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Abstract
While multicore hardware has become ubiquitous, explicitly par-
allel programming models and compiler techniques for exploit-
ing parallelism on these systems have noticeably lagged behind.
Stream programming is one model that has wide applicability in the
multimedia, graphics, and signal processing domains. Streaming
models execute as a set of independent actors that explicitly com-
municate data through channels. This paper presents a compiler
technique for planning and orchestrating the execution of streaming
applications on multicore platforms. An integrated unfolding and
partitioning step based on integer linear programming is presented
that unfolds data parallel actors as needed and maximally packs ac-
tors onto cores. Next, the actors are assigned to pipeline stages in
such a way that all communication is maximally overlapped with
computation on the cores. To facilitate experimentation, a gener-
alized code generation template for mapping the software pipeline
onto the Cell architecture is presented. For a range of streaming
applications, a geometric mean speedup of 14.7x is achieved on a
16-core Cell platform compared to a single core.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors Compilers

General Terms Languages, Algorithms, Performance

Keywords StreamIt, Cell processor, multicore, stream program-
ming, software pipelining

1. Introduction
Multicore systems have become the industry standard from high-
end servers, down through desktops and gaming platforms, and
finally into handheld devices. Example systems include the Sun
UltraSparc T1 that has 8 cores [14], the Sony/Toshiba/IBM Cell
processor that consists of 9 cores [10], the NVIDIA GeForce 8800
GTX that contains 16 streaming multiprocessors each with eight
processing units [19], and the Cisco CRS-1 Metro router that uti-
lizes 192 Tensilica processors [5]. Intel and AMD are producing
quad-core x86 systems today and larger systems are on their near
term roadmaps. Putting more cores on a chip increases peak perfor-
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mance, but has shifted the burden onto both the programmer and
compiler to identify large amounts of coarse-grain parallelism to
effectively utilize the cores. Highly threaded server workloads nat-
urally take advantage of more cores to increase throughput. How-
ever, the performance of single-thread applications has dramati-
cally lagged behind. Traditional programming models, such as C,
C++, and Fortran, are poorly matched to multicore environments
because they assume a single instruction stream and a centralized
memory structure.

The stream programming paradigm offers a promising approach
for programming multicore systems. Stream languages are moti-
vated by the application style used in image processing, graphics,
networking, and other media processing domains. Example stream
languages are StreamIt [26], Brook [3], CUDA [19], SPUR [28],
Cg [18], and Baker [4]. Stream languages enable the explicit spec-
ification of producer-consumer parallelism between coarse grain
units of computation. For this work, we focus on StreamIt where
a program is represented as a set of autonomous actors (called fil-
ters in StreamIt) that communicate through first-in first-out (FIFO)
data channels [26]. StreamIt implements the synchronous dataflow
model [15] in which the number of data samples produced and con-
sumed by each actor are specified a priori. During program execu-
tion, actors fire repeatedly in a periodic schedule [6]. Each actor
has a separate instruction stream and an independent address space,
thus all dependences between actors are made explicit through the
communication channels. Compilers can leverage these character-
istics to plan and orchestrate parallel execution.

Stream programs contain an abundance of explicit parallelism.
The central challenge is obtaining an efficient mapping onto the
target architecture. Often the gains obtained through parallel exe-
cution can be overshadowed by the costs of communication and
synchronization. Resource limitations of the system must also be
carefully modeled during the mapping process to avoid stalls. Re-
source limitations include finite processing capability and memory
associated with each processing element, interconnect bandwidth,
and direct memory access (DMA) latency. Lastly, stream programs
contain multiple forms of parallelism that have different tradeoffs
on when they should be exploited. It is critical that the compiler
leverage a synergistic combination of parallelism, while avoiding
both structural and resource hazards.

In this work, we propose a modulo scheduling algorithm for
mapping streaming applications onto multicore systems, referred
to as stream graph modulo scheduling or SGMS. Modulo schedul-
ing is traditionally a form of software pipelining applied at the in-
struction level [22]. We apply the same technique on a coarse-grain
stream graph to pipeline the actors across multiple cores. The ob-
jective is to maximize concurrent execution of actors while hid-
ing communication overhead to minimize stalls. SGMS is a phase-



ordered approach consisting of two steps. First, an integrated actor
fission and partitioning step is performed to assign actors to each
processor ensuring maximum work balance. Parallel data actors are
selectively replicated and split to increase the opportunities for even
work distribution. This first step is formulated as an integer linear
program. The second step is stage assignment wherein each actor
is assigned to a pipeline stage for execution. Stages are assigned to
ensure data dependences are satisfied and inter-processor commu-
nication latency is maximally overlapped with computation.

Our target platform is the Cell architecture, which represents
the first tangible platform that is a decoupled multicore where
there is no shared cache so code-data colocation is necessary [10].
SGMS is part of a fully automatic compilation system, known as
StreamRoller, that maps StreamIt applications onto a Cell system.
The SGMS schedule is output in the form of a C template that
executes an arbitrary software pipeline. This template, combined
with C versions of the actors, are compiled with the host compiler
to execute on the target system. For our experiments, we use an
IBM QS20 Blade Server running Fedora Core 6.0. It is a Cell
system equipped with 16 3.2GHz synergistic processing engines
(SPEs) on 2 chips, and 1 GB RAM.

Our work has the most overlap with the coarse-grained schedul-
ing used in the StreamIt compiler [7, 6]. The StreamIt scheduler
consists of two major phases. First, a set of transformations are ap-
plied on the stream graph to combine and split actors to ensure the
computation granularity is balanced. Second, a coarse-grain soft-
ware pipeline is constructed by iteratively applying a greedy parti-
tioning heuristic that assigns filters to processors. Each filter is con-
sidered in order of decreasing work and assigned to the processor
with the least amount of work so far. To minimize synchronization,
the partitioning algorithm is wrapped with a selective fusion pass
that repeatedly fuses the two adjacent filters that have the smallest
combined work. This process reduces communication overhead by
forcing the combined filters to reside on the same processor.

