r3 = mem(r4+40) * D[2]: 4 = r14+1
D: r4 = r1+1 * E[2]: r5 = r3x9
t E: r5 =r3x9 A[3]: if (r2==0) goto L1
t F: mem(r244) =r4 1 F[3]: mem(r2+40) = r4
1 G[3]: check_exception(r5)
1t unprotected instruction * speculative instruction
1 sentinel [n] indicates in which cycle
the instruction is executed
(a) (b)

Figure 1: Example of sentinel scheduling. (a) Original pro-
gram segment. (b) Program segment after scheduling.

instructions B, C, D, and E.

An execution sequence for the scheduled code segment in
which instruction B causes an exception is shown in Figure 2.
For this example, it is assumed that the branch, instruction
A, is not taken. The initial states of all the registers are
further assumed to all have reset exception tags and some
unknown data fields. In the first cycle, instruction B causes
an exception, however since it is a speculative instruction,
the exception is not yet signaled. Instead, the exception tag
of the destination register of instruction B is set, and the pc
of instruction B is copied into the destination register’s data
field. In the second cycle, instruction I} finds the exception
tag of its first source register set, however since it is also a
speculative instruction, it propagates the exception informa-
tion to its destination register. Finally, in cycle 3 instruction
F detects that the exception tag of its first source register
is set. Since instruction F' is not a speculative instruction,
an exception is signaled and the cause of the exception is
reported as the contents of r4.

Note that in this example, if instruction B again results in
an exception but the branch instruction A is instead taken,
the exception is completely ignored. This result is correct
because if the branch is taken, instruction B should not have
been executed, and therefore should not disrupt the pro-
gram’s execution.

Initial After Cycle 1
except except
tag dat a tag dat a
rl rl 1 B
r2 0 r2 0
r3 0 r3
r4 0 r4
rs 0 r5
B causes an exception
After Cycle 2 After Cycle 3
except except
tag data tag data
ri 1 B rl 1 B
r2 0. r2 0
r3 0 r3 0
r4 1 B r4 1 B
rs 0 r5 0

signal exception
report B as source

Figure 2: Example of exception detection using sentinel
scheduling.

3.5 Handling Uninitialized Data

The use of an uninitialized register can potentially cause in-
correct exceptions to be reported with the sentinel schedul-
ing model. Registers which are not defined may have their
exception tag set. The use of this register will therefore lead
to an immediate or eventual exception signal. However, this
exception should not be reported. To prevent an exception
from occurring with uninitialized registers, the compiler per-
forms live variable analysis [12], and inserts additional in-
structions to reset the exception tags of the corresponding
registers before they are used.

3.6 Reporting Multiple Exceptions

Multiple exceptions in a program are handled efficiently with
sentinel scheduling. The exceptions can either occur within
different basic blocks or within the same basic block. When
two exceptions occur in different basic blocks, the exceptions
are guaranteed to be detected in the proper order because
exceptions for all instructions of a basic block are checked be-
fore the basic block is exited. The requirement of a sentinel
in the home block of each speculative instruction enforces
this condition.

For multiple exceptions in the same basic block, excep-
tions are not guaranteed to be detected in the proper order
according to the original code sequence. Multiple excepting
instructions in the same basic block may either have differ-
ent sentinels or share a sentinel. With different sentinels, the
first sentinel executed will signal the first exception. When
two excepting instructions share a sentinel, multiple source
registers of the sentinel instruction will have their exception
tags set. In this case, one of the exceptions is arbitrarily first
signaled. If a recovery mechanism is utilized, as discussed in
the next section, the second exception is reported when the
sentinel is re-executed. The order of reporting two excep-
tions in the same basic block is difficult to maintain in many
systems. In many cases, instructions within a basic block
are reordered by conventional compiler code optimizations.
Therefore, an order of reporting exceptions in the same basic
block is not maintained with the sentinel scheduling model.