Our work differs along two primary dimensions. First, the
StreamIt compiler targets the Raw processor that has a traditional
cache on each processor [25]. In [6], intermediate buffers needed
by the software pipeline of the stream graph are stored off to the
off-chip DRAM banks, and a separate communication stage is in-
troduced between steady states to shuffle data between banks. Our
formulation of pipeline stage assignment explicitly models DMA
overhead and proactively overlaps data transfers for future itera-
tions with computation on the current iteration. Second, we for-
mulate the partitioning and actor fission step as an integer linear
program rather than employing iterative partitioning and fusing to
generate a schedule. Our approach combines packing and fission
of actors, data transfers, and resource constraints to generate more
balanced and higher quality schedules for architectures such as
Cell.

This paper offers the following contributions:

• The design, implementation, and evaluation of stream graph
modulo scheduling for efficiently mapping streaming applica-
tions onto decoupled multicore systems.
• An integer linear program formulation for integrated actor fis-

sion and partitioning to assign actors to processing elements
maximizing workload balance.
• A pipeline stage assignment algorithm that proactively overlaps

DMA transfers with computation to minimize stalls.
• A fully automated compilation system for Cell capable of gen-

erating performance results on real hardware.

void->void pipeline IIR {
... 
add FIR(256);
add FIR(96);
...

}

int->int filter FIR(int n) {
int w[n];
...
work pop 1 push 1 peek n {

int i;
int sum = 0;
for(i=0; i<n; i++)

sum += peek(i) * w[i];
pop();

push(sum);
}

}
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Figure 1: (a) Example StreamIt Program and (b) corresponding
stream graph.

2. Background and Motivation
2.1 StreamIt Language
StreamIt [26] is an explicitly parallel programming language that
implements the synchronous data flow (SDF) [15] programming
model. Actors are specified by parametrized classes, which are sim-
ilar to Java classes. They can have local variables corresponding to
local actor state, and methods that accesses these variables. An ac-
tor can have both read-only and read-write state. A stateful actor
that modifies local state during the work function cannot be paral-
lelized as the next invocation depends on the previous invocation.
However, the SDF semantics allow the parallel replication of state-
less actors. A special method called work is reserved to specify the
work function that is executed when the actor is invoked in steady
state. The stream rates (number of items pushed and popped on ev-
ery invocation) of the work functions are specified statically in the
program.

The stream graph is constructed by instantiating objects of the
actor classes. StreamIt provides ways to construct specific struc-
tures like pipeline, split-join, and feedback loop. Using these prim-
itives, the entire graph can be constructed hierarchically. Note that
feedback loops provide a means to create cycles in the stream
graph. Feedback loops are naı̈vely handled by fusing the entire loop
into a single actor. More intelligent ways to handle nested loops is
beyond the scope of this paper. Further, the feedback loop pattern
does not appear in any of the benchmarks that we evaluate. Hence,
the rest of the paper assumes an acyclic stream graph.

Figure 1 shows an example StreamIt program and its corre-
sponding stream graph. StreamIt provides the peek primitive to the
programmer, which can be used to non-destructively read values
off the input channel. Note that this is only for convenience, and
does not make StreamIt deviate from the pure SDF model. This is
because a program with peek can always be reimplemented with
just pushes and pops, and some local state that holds a subset of
values seen so far.

2.2 Cell Broadband Architecture
Our compilation target in this paper is the Cell Broadband Engine
(CBE) shown in Figure 2. The CBE is a heterogeneous multicore
system, consisting of one 64bit PowerPC core called the Power
Processing Element (PPE) and eight Synergistic Processing Ele-
ments (SPEs). Each SPE has a SIMD engine called the synergistic
processing unit (SPU), 256 KB of local memory and a memory
flow control (MFC) unit which can perform DMA operations to
and from the local stores independent of the SPUs. The SPUs can
only access the local store, so any sharing of data has to be per-
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Figure 2: The Cell broadband architecture.
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Figure 3: Theoretical speedup for unmodified programmer-
conceived stream graph.

formed through explicit DMA operations. The SPEs and PPE are
connected via a high bandwidth interconnect called the Element In-
terconnect Bus (EIB). The main memory and peripheral devices are
also connected to the EIB. The feature of the CBE most relevant to
this paper is the ability of the MFCs to do non-blocking DMA oper-
ations independent of the SPUs. The SPUs can issue DMA requests
that are added to hardware queues of the MFCs. The SPU can con-
tinue doing computation while the DMA operation is in progress.
The SPU can query the MFC for DMA completion status and block
only when the needed data has not yet arrived. The ability to per-
form asynchronous DMA operations allow overlap of computation
and communication, and is leveraged for efficient software pipelin-
ing of stream graphs.

2.3 Motivation
Stream programs are replete with pipeline parallelism. An actor can
start working on the next data item as soon as it is done with the
current item, even when other actors in the downward stream of the
graph are still working on the current item. In a multiprocessor en-
vironment, by running different actors on different processors and
overlapping iterations, the outer loop can be greatly sped up. Try-
ing to exploit pipeline parallelism requires (1) a good distribution
of work among the available processors and (2) managing the com-
munication overhead resulting because of producers and consumers
running on different processors.

The partitioning problem. Figure 3 shows the theoretical
speedup possible for a set of unmodified stream programs for 2
to 64 processors.1 The actors present in the programmer-conceived
stream graph are assigned to processors in an optimal fashion such
that the maximal load on any processor is minimized. Speedup is
calculated by dividing the single processor runtime by the load
on the maximally loaded processor. The programmer-conceived

1 More details of the applications are provided in Section 4.

stream graph has ample parallelism that can be exploited on up to
8 processors. Beyond 8 processors, the speedup begins to level off.
Most benchmarks just do not have enough actors to span all pro-
cessors. For example, fft has only 17 filters in its stream graph,
therefore no speedup is possible beyond 17 processors. The other
reason is that work is not evenly distributed across the actors. Even
though the computation has been split into multiple actors, the pro-
grammer has no accurate idea of how long an actor’s work function
will take to execute on a processor when coding the function. This
combined with the fact that work functions are indivisible units
leads to less scaling on 16 or more processors. For example, in the
vocoder benchmark, the longest running actor contributes to 12%
of the work, thus limiting the theoretical speedup to 100

12 = 8.3.
Most of the benchmarks are completely stateless, i.e., all actors

are data parallel [6]. In fact, only mpeg2, vocoder, and radar
have actors that are stateful. Data parallel actors can be replicated
(or fissed) any number of times without changing the meaning of
the program. The longest running actor in vocoder benchmark is
stateless, and can be fissed to reduce the amount of work done in
a single actor. Fissing data parallel actors not only allows work to
span more processors, it also allows work to be evenly distributed
across processors by making the largest indivisible unit of work
smaller.

Even though data parallel actors provide ample opportunity to
divide up work evenly across processors, it is not obvious how
many times an actor has to be fissed to achieve load balance. An
actual partitioning has to be performed to decide if actors have
been fissed enough number of times. On the other hand, a good
partitioning is achieved only when actors have been fissed into
suitably small units. This circular cause and consequence warrants
an integrated solution that considers the problems of fission and
partitioning in a holistic manner.

Communication overhead. When an actor that produces data
and the actor(s) that consume that data are mapped to different
processors, the data must be communicated to the consumers. In
our implementation on the Cell system, actors are mapped to the
SPEs that have disjoint address spaces. Therefore, communicating
data to consumers is through an explicit DMA. When such transfers
are not avoided, or not carefully overlapped with useful work, the
overhead could dominate the execution times.

The next section addresses the problem of partitioning and com-
munication overhead. First, an integrated fission and partitioning
method is presented that fisses the actors just enough to span all
processors, and also obtain an even work distribution. Next, the
stage assignment step divides up the actors into pipeline stages in
which all communication is overlapped with computations.

3. Stream Graph Modulo Scheduling
This section describes our method for scheduling a stream graph
onto a multicore system. The objective is to obtain a maximal
throughput software pipeline taking both the computation and
communication overhead into account. The stream graph mod-
ulo scheduling (SGMS) algorithm is divided into two phases. The
first phase is an integrated fission and processor assignment step
based on an integer linear program formulation. It fisses data paral-
lel actors as necessary to get maximal load balance across the given
number of processors. The second phase assigns actors to pipeline
stages in such a manner that all communication is overlapped with
computation on the processors.

3.1 Integrated Fission and Processor Assignment
Consider a dataflow graph G = (V, E) corresponding to a stream
program. Let |V | = N be the number of actors. Let the basic
repetition vector be r, where ri specifies the number of times vi is
executed in a static schedule. Let t(vi) be the time taken to execute



ri copies of vi. The rest of the section assumes ri executions of
vi as the basic schedulable unit. Given P processors, a software
pipeline needs some assignment of the actors to the processors.
The throughput of the software pipeline is determined by the load
on the maximally loaded processor. As shown in Section 2, even
an optimal assignment on the unmodified programmer conceived
stream graph does not provide linear speedups beyond 8 processors.
Some data parallel actors need to be fissed into two or more copies
so that there is more freedom in distributing work evenly across the
processors. For each actor in the stream graph, the following ILP
formulation comes up with the number of times the actor has to be
fissed, and an assignment of each copy of the actor to a processor.
The objective function is the maximal load on any processor, which
is minimized.

A set of 0-1 integer variables ai, j,k,l is introduced for every actor
vi. The meaning of the four suffixes is explained below:

• i identifies the actor.
• j identifies the version of the actor that would appear in the final

graph. For every actor vi, the formulation considers multiple
versions of the actor. Version 0 of the actor is fissed 0 times (no
copies made), version 1 of the actor is fissed once so that two
copies of the actor are considered for scheduling, and so on.
• k identifies the copy of the jth version of the actor vi. Version

0 has only one copy. Version 1 has 2 copies of the actor and
a splitter and joiner. The splitter and joiner have to run on
some processor, therefore, they are considered as independent
schedulable units. Thus there are ( j + 3) schedulable actors in
the jth version. We have either 0 ≤ k < j + 3 when j ≥ 1, or
k = 0 when j = 0.
• l identifies the processor to which the kth copy is assigned.

Let Q be the maximum number of versions considered for an
actor. Actors with carried state cannot be fissed at all and Q = 1
for such actors. On the other hand, stateless actors can be fissed
any number of times. The choice of Q affects the load balance
obtained from the processor assignment. Choosing a low value for
Q would inhibit the freedom of distributing copies of an actor to
many processors. We observed that the maximum number of copies
of an actor that appear in the best partitions is always less than P for
all benchmarks. Therefore, in the experiments Q was set to P, the
number of processors under consideration. The following equation
ensures that a copy of an actor is either assigned to one processor
or not assigned to any processor at all, implying that a different
version was chosen.

P∑
l=1

ai, j,k,l ≤ 1 ∀i, 0 ≤ j < Q, 0 ≤ k < j + 3 (1)

When a copy of an actor is indeed assigned to a processor, all
other copies in the same version have to be assigned to processors,
and all other versions should not be assigned to processors. To
ensure this, a set of Q indicator variables, bi,q, 0 ≤ q < Q, are
introduced for every actor vi. These indicator variables are 0-1
variables which serve two purposes. First, they indicate which
version of the actor was chosen. Second, by virtue of being either
0 or 1 only, ensure that either all copies of a version are assigned to
processors, or no copy is assigned to any processor. The following
set of equations show the relation between the indicator variables
bi,q and the assignment variables ai, j,k,l.

P∑
l=1

ai,0,0,l − bi,0 = 0 ∀i (2)
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Figure 4: Example illustrating ILP formulation.

P∑
l=1

j+2∑
k=0

ai, j,k,l − bi, j ≤ M × bi, j ∀i, 1 ≤ j < Q (3)

P∑
l=1

j+2∑
k=0

ai, j,k,l − ( j+ 2)− bi, j ≥ −M +M × bi, j ∀i, 1 ≤ j < Q (4)

M in Equations 3 and 4 is a constant that is larger than the upper

bound of
P∑

l=1

j+2∑
k=0

ai, j,k,l. Note that Equations 3 and 4 are standard ILP

tricks to ensure that a linear sum either equals a constant or is zero.

In this case, the sum
P∑

l=1

j+2∑
k=0

ai, j,k,l either has to be ( j + 3), denoting

that all copies of a version were assigned to some processor, or
has to be 0, denoting that none of the copies were assigned to
any processor. bi, j conveniently takes on 1 or 0, respectively. The
following equation ensures that one and only one version of an
actor is chosen in the final assignment.