3.7 Recovery Issues

For some types of exceptions, it is desirable to retry the
excepting instruction rather than abort program execution.
With speculative instructions, this becomes more difficult
because an excepting speculative instruction may have a
chain of dependent speculative instructions which also re-
quire retrying. A comprehensive treatment of the appro-
priate policy, hardware support, and compiler conventions
needed to permit recovery and retry are beyond the scope of
this paper. The following technique is informally described
in order to demonstrate that exception retry is possible with
sentinel scheduling. A more complete treatment of this tech-
nique is presented in [13].

A restartable instruction sequence is a list of consecu-
tive instructions that satisfy the following two constraints.
First, none of the instructions in the sequence may cause
irreversible side effects that prevent re-execution of any in-
structions in the sequence. As a result, I/O, subroutine
call, and synchronization instructions break restartable se-
quences. These instructions will be referred to as irreversible
instructions. In this paper, we assume a weak ordering mem-
ory architecture model where memory stores are not irre-
versible instructions. The second constraint is that the in-
put operands to an instruction in a restartable instruction
sequence are never overwritten by itself or by a subsequent
instruction in the same sequence.

Scheduler Support. In order to be able to recover from
all exceptions caused by speculative instructions, all instruc-
tions between a speculative instruction and the instruction
which serves as its sentinel must form a restartable instruc-
tion sequence. This implies the following additional restric-
tions to the superblock sentinel scheduling algorithm.

1. A speculative instruction cannot be moved beyond any
irreversible instruction. This is enforced by creating con-
trol dependence arcs from irreversible instructions to all
subsequent instructions in the superblock.

2. Each irreversible instruction defines a basic block
boundary as far as the sentinel scheduling algorithm is
concerned. Therefore, all the speculative instructions
that precede an irreversible instruction in the original
program order will have a sentinel present before the
irreversible instruction.

3. A speculative instruction cannot be moved beyond an
instruction that modifies its own input register or mem-
ory location. This constraint, however, can be alleviated
by the renaming transformations to be described below.

4. If an instruction I overwrites the input operands of one
or more instructions that are scheduled after a specu-
lative instruction, then I must be scheduled after the
sentinel of the speculative instruction. Note that there
may be multiple such speculative instructions whose sen-
tinel must precede an overwriting instruction. Also, this
restriction has to be enforced for both register and mem-
ory operands.

The code scheduler can perform renaming transformations
to overcome restrictions 3 and 4 for speculative code motion.
A typical application is to convert an increment of a register

A: jsr A[1]: jsr
B: r5 = mem(r340) t D[2]: rl = mem(r6+40)
C: if (r5==0) goto L1 B[2]: 5 = mem(r340)

t D: rl = mem(r6+0) E'[2]: 110 = r2+1
E: r2 = r2+1 C[3]: if (r5==0) goto L1
F: mem(r4+0) = r7 t G[4]: r8 = r1+1
G: r8 =rl1+1 F[5]: mem(r440) =r7
H: r9 = mem(r2+40) H'[5]: 19 = mem(r10+0)

=
O

r2 =110

instruction considered for speculative execution
sentinel for D

indicates in which cycle the instruction is executed,
each instruction requires 1 cycle to execute

(a) (b)

e+ —+
=3

Figure 3: Example of sentinel scheduling to allow recovery.
(a) Original program segment. (b) Program segment after
scheduling and transformation.

into two instructions, one addition that writes into a new
register, and one move instruction that updates the original
register. The move instruction is scheduled after the sen-
tinel of the speculative instructions that are moved beyond
the original increment instruction. All the uses of the orig-
inal register within the superblock are renamed to the new
register. With this transformation, the scheduler can always
overcome restriction 3. Similarly, one can rename the des-
tination register of an overwriting instruction specified in
restriction 4 to enable a better code schedule.

Register Allocator Support. It is necessary to extend
the live range of source registers for instructions subsequent
to a speculative instruction to reach the sentinel for that
speculative instruction. This ensures that the register allo-
cator does not reuse these source registers and violate the
restartable property enforced by the code scheduler. This
technique assumes that speculative code motion is performed
before register allocation. Also, it will tend to increase the
number of registers used by the register allocator.