Q∑
j=0

bi, j = 1 ∀i (5)

Figure 4 illustrates the above set of equations for an example actor.
Q is chosen to be 3 in the example. Three versions of the actor are
shown in the figure. The labels on the nodes indicate the version
number and copy number. The last equation b1,0 + b1,1 + b1,2 =
1 ensures that only one version is chosen, and the rest of the
equations ensure that all copies of the chosen version are assigned
to processors.

To determine the quality of an assignment, the amount of work
assigned to each processor has to be calculated. The following
equation computes the work (in terms of time) done by a copy of
an actor.

Wi, j,k,l =


t(vi) if j = 0
t(vi)
j+1 + ε if j > 1 and k < j+1
splitter work(vi) if j > 1 and k = j+1
joiner work(vi) if j > 1 and k = j+2

(6)

Version 0 of the actor is same as the original actor. Therefore, the
work done by version 0 is the original work t(vi). In version 1, there
are 2 copies of the actor that do half the work as the original actor.
Note that there is a small overhead of ε when fissing actors which
peek more elements than they pop. This is due to the introduction



of a decimation stage on each copy which just pops and ignores
part of the data to maintain correct semantics. In addition, there is
additional work done by the splitter and joiner in version 1. The
last three cases in Equation 6 compute the work done by copies of
the actor, splitter, and joiner. Note that the work done in splitter
and joiner depends on the implementation. However, they both are
constants given the number of items popped by the corresponding
actor. For some assignment of actors to processors, the following
equation computes the total work TWp that gets assigned to a
processor p.

TWp =

N∑
i=1

Q∑
j=0

∑
valid k

ai, j,k,l ×Wi, j,k,p (7)

The processor p with maximum work TWp assigned to it consti-
tutes the bottleneck processor, and thus TWp denotes the inverse of
the throughput of the overall pipeline. We borrow the terminology
from operation-centric modulo scheduling used in compiler back-
ends, and use the term Initiation Interval (II) to denote the inverse
of the throughput. The following set of equations compute II from
the TWp’s.

TWp ≤ II 1 ≤ p ≤ P (8)
The ILP program that minimizes II subject to constraints given by
Equations 1 to 8 provides the following information.

• The value of j for which bi, j = 1 identifies the version of the
actor chosen. Note that Equation 5 ensures that only one of the
bi, j’s have the value 1.
• Given a copy k of the chosen version j, the set of values ai, j,k,l

that are 1 identify the processors to which the copy is assigned.
For example, if ai, j,k,4 = 1, then the kth copy the actor is assigned
to processor 4.

The above formulation does not account for any communication
overhead. The data produced by an actor has to be communicated to
a consuming actor if that actor was assigned to a different processor.
The following section shows how all such communication can
be hidden, thus achieving the exact throughput obtained from the
processor assignment step.

3.2 Stage Assignment
The processor assignment obtained by the method described in the
previous section provides only partial information for a pipeline
schedule. Namely, it specifies how actor executions are overlapped
across processors. It does not specify how they are overlapped in
time. To realize the throughput, which is the load on the maximally
loaded processor obtained from processor assignment, all actors as-
signed to a processor including the necessary DMAs have to be
completed within a window of II time units. The only goal of pro-
cessor assignment step is load balance, therefore it assigns actors to
different processors without taking any data precedence constraints
into consideration. An actor assigned to a processor could have its
producer assigned to a different processor, and have its consumer
assigned to yet another processor. To honor data dependence con-
straints and still realize the throughput obtained from processor as-
signment, the actor executions corresponding to a single iteration of
the entire stream graph are grouped into stages. Note that the con-
cept of stage is adapted from traditional VLIW modulo scheduling.
Across all processors, stages of a single iteration execute sequen-
tially, thus honoring data dependences. Within a single processor,
no stages are active at the beginning of execution. During the ini-
tial few iterations, stages are activated sequentially, thus filling up
the pipeline and enabling executions of data dependent actors be-
longing to earlier iterations concurrently with actors from later it-
erations. In steady state, all stages are active on a processor, thus
realizing the throughput obtained from processor assignment. The
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Figure 5: Properties of stages.

pipeline is drained by deactivating stages during the final few iter-
ations.

The overarching goal of the stage assignment step is to overlap
all data communication (DMAs) between actors. To achieve this,
the stage assignment step considers the DMAs as schedulable units.
To honor data dependences and ensure DMAs can be overlapped
with actor executions, certain properties are enforced on the stage
numbers of actors. Consider a stream graph G = (V, E). The stage
to which an actor vi is assigned to is denoted by S i. In addition, the
processor to which vi is assigned to is denoted by pi. The following
rules enforce data dependences and ensure DMA overlap.

• (vi, v j) ∈ E ⇒ S j ≥ S i, i.e., the stage number of a consuming
actor should come after the producing actor. This is to preserve
data dependence.
• If (vi, v j) ∈ E and pi , p j, then a DMA operation must be per-

formed to get the data from pi to p j. The DMA operation is
given a separate stage number S DMA. As shown in Figure 5, the
inequality S i < S DMA < S j is enforced between the stages of
the different actors and the DMA operation. The DMA opera-
tion is separated from the producer by at least one stage, and
similarly, the consumer is separated from the DMA operation
by one stage. This ensures decoupling, and allows the overlap
of the producer and the DMA, as well as the DMA and the con-
sumer.
• Within the set of actors assigned to some processor p, the

inequality
∑
S j=s

t(v j) ≤ II,∀s is enforced. In other words, the sum

of execution times of actors (S j) assigned to a stage (s) should
be less than the desired II. This is the basic modulo scheduling
constraint, which ensures that the stages are not overloaded, and
that a new iteration can be initiated every II time units.

A simple data flow traversal of the stream graph is used to
assign stages to actors as shown in Algorithm 1. For each actor
in dataflow order, the FindStage procedure assigns a stage to the
actor. The for loop beginning on the line marked 1 computes the
maximum stage of the producers of the actor under consideration.
If any of the producers are assigned to a different processor, the
earliest stage considered for actor is maxstage + 2, which leaves
room for DMAs in maxstage + 1. Otherwise, the actor could be
placed on maxstage. The while loop beginning on the line marked
4 finds a stage number later than stage on which the load is less
than the II obtained from processor assignment.

3.3 Code Generation for Cell
This section describes a code generation strategy to implement the
modulo schedule obtained for a stream program on a Cell system.
The target of our code generation are the multiple SPEs, as opposed
to the PPE. This section describes the general code generation
schema, the buffer allocation strategy, and provides a complete
example.

Code generation schema. The SPEs are independent proces-
sors with disjoint address spaces. The general code generation strat-



FindStage (actor) :
maxstage← 0 ;
f lag← f alse ;

1 foreach producer p of actor do
if stage(p) > maxstage then

maxstage← stage(p) ;
end

2 if Proc(p) , Proc(actor) then
f lag← true ;

end
end

3 if flag then
stage← maxstage + 2 ;

else
stage← maxstage ;

end
4 while Load(Proc(p), stage) + t(actor) > II do

stage← stage + 1
end
Load(Proc(p), stage) + = t(actor) ;
return stage

Algorithm 1: Stage assignment procedure

egy is to spawn one thread per SPE. Each thread makes calls to
work functions corresponding to actors that are assigned to the re-
spective SPEs, and perform DMAs to get data from other SPEs. The
main program, running on the PPE, just spawns the SPE threads
and does not intervene thereafter.

Figure 6 shows pseudo C code that runs on each SPE thread. It
mimics the kernel-only [23] code of modulo scheduling for a VLIW
processor. The array stage functions similar to the staging predi-
cate, and its size (N) is the maximum number of stages. The main
loop starts off with only the first stage active. The if conditions
that test different elements of stage ensure only actors assigned to
a particular stage are executed. The last part of the loop shifts the
elements of the array stage to the left, which has the effect of fill-
ing up the software pipeline. Finally, when all iterations are done,
draining the software pipeline is accomplished by shifting a 0 into
the last element of stage.

void spe_work()
{
char stage[N] = {0};

stage[0] = 1;

for (i=0; i<max_iter+N-1; i++) {
if (stage[N-1]) {
// Begin DMA operations
// Call to filter work functions

}
if (stage[N-2]) {
}
...
if (stage[0]) {
}
wait_for_dma_completion();
// start epilogue
if (i == max_iter-1)
stage[0] = 0;

// Shift-left staging predicate
for(j=N-1; j>=1; j--)
stage[j] = stage[j-1];

barrier();
}

Figure 6: Main loop implementing the modulo schedule.

The code corresponding to each active stage are calls to the
work functions of the actors assigned to this SPE and the corre-
sponding stage, and the necessary DMAs to fetch data from other
SPEs. The Cell processor provides non-blocking DMA function-
ality [11], which is leveraged for overlapping DMAs and compu-
tation. A DMA operation assigned to a particular stage is imple-
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Figure 7: Buffer allocation for the modulo schedule.

mented using the mfc get primitive, which enters the DMA com-
mand into a queue and returns immediately. The MFC engine in
each SPE processes the queue asynchronously and independent of
the processor. After enqueuing the DMA request, the code proceeds
to execute work functions for actors. Note that even though the
actual DMA operations are asynchronous, the SPE should queue
up the DMA requests synchronously using the mfc get primi-
tive. No more DMAs can be queued once work functions begin
execution. Therefore, all DMA operations belonging to a stage
are queued up before any work functions are called to ensure
maximal overlap of actual DMAs and computation. Finally, the
wait for dma completion uses the mfc read tag status all
primitive to ensure all DMAs issued in the current iteration are
completed, and a barrier synchronization is executed to ensure the
current iteration is completed on all SPEs. barrier() is imple-
mented using the signal mechanism available on the SPEs, and
with the current implementation, 2× 106 barriers can be performed
in 1 second.

Buffer allocation. In the code generation schema described
above, several iterations of the original stream graph are in flight
concurrently. A producer actor could be executed multiple times
before one of its consumers is ever executed. To ensure correct
operation, multiple buffers are used to store the outputs of producer
actors. The buffers are used in a fashion similar to rotating registers
in a traditional modulo schedule. The number of buffers needed
for the output of a producer actor assigned to stage S p feeding a
consumer actor on stage S c can easily be calculated as S c − S p + 1.

Figure 7 shows the buffer allocation for a producer actor A and
consumer actor B. They are assigned to different processors with
an intervening DMA. Since the stage separation between A and the
DMA is 3, 4 buffers are allocated on the local memory of PE1, and
A uses them in a round-robin fashion. The arrows on the picture
on the right shows the current buffers being used. Note that the
DMA operation and actor A are executing concurrently by using
different buffers. Similarly, B is using a buffer different from the
DMA. In the current implementation, all buffers are allocated on
the local memories of the SPEs. The buffers between a producer
actor and a DMA operation are stored on the SPE on which the
producer is running. Symmetrically, the buffers between the DMA
operation and the consuming actor are stored on the consumer SPE.
256KB of local store is sufficient to hold all the buffers needed by
the benchmarks evaluated. This is corroborated by the authors of
[6], who report that the buffers needed by the benchmarks would fit
on the 512KB cache of the Cell processor.

3.3.1 Example
Figure 8(a) shows an example stream graph. Assume that all actors
in the graph are data parallel, i.e., they can be fissed any number of
times. The numbers beside the nodes represent the amount of work
done by the actors. Note that B does the most work of 40 units
and the sum of work done by all actors is 60 units. When trying to
schedule the unmodified graph on to 2 processors, the maximum
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achievable speedup is 60
40 = 1.5. Figure 8(b) shows the result of

the integrated fission on processor assignment step. Node B has
been fissed once, resulting in two new nodes B1 and B2, and the
corresponding splitter S and joiner J, whose work are assumed to
be 2 units. The processor assignment obtained has an II of 32, thus
resulting in a speedup of 60

32 ∼ 2. Finally, Figure 8(c) shows the
stage assignment in which DMAs are separated from consumers
by one stage, thus ensuring complete overlap of computation and
communication.