The scheduler and register allocator support can be illus-
trated with the code segment in Figure 3. Note that A is
an irreversible instruction that blocks the movement of D
due to restriction 1. In this example, we assume that the
store instruction F' may overwrite the input location of load
instruction B. As a result, instruction F must be sched-
uled after GG, the sentinel for speculative instruction D). Fur-
thermore, to overcome restriction 3, the scheduler applies a
renaming transformation on instruction F, which becomes
E' and I in the final schedule. This transformation allows
speculative instruction D to move beyond E’. As far as
the register allocator is concerned, virtual register r10 must
not be assigned to the same physical register as r2. This is
achieved by extending the live range of r2 to G, the sentinel
for instruction 1.

To summarize, by enforcing constraints for speculative
code motion and register allocation, one can guarantee that
all instructions between a speculative instruction and its sen-

4Note that the move instruction is necessary only if the incre-
mented register is used before redefined after the program execu-
tion exits the current superblock.

tinel form a restartable sequence. When a sentinel reports an
exception caused by a speculative instruction, re-execution
beginning with the speculative instruction is possible. Re-
execution proceeds by repairing the execution of the specu-
lative instruction and using the reported program counter to
branch back to the speculative instruction. All subsequent
instructions will then be re-executed correctly.

4 Allowing Speculative Stores

A limitation of sentinel scheduling up to this point of dis-
cussion is that it does not allow speculative store instruc-
tions. In this section, an extension to sentinel scheduling
is described which allows store instructions to move above
branch instructions. In the following subsections, the addi-
tional architectural and compiler support required for spec-
ulative stores is presented.

4.1 Additional Architectural Support

In order to support speculatively executed store instructions,
the operation of the data memory subsystem must be mod-
ified. In this discussion, it will be assumed that an N entry
store buffer exists between the CPU and the data cache [14].

Operation of a Conventional Store Buffer. A store
buffer has three primary functions. First, it creates a new
entry for each store instruction executed by the CPU. Each
store buffer entry consists of the store address, store data,
and several status bits. Address translation is performed
during insertion to determine if an exception (access viola-
tion or page fault) has occurred. If an exception occurs, it
is handled immediately. The store buffer also supplies data
to the CPU whenever a load with a matching address to a
valid store buffer entry is executed. Finally, the store buffer
releases entries to update the data cache. The store buffer
operates as a first in first out circular queue. When the data
cache is available and the buffer is not empty, the entry at
the head of the queue is transferred to the data cache.

Operation of Store Buffer Supporting Speculative
Stores. Speculative store instructions can be utilized if the
store buffer is modified to allow probationary entries. Proba-
tionary entries are for speculative stores which may or may
not require execution. Probationary entries are later con-
firmed by specific instructions if the predicted path of control
is followed or invalidated when a branch direction is mispre-
dicted. To support probationary entries, each store buffer
entry requires three additional fields, a confirmation bit, an
exception tag, and an exception pc. Also, an additional in-
struction to confirm store instructions in the store buffer,
con firm_store(index), is needed. Finally, a mechanism to
invalidate all probationary store buffer entries whenever a
branch prediction miss occurs is required.

Each function of the store buffer requires some modifica-
tions to handle probationary entries. The insertion of a store
into the store buffer is summarized in Table 2. Note that
non-speculative stores enter the buffer as confirmed entries,
while speculative stores enter as probationary entries. Also,
when the buffer is full, the processor is stalled to wait for an
entry to become available. When a load instruction is exe-
cuted, both confirmed and unconfirmed entries are searched

for a matching address. However, a probationary entry with
its exception tag set will not participate in the search.® This
exclusion from the search is to enable re-execution of the load
instruction independent from re-execution of a matching ex-
cepting store in the store buffer. The releasing function of
the store buffer is changed so that probationary stores are
not allowed to update the data cache. This is accomplished
by preventing any releases from the store buffer when the
entry at the head of the buffer is probationary.

Two additional functions are required for the store buffer,
confirming and cancelling probationary entries. A pro-
bationary store in the store buffer is confirmed by a
con firm_store(index) instruction. The index signifies which
entry is confirmed counting from the tail entry. If the ex-
ception tag of the entry being confirmed is set, an exception
must be reported. The exception is handled in the same
manner as when an exception occurs during insertion of a
non-speculative store instruction. However, the pc of the
excepting instruction is provided in the exception pc field of
the particular store buffer entry. All probationary stores are
cancelled when a mispredicted branch is detected. Cancel-
lation of a probationary store is accomplished by resetting
the valid bit of the corresponding store buffer entry.