Figure 9 shows the execution timeline of the code running on
two SPEs. The main feature to note is the steady state execution,
which starts from the 5th iteration in Figure 9. In the steady state,
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Figure 10: Mapping of an unfolded stream graph on to 3 processors.

all actors and all DMAs are active. The 4 iterations shown before
the steady state correspond to the prologue of the modulo schedule,
in which some actor executions and DMAs do not happen as they
are predicated by the stage array. The DMA operations are started
before actor executions on the SPEs, thus ensuring overlap with
computation. Due to the overlap, the purported speedup of 2 is
achieved by the schedule.

4. Evaluation
This section presents our evaluation of SGMS. First, a simple
alternative scheme which naı̈vely unfolds the entire stream graph is
presented. Then, various aspects of SGMS are evaluated, including
a comparison to naı̈ve unfolding.

4.1 Naı̈ve Unfolding
This technique is based on a simple observation: when all actors in
a stream program are stateless, the graph can be unfolded P times
(where P is the number of available processors) and each copy of
the graph can be run on one of the processors without incurring
any communication overhead, and thus achieving a speedup of P.
Unfolding [20] refers to the process of making multiple copies of
the stream program and is analogous to unrolling a loop in tra-
ditional compilation. Unfolding is different from fission presented
earlier in the paper. Fissing an actor introduces additional split and
join nodes, and stream program semantics does not allow fissing a
stateful actor. Unfolding the entire stream graph, including stateful
actors, is possible if the additional dependences introduced due to
carried state are honored. Also, when the entire graph is unfolded,
stateless actors that peek more elements than they pop should also
be considered stateful. This is because the extra elements that are
peeked have to be “remembered” until the next invocation.

Figure 10 shows a stream graph unfolded 3 times and mapped
on to 3 processors. The copies of nodes A and E shown as darker
circles are stateful actors in the original graph. In the unfolded ver-
sion, new edges A1 → A2, A2 → A3, and A3 → A1 enforce depen-
dencies due to persistent state in actor A. These edges, referred to
as state data dependence edges, are different from the edges which
denote flow of stream data. State data dependence edges enforce
the fact that the second copy of the unfolded actor can execute only
after the first copy has finished its execution and passed on the val-
ues of state variables.

Unfolding the stream graph and mapping it to processors as
shown in Figure 10 introduces recurrence cycles which is one of
the limiting factors of performance of such a mapping. Consider a
stream graph G = (V, E). Let the stateful nodes in V be denoted
by the set Vs ⊆ V . Suppose t(v) be the execution time of actor
v ∈ V and s(v), the amount of time taken to transfer the state data
associated with v ∈ Vs. s(v) depends on the size of the persistent



state of actor v and the communication latency. We assume that the
size of persistent state is constant and does not grow during run-
time. StreamIt does not allow dynamic memory allocation, and thus
this property holds for all benchmarks in our evaluation. As evident
from Figure 10, for every stateful node, a recurrence cycle of length
n × s(v) + n × t(v) is introduced in the unfolded version, where n
is the unfold factor. The longest cycle in the graph constrains the
maximum throughput achievable for the graph. We adopt the ter-
minology used in traditional instruction centric software pipelin-
ing, and refer to the critical path length as “recurrence constrained
minimum initiation interval”, or RecMII. Thus, the RecMII in the
unfolded graph is

RecMII = max
v∈Vs

(n × s(v) + n × t(v)) (9)

The maximum achievable throughput is also limited by the
resources, in this case the limited number of processors available
to execute the graph. The constraint on throughput due to resources
is referred to as “resource constrained minimum initiation interval”,
or ResMII. In the mapping shown in Figure 10, each processor
executes all the actors in the original stream graph. In addition,
for every stateful actor, the processor performs a DMA to move the
state data. Thus, every processor is equally loaded, and the load is

ResMII =
∑
v∈Vs

s(v) +
∑
v∈V

t(v) (10)

The best throughput for the graph using the above mapping de-
scribed, referred to as the “minimum initiation interval”, or MII, is
simple the maximum of RecMII and ResMII. Suppose the number
of actors in the stream program are much larger than the number of
available processors, i.e., |V | � P. Then, RecMII would be much
smaller than ResMII because ResMII is the sum of work on all ac-
tors, whereas RecMII depends on the work of one actor. As long as
the stream program does not have a large stateful filter that dom-
inates the run time, which is true of our benchmark set, we have
ResMII > RecMII. Given that MII = ResMII, in steady state, the
above mapping on n processors completes n iterations in MII cy-
cles. Thus the speedup achieved by this mapping over one proces-
sor is given by

S peedup =

n ×
∑
v∈V

t(v)∑
v∈Vs

s(v) +
∑
v∈V

t(v)
(11)

The code to run the naı̈ve unfolding schedule on the Cell proces-
sor consists of one thread per SPE. SPEs are ordered to keep track
of which iterations are executed on which SPE. Each SPE executes
all actors in the stream graph in data flow order. Before executing
a stateful actor, an SPE synchronizes with the “previous” SPE, and
gets the values of state variables. The SPE then synchronizes with
the “next” SPE and passes on the values of state variables. This is
done repetitively, so that an SPE executes iterations i, i+n, i+2n...,
where n is the total number of SPEs.

The main differences between naı̈ve unfolding and SGMS can
be summarized as below.

• All DMA transfers of stream data can be overlapped with com-
putation in SGMS where as DMA transfers of state data cannot
be overlapped with any computation as it is present in the criti-
cal path.
• In the naı̈ve unfolding method, each SPE runs all actors in the

original stream graph, whereas in SGMS, an SPE runs only a
subset of the actors. Therefore, the memory footprint of code
for naı̈ve unfolding is much larger than for SGMS.

Benchmark Actors Stateful Peeking State size (bytes)
bitonic 28 2 0 4
channel 54 2 34 252
dct 36 2 0 4
des 33 2 0 4
fft 17 2 0 4
filterbank 68 2 32 508
fmradio 29 2 14 508
tde 28 2 0 4
mpeg2 26 3 0 4
vocoder 96 11 17 112
radar 54 44 0 1032

Table 1: Benchmark characteristics.

• The latency for one iteration of the original stream graph is
equal to the uni-processor execution time of an iteration in the
naı̈ve unfolding method. This is because all actors belonging
to one iteration is executed sequentially by an SPE. In con-
trast, task level parallelism is exploited within an iteration in
SGMS, and therefore, the latency for an iteration could be much
smaller.

Despite the shortcomings compared to SGMS, naı̈ve unfolding is a
simple method which requires no sophisticated compiler analyses,
and is straightforward to implement for the Cell processor. We
compare SGMS with naı̈ve unfolding in the following section.

4.2 Experiments
This section presents the results of the experimental evaluation of
SGMS, and comparison to the naı̈ve unfolding method. A unipro-
cessor schedule was first generated for one SPE, with instrumen-
tations added for measuring running time of each actor. The SPU
“decrementer”, a low overhead timing measurement mechanism, is
used for profiling. The timing profile for each actor is used by the
SGMS scheduler that generates schedules for 2-16 processors. The
scheduler uses the CPLEX mixed integer program solver during the
integrated fission and processor assignment phase. The code gener-
ation phase outputs plain C code that is divided into code that runs
on the Power processor and code that runs on individual SPEs. The
main thread running on Power processor spawns one thread per
SPE. Each SPE thread executes a code pattern that was described
in Section 3.3. IBM’s Cell SDK 2.1 was used to implement the
DMA copies, and the barrier synchronization. The GNU C com-
piler gcc 4.1.1 targeting the SPE was used to compile the programs.
Note that only vectorization that was automatically discovered by
gcc were performed on the actors’ codes. The hardware used for
our evaluation is an IBM QS20 Blade server. It is equipped with 2
Cell BE processors and 1 GB XDRAM.

Benchmark suite. The set of benchmarks available with StreamIt
software version 2.1.1 was used to evaluate the scheduling meth-
ods. Most benchmarks are from the signal processing domain.
bitonic implements the parallel bitonic sorting algorithm. des
is a pipelined version of DES encryption cipher. [6] provides de-
scriptions of the benchmarks. Table 1 shows the details relevant
to our evaluation. Number of stateful actors with explicit state and
peeking actors with implicit state are important to understand the
speedups from naı̈ve unfolding. Typical sizes of states in these
benchmarks are also shown.

SGMS performance. Figure 11 shows the speedups obtained
by SGMS over single processor execution on 2 to 16 processors
for the benchmark suite. SGMS obtains near linear speedup for all
benchmarks, resulting in the geometric mean speedup of 14.7x on
16 processors. The main reasons for near linear speedups are listed
below.
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Figure 12: Comparing naı̈ve unfolding to SGMS.

• The integrated fission and partitioning step fisses enough data
parallel actors and the resulting number of actors is enough to
span all available processors.
• The partitioning assigns actors to processors with maximal load

balance.
• Stage assignment separates data transfers and actors that use the

data into different stages. This ensures that all data transfers are
overlapped with computation.

Note that with perfect load balance and complete overlap of all
communication with computation should always result in a speedup
of N on N processors. However, the observed geometric mean
speedup is only 14.7x on 16 processors. One of the main overheads
in our implementation arises from the barrier synchronization. As
shown in Figure 6, all SPEs do a barrier synchronization at the end
of every iteration of the loop implementing the modulo schedule.
Our implementation of the barrier on the SPEs adds an overhead
of 1 second for every 2 × 106 calls. Depending on the number
iterations the stream graph is executed, barrier synchronization
adds an overhead of up to 3 seconds in some benchmarks. A
notable benchmark is vocoder for which the 16 processor speedup
is only 13x. vocoder has 96 actors in the stream graph. On 16
processors, the partitioning results in over 30 DMA operations
being in flight at the same time, which adds some overhead to
the steady state. SGMS relies on static work estimates during the
partitioning phase. Any deviation from the static estimate during
runtime would change the balance of work across processors and
cause a reduction in speedup. However, this effect is difficult to
quantify.

Comparing naı̈ve unfolding to SGMS.Figure 12 compares the
speedup obtained by SGMS and naı̈ve unfolding on 16 processors.
There are 3 bars per benchmark. The first bar is the speedup ob-
tained by naı̈ve unfolding for the original stream graph. The sec-
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Figure 13: Effect of exposed DMA latency.

ond bar is the speedup obtained by naı̈ve unfolding on the same set
of benchmarks, but with the size of state variables artificially in-
creased by 16x compared to the original implementation. The last
bar the speedup obtained by SGMS for the original stream graph.
Figure 12 has to be correlated with Table 1 for better understand-
ing. For benchmarks that are almost completely stateless, such as
dct, des and mpeg2, naı̈ve unfolding achieves over 15.5x speedup
on 16 processors. This is not surprising as independent iterations
run on different processors without any communication. Note that
each benchmark nominally has 2 stateful actors, which are the in-
put and output actors. These are used for preserving program order.
The small amount of communication needed for these two state-
ful filters adds very little overhead, and thus completely stateless
stream programs achieve close to 16x speedup on 16 processors.
The SGMS method for these programs does not unfold the stream
graph completely, but only fisses enough actors to get an even work
distribution. The selective fissing adds extra splitters and joiners
that add non-zero overhead to the steady state. Also, SGMS uses
a barrier synchronization at the end of each iteration, whereas in
naı̈ve unfolding, the stateful actors perform a point to point syn-
chronization. Because of these two facts, naı̈ve unfolding performs
5-10% better than SGMS for completely stateless stream programs.

For stream programs with many stateful and peeking actors,
such as vocoder, radar, and fmradio, SGMS outperforms naı̈ve
unfolding by up to 20%. The DMA transfer of state data in naı̈ve
unfolding is completely exposed as it is in the critical path. How-
ever, all DMA transfers of stream data are overlapped with compu-
tation in SGMS. The exposed DMA overhead for naı̈ve unfolding
is more pronounced when the state size is artificially increased to
16x the original state size. In this case, SGMS, whose performance
is unaffected by the state size increase, outperforms naı̈ve unfolding
by up to 35%.