4.2 Scheduling Support for Store Movement

An instruction scheduler can be extended to move store in-
structions above branch instructions in a straightforward
manner. Stores are permitted to move above branches by re-
moving control dependences between a store instruction and
all preceding branch instructions during dependence graph
reduction. Dependence reduction also marks all store in-
structions as unprotected.

The list scheduling phase must also be modified to in-
sert special sentinel instructions for speculative stores. The
con firm_store(index) instruction is inserted as the sentinel
of a speculative store. Again, the sentinel is restricted to
remain in the home block of the store. The value of index
is the number of stores (regular and speculative) between a
speculative store and its corresponding confirm.

Exception detection is not impaired by the movement of
stores. A store instruction will only be confirmed when the
branches it moved across all have been predicted correctly
at compile time. If any of the branches are incorrectly pre-
dicted, the store is cancelled. An exception for a speculative
store is reported only at the time of confirmation, therefore
only exceptions for those stores that are supposed to be exe-
cuted will be reported. Also, the con firm_store instruction
is restricted to remain in the home block of the store, thus
exceptions occurring in different basic blocks will be reported
in the proper order. Again, if multiple exceptions occur in
the same basic block, the exceptions will be signaled, how-
ever they are not guaranteed in the order of the original code
sequence.

A possible deadlock situation can occur when attempting
to insert a store into the buffer if the store buffer is full and

5Note that an exception reflected in the exception tag of a
probationary store buffer entry will be subsequently detected by
the corresponding con firm_store instruction of the speculative
store.

| Function | Latency | Function | Latency
Int ALU 1 FP ALU 3
Int multiply 3 FP conversion 3
Int divide 10 FP multiply 3
branch 1/ 1slot | FP divide 10
memory load 2 memory store 1

Table 3: Instruction latencies.

the entry at the head of the store buffer is unconfirmed. This
situation can be prevented during scheduling by allowing a
speculative store to be separated from its confirm by at most
N —1 (for an N entry store buffer) stores. All probation-
ary stores, therefore, must either be confirmed or cancelled
within N stores of itself. The size of the store buffer, though,
is now an architectural parameter that must be available to
the scheduler.

5 Experimental Evaluation

In this section, the effectiveness of sentinel scheduling is an-
alyzed for a set of numeric and non-numeric benchmarks.
The performance of sentinel scheduling and sentinel schedul-
ing with speculative stores is compared with restricted and
general percolation.

5.1 Methodology

Sentinel superblock scheduling has been implemented in the
instruction scheduler of IMPACT-I compiler. The IMPACT-
I compiler is a prototype optimizing compiler designed to
generate efficient code for VLIW and superscalar proces-
sors [8]. A superblock is the basic scope for the instruction
scheduler.

The instruction scheduler takes as an input a machine de-
scription file that characterizes the instruction set, the mi-
croarchitecture (including the number of instructions that
can be fetched/issued in a cycle and the instruction laten-
cies), and the code scheduling model. The underlying mi-
croarchitecture is assumed to have CRAY-1 style interlock-
ing and deterministic instruction latencies (Table 3). The
instruction set is a RISC assembly language similar to the
MIPS R2000 instruction set. The basic processor has 64 in-
teger registers, 64 floating point registers, and an 8 entry
store buffer. The basic processor is assumed to trap on ex-
ceptions for memory load, memory store, integer divide, and
all floating point instructions.

For each machine configuration, the program execution
time, assuming a 100% cache hit rate, is derived from
execution-driven simulation. The benchmarks used in this
study consist of 5 numeric and 12 non-numeric programs.
The numeric programs are all from the SPEC suite, doduc,
fpppp, matriz300, nasa7, and tomcatv. The non-numeric
programs consist of 3 programs from the SPEC suite,
eqntott, espresso, and zlisp; and 9 other commonly used
non-numeric programs, cccp, cmp, compress, eqn, grep, lex,
tbl, we, and yace.

spec src(l).excepttag i I causes except i

description

insert a non-speculative store as a confirmed entry
force all confirmed entries at head of buffer to update cache, save contents

of store buffer >, process exception

signal exception, report pc = src(l).data

signal exception, report pc = src(l).data

insert speculative store as a pending entry

insert speculative store as a pending entry, set exception tag, set excep-

tion pc to pc of I

insert speculative store as a pending entry, set exception tag, set excep-

tion pc to sre(l).data

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

insert speculative store as a pending entry, set exception tag, set excep-

tion pc to sre(l).data

T Instruction producing source operand of store contains exception condition, so store must just propagate the exception.

1 The store instruction results in an exception.

{ Saving the contents of the store buffer only necessary when speculative stores are allowed.

Table 2: Insertion of store into store buffer.

5.2 Results

In this section the performance of the varying scheduling
models is compared for VLIW /superscalar processors with
issue rates 2, 4, and 8. The issue rate is the maximum
number of instructions the processor can fetch and issue per
cycle. No limitation has been placed on the combination of
instructions that can be issued in the same cycle. The base
machine for all speedup calculations has an issue rate of 1
and supports the restricted percolation scheduling model for
speculative code motion. Note that the experiments do not
take into account compiler constraints to ensure recovery.
These constraints are expected to reduce the performance of
the sentinel scheduling model. We are currently quantifying
this performance impact.

Comparison of Sentinel Scheduling and Restricted
Percolation. The performance of the sentinel scheduling
model and the restricted percolation scheduling model is
compared in Figure 4. For the non-numeric programs, sen-
tinel scheduling provides large performance improvements
over restricted percolation. For example, an issue 8 proces-
sor with sentinel scheduling support achieves from 18% to
135% speedup improvement, with an average of 57%, over
restricted percolation. The ability to speculatively execute
potential exception-causing instructions allows the scheduler
to exploit higher levels of ILP. Without sentinel scheduling
support, the scheduler is most restricted by not being able
to schedule load instructions speculatively. Load instruc-
tions are often the first instruction in a long chain of depen-
dent instructions. Thus, the ability to speculatively schedule
load instructions as early as possible is extremely important
for VLIW and superscalar processors. The importance of
sentinel scheduling support also grows for higher issue rate
Processors.

Numeric programs with large numbers of conditional
branches can be expected to achieve similar performance
gains to non-numeric programs with sentinel scheduling
support, whereas numeric programs with few conditional
branches will likely achieve only moderate performance im-
provements with this support. For fpppp, matriz300, and

nasa7, few conditional branches are present in the most im-
portant program sections, thus the need for speculative sup-
port is not as important. For these programs restricted per-
colation already achieves a high instruction execution rate
(Figure 4). However, for doduc and tomcatv which contain
conditional branches in frequently executed program sec-
tions, sentinel scheduling provides significant performance
for all issue rates. For example with an issue 4 processor,
sentinel scheduling support increases performance by 36%
and 38% for doduc and tomncatv, respectively (Figure 4).

Comparison of Sentinel Scheduling and General
Percolation. The performance of the sentinel scheduling
model and the general percolation scheduling model is com-
pared in Figure 5. From the figure, it can be seen that the
performance of sentinel scheduling is almost identical to the
performance of general percolation for all issue rates. Sen-
tinel scheduling requires additional sentinel instructions to
be inserted when unprotected instructions are speculatively
scheduled. However, most of the sentinels can be scheduled
in empty instruction slots so they do not cause significant ex-
ecution overhead. The largest performance difference occurs
for grep for an issue 2 processor due to a lack of available
slots to insert the sentinels. For an issue 8 processor, though,
no performance loss is observed.