Effect of exposed DMA latency. Figure 13 illustrates the effec-
tiveness of computation/communication overlap. For each bench-
mark, a version of the C code for SPEs was generated in which
the data transfer overhead was completely exposed. For this case,
the stage assignment did not separate the DMA operation and the
consumer actor into different stages. Rather, they were put in the
same stage and the consumer SPE stalls until the DMA operation
is completed. The effect of exposed DMA latency is detrimental
for all benchmarks. For channel, filterbank, and radar, which
have high computation to communication ratios, the effect is not
very pronounced and they retain most of their speedups even with
exposed DMA latency. bitonic and des have low computation to
communication ratios, and they suffer up to 25% perfomance loss
when the DMA latencies are exposed.

Comparing ILP partitioning to greedy partitioning. The in-
tegrated fission and processor assignment phase is in part an opti-
mal formulation for bin packing. In addition to deciding how many
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Figure 14: Comparing ILP partitioning to greedy partitioning.

times each actor has to be fissed, this phase also does the assign-
ment with maximal load balancing. Figure 14 compares the optimal
formulation with a greedy heuristic. We only compare the 8 pro-
cessor speedup. This is because the programmer conceived stream
graph already has enough parallelism to span 8 processors as shown
in Figure 3 and the fission part of the formulation does not fiss any
actors. Thus, Figure 14 effectively compares an optimal bin pack-
ing formulation to a greedy strategy. We use the Metis [12] graph
partitioner as our greedy strategy. The original stream graph is par-
titioned into N parts using Metis, where N is the number of pro-
cessors. The same work estimates are used as weights on the nodes
of the graph. Note that this greedy partitioning is similar to the one
used in [6]. In [6], a separate communication stage is introduced
between steady states to shuffle data between banks. However, to
make the comparison fair, the same algorithm for stage assignment
is used in both cases which overlaps all DMA transfers with com-
putation. Figure 14 shows that the quality of graph partition us-
ing a greedy method depends greatly on the structure of the graph.
For example, fft and tde are just linear graphs with no splitters
or joiners. For these cases, the greedy graph partitioner is able to
achieve the same load balance as the optimal partitioner. For highly
parallel graphs like filterbank and vocoder, heuristics perform
up to 35% worse than an optimal formulation. Overall, the optimal
partitioner achieves a geometric mean speedup of 7.6x, whereas the
greedy partitioner achieves 6.7x on 8 processors.

Scaling of ILP formulation.The vocoder benchmark is used
to study how the CPLEX solver run times scales when trying to
partition the graph for 2 to 128 processors. vocoder is the largest
benchmark in the suite, and the solver run times are smaller for all
other benchmarks. The solver run times were under 30 seconds for
up to 16 processors. The time taken for partitioning on 32, 64 and
128 processors were 2, 6, and 16 minutes, respectively on a Intel
Pentium D running at 3.2GHz.

5. Related Work
There is a large body of literature on synchronous dataflow graphs,
on languages to express stream graphs, and methods to exploit
the parallelism expressed in stream graphs. Even though SDF is
a powerful explicitly parallel programming model, its niche has
been in DSP domain for a long time. Early works from the Ptolemy
group [17, 16, 15] has focused on expressing DSP algorithms as
stream graphs. Some of their scheduling techniques [21, 9] have
focused on scheduling stream graphs to multiprocessor systems.
However, they focus on acyclic scheduling and do not evaluate
scheduling to a real architecture.

There has been other programming systems based on the stream
programming paradigm, and each of those systems have compilers
which target multiprocessors. [8] maps StreamC to a multithreaded
processor. This was more of a feasibility study, and the scheduling

was done manually. In [27], the authors map the Brook language
to a multicore processor. They make use of affine partitioning
techniques which are more suitable for parameterized loop based
programs. With StreamIt, the stream graph is completely resolved
at compile time, and a direct scheduling technique like ours is more
effective. Note that any stream programming system in which the
computation can be expressed as an stream graph could utilize our
scheduling method.

There has been a recent spur of research in the domain of com-
piling to the Cell processor. CellSs [1] is a stylized C model for
programming the cell. The computation is expressed as functions
which make all their inputs and outputs explicit in terms of pa-
rameters. Functions can be stringed together to form a data flow
graph. A run time scheduler treats this graph in the same way a
superscalar processor treats operations, and schedules these func-
tions on to the cell SPEs as soon as their inputs are ready. Our work
is distinctly different from theirs in that, we use a static compile
time schedule which does not have run time scheduling overheads.
[13] talks about compiling the Sequoia language to the Cell pro-
cessor. This paper’s focus is more on representing machines with
multiple levels of memories, possibly with disjoint address spaces,
in a reusable way, and a compiler to automatically target such rep-
resentations. Our work focuses more on the actual scheduler, and
assumes a fixed machine. [2] talks about parallelizing a specific ap-
plication at multi levels of granularity on the Cell processor. This
is more of an experiences paper, and the parallelization was done
manually.

The problem scheduling coarse grain actors to processors on
a multicore with distributed memory is conceptually similar to
scheduling operations to the function units in a multicluster VLIW
processor [22, 24]. However, stream graph exposes more optimiza-
tion opportunities such as the ability to fiss actors. Also, the con-
straints of limited register space is not an issue on multicores as
there is ample memory available to hold the intermediate buffers.

6. Conclusion
The widespread use of multicore processors is pushing explicitly
parallel high-level programming models to the forefront. Stream
programming is a promising approach as it naturally expresses par-
allelism in applications from a wide variety of domains. In this
paper, we develop methods to automatically map a stream pro-
gram on to the Cell processor. One of the main issues of getting
an even distribution of computation across processors is dealt in
an integrated fission and partitioning step that breaks up computa-
tion units just enough to span the available processors. The issue
of communication overhead is overcome by an intelligent stage as-
signment, which overlaps all communication with computation. A
detailed evaluation of our method on real hardware shows consis-
tent speedup for a wide range of benchmarks. Stream graph modulo
scheduling provides a geometric mean speedup of 14.7x over sin-
gle processor execution across the StreamIt benchmark suite. We
compare our method to naı̈ve unfolding that unfolds all actors as
many times as the number of processors. Even though naı̈ve un-
folding gets speedups similar to SGMS for completely stateless
programs, SGMS demonstrates wider applicability by offering con-
sistent speedups on both stateless and stateful programs. Finally,
the integrated fission and partitioning phase is largely independent
of the underlying architecture, and can be used when compiling to
different multicore platforms.
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