Effectiveness of Sentinel Scheduling with Specula-
tive Stores. The performance of sentinel scheduling with
speculative store support is also shown in Figure 5. For
an issue 8 processor, an average of 7.4% improvement for
non-numeric programs and 2.6% for numeric programs is
observed. For the non-numeric programs, cmp and grep
achieve over 20% performance gain for an issue 4 and issue
8 processor. Moderate performance gains are observed for
ceep, compress, eqn, espresso, lex, tbl, xlisp, and yacc. No
performance improvement is obtained for egntott and we.
This lack of improvement is due to few store instructions
in the most frequently executed code sequences with condi-
tional branches. For the numeric programs, moderate per-
formance gains are observed for doduc and nasa7, while no
performance improvement is observed for fpppp, matriz300,

Speedup

ccep cmp compress eqn eqntott espresso grep

tbl wexlisp yacc doduc fpppp matrix300 nasa7 tomcatv

Figure 4: Performance comparison of sentinel scheduling (S) and restricted percolation (R).

6+
O lIssue §
5 Issue 4
B Issue Z
4 4

Speedup

ccep cmp compress eqn eqntott espresso grep

tbl wexlisp yacc doduc fpppp matrix300 nasa7 tomcatv

Figure 5: Performance comparison of sentinel scheduling (S), sentinel scheduling with speculative stores (T), and general

percolation (Q).

and tomcatv. Similarly, this lack of improvement is due to
few store instructions in frequently executed code sequences
with conditional branches.

6 Conclusions

In this paper, a set of architectural and compiler support,
referred to as sentinel scheduling, is introduced. Sentinel
scheduling provides an effective framework for compiler-
controlled speculative execution that accurately detects and
reports all exceptions. Whenever a potential exception-
causing instruction is speculatively executed, the scheduler
ensures that a non-speculative sentinel instruction remains
in the home block of the instruction to check if an exception
occurred. Sentinel scheduling is shown to provide substan-
tial performance improvements for both non-numeric and
numeric programs. For an issue 8 processor, an average
performance improvement of 57% for non-numeric programs
and 32% for numeric programs is achieved over the restricted
code percolation scheduling model. Also, the performance
of sentinel scheduling is shown to be almost identical to that
of general percolation. This confirms that the constraint of
properly reporting all exceptions does not restrict the per-
formance of sentinel scheduling.

An extension of sentinel scheduling to allow speculative ex-

ecution of store instructions is also described. A store buffer
which allows probationary entries is proposed. Speculative
store instructions enter the store buffer as probationary en-
tries and are later confirmed by explicit instructions inserted
by the scheduler. With speculative store support, an average
performance improvement of 7.4% for non-numeric programs
and 2.6% for numeric programs is observed. The perfor-
mance improvement, however, varies the frequency of stores
and conditional branches in the benchmarks.

Acknowledgements

The authors would like to thank Thomas Conte, Sadun
Anik, Richard Hank, and Roger Bringmann, along with all
members of the IMPACT research group for their comments
and suggestions. Special thanks Pohua Chang at Intel Cor-
poration, David Callahan at Tera Computer Corporation,
and to the anonymous referees whose comments and sug-
gestions helped to improve the quality of this paper signif-
icantly. This research has been supported by JSEP under
Contract N00014-90-J-1270, Dr. Lee Hoevel at NCR, the
AMD 29K Advanced Processor Development Division, Mat-
sushita Electric Industrial Co. Ltd., Hewlett-Packard, and
NASA under Contract NASA NAG 1-613 in cooperation
with TCLASS.

References

(1]

[10]

[11]

[12]

[13]

[14]

B. R. Rau and C. D. Glaeser, “Some scheduling tech-
niques and an easily schedulable horizontal architec-
ture for high performance scientific computing,” in Pro-
ceedings of the 20th Annual Workshop on Micropro-
grammeng and Microarchitecture, pp. 183-198, October
1981.

M. S. Lam, “Software pipelining: An effective schedul-
ing technique for VLIW machines,” in Proceedings of
the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, pp. 318-328,
June 1988.

A. Aiken and A. Nicolau, “Optimal loop paralleliza-
tion,” in Proceedings of the ACM SIGPLAN 1988 Con-
ference on Programming Language Design and Imple-
mentation, pp. 308-317, June 1988.

B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle,
“The Cydra 5 departmental supercomputer,” IEFFE
Computer, pp. 12-35, January 1989.

P. Y. T. Hsu and E. S. Davidson, “Highly concurrent
scalar processing,” in Proceedings of the 13th Interna-
tional Symposium on Computer Architecture, pp. 386—
395, June 1986.

M. D. Smith, M. S. Lam, and M. A. Horowitz, “Boost-
ing beyond static scheduling in a superscalar proces-
sor,” in Proceedings of the 17th International Sym-
posium on Computer Architecture, pp. 344-354, May
1990.

P. Tirumalai, M. Lee, and M. Schlansker, “Paralleliza-
tion of loops with exits on pipelined architectures,” in
Proceedings of Supercomputing ‘90, November 1990.

P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter,
and W. W. Hwu, “IMPACT: An architectural frame-
work for multiple-instruction-issue processors,” in Pro-
ceedings of the 18th International Symposium on Com-
puter Architecture, pp. 266-275, May 1991.

J. A. Fisher, “Trace scheduling: A technique for global
microcode compaction,” ITEEF Transactions on Com-
puters, vol. c-30, pp. 478-490, July 1981.

K. Ebcioglu, “A compilation technique for software
pipelining of loops with conditional jumps,” in Proceed-
ings of the 20th Annual Workshop on Microprogram-
meng and Microarchitecture, pp. 69-79, December 1987.

R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Pa-
pworth, and P. K. Rodman, “A VLIW architecture
for a trace scheduling compiler,” in Proceedings of the
2nd International Conference on Architectural Support
for Programming Languages and Operating Systems,
pp. 180-192, April 1987.

A. Aho, R. Sethi, and J. Ullman, Compzlers: Principles,
Techniques, and Tools. Reading, MA: Addison-Wesley,
1986.

S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and
M. S. Schlansker, “Exception recovery for systems with
compiler-controlled speculative execution,” tech. rep.,
Center for Reliable and High-Performance Computing,
University of Illinois, Urbana, IL, in preparation 1992.

W. M. Johnson, Superscalar Microprocessor Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.

Appendix

An algorithm to perform sentinel superblock scheduling is
presented below. The dependence_graph_reduction function
removes control dependences from a dependence graph to
allow speculative code motion. Instructions may be specu-
latively executed if they are allowed as speculative in the ar-
chitecture. For example branches, subroutine calls, and i/o
instructions may not be speculatively executed. Also store
instructions without support for probationary stores are not
allowed to be speculative. The sentinel_scheduling function
utilizes the dependence graph to perform list scheduling of
all instructions in a superblock.

dependence_graph reduction(superblock) {
/* Remove control deps to allow upward code motion */
for each instruction in sequential order in superblock, I {
if (I is unprotected) {
if (dest(I) is used at or before the first succeeding
control instruction) {
mark I as protected
mark use as unprotected }
if (I allowed to be speculative) {
for each branch before I, BR {
if (dest(I) not live when BR is taken) {
remove control dependence from BRto I } } } }
else if (I may cause an exception) {
if (dest(I) is used at or before the first succeeding
control instruction) {
mark use as unprotected }
else {
mark I as unprotected }
if (I allowed to be speculative) {
for each branch before I, BR {
if (dest(I) not live when BR is taken) {
remove control dependence from BRto I } } } }
else if (I allowed to be speculative) {
for each branch before I, BR {
if (dest(I) not live when BR is taken) {
remove control dependence from BRto I } } } } }

sentinel scheduling(superblock) {
construct dependence graph
mark all instructions in superblock as protected
dependence_graph reduction(superblock)
/= List schedule all instructions in the superblock =/
for each instruction in superblock, I {
compute priority of I
add I to set of unscheduled instructions }
while (unscheduled set of instruction is not empty) {
active_set = set of unscheduled instructions that are ready
sort active_set according to instruction priorities
find the best set of instructions to issue from active_set
for each instruction issued at the current cycle, I {
if (I is moved above a branch) {
set speculative modifier of I }
if ((I is speculative) and (I is unprotected)) {
insert a check_exception(dest(I)) instruction, J,
into superblock
add a flow dependence from I to J
add a control dependence from the first branch 7
moved above to J
add a control dependence from J to the first branch
originally below I
add J to unscheduled set of instructions }
remove I from set of unscheduled instructions } } }

