
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 28(8), 1–28 (July 1998)

Practical Improvements to the Construction and

Destruction of Static Single Assignment Form

Preston Briggs

Tera Computer Company, 2815 Eastlake Ave. East, Seattle, Washington 98102

preston@tera.com

Keith D. Cooper

Rice University, 6100 S. Main – MS 132, Houston, Texas 77005

keith@rice.edu

Timothy J. Harvey

Rice University, 6100 S. Main – MS 132, Houston, Texas 77005

harv@rice.edu

L. Taylor Simpson

Trilogy Development Group, 6034 W. Courtyard Dr., Austin, TX 78730

Taylor Simpson@trilogy.com

SUMMARY

Static single assignment (SSA) form is a program representation that is becoming in-

creasingly popular for compiler-based code optimization. In this paper, we address three

problems that have arisen in our use of SSA form. Two are variations to the SSA con-

struction algorithms presented by Cytron et al.1 The first variation is a version of SSA

CCC 0038–0644/98/080001–28 Received May 2, 1997

c©1998 by John Wiley & Sons, Ltd. Revised January 12, 1998

2 BRIGGS, COOPER, HARVEY, AND SIMPSON

form that we call “semi-pruned” SSA. It offers an attractive trade-off between the cost of

global data-flow analysis required to build “pruned” SSA and the large number of unused

φ-functions found in minimal SSA. The second variation speeds up the program renam-

ing process by efficiently manipulating the stacks of names used during renaming. Our

improvement reduces the number of pushes performed, in addition to more efficiently

locating the stacks that should be popped.

To convert code in SSA form back into an executable form, the compiler must use

an algorithm that replaces φ-functions with appropriately-placed copy instructions. The

algorithm given by Cytron et al. for inserting copies produces incorrect results in some

situations; particularly in cases like instruction scheduling, where the compiler may not

be able to split “critical edges,” and in the aftermath of optimizations that aggressively

rewrite the name space, like some forms of global value numbering.2 We present a new

algorithm for inserting copy instructions to replace φ-functions. It fixes the problems

that we have encountered with the original copy insertion algorithm.

We present experimental results that demonstrate the effectiveness of the first two

improvements not only during the construction of SSA form, but also in the time saved

by subsequent optimization passes that use a smaller representation of the program.

KEY WORDS Compilers, Code Optimization, Data-Flow Analysis, Static Single Assignment Form, Lost-

Copy Problem, Swap Problem

INTRODUCTION

Static single assignment (SSA) form is an intermediate representation that compil-

ers use to facilitate program analysis and optimization.1, 3 SSA form can be viewed

as a sparse representation for the information contained in classic use-definition and

definition-use chains.4 In many applications, it has become the primary program repre-

sentation. SSA form has two principal properties that provide an advantage over prior

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 3

x← . . . x0 ← . . .

y← x + x y0 ← x0 + x0

x← x+ y x1 ← x0 + y0
z ← x+ y z0 ← x1 + y0

Before After

Figure 1. Straight-line code and its conversion to SSA form

representations.

First, SSA form imposes a strict discipline on the name space used to represent val-

ues in the computation. Each reference to a name corresponds to the value produced

at precisely one definition point. This is the single assignment property. Second, it

identifies the points in the computation where values from different control-flow paths

merge. At a merge point, several different SSA names, corresponding to different defi-

nitions of the same original name, can flow together. To ensure the single-assignment

property, the construction inserts a new definition at the merge point; its right hand

side is a pseudo-function called a φ-function that represents the merge of multiple SSA

names.

These properties simplify the building of data-flow analyses such as definition-use and

use-definition chains. Essentially, SSA form encodes the information about definitions

and uses into its name space and provides a sparse representation of the information

chains. The result is a powerful framework for the analysis and optimization of code

in a compiler.5-8

The original paper on SSA form presented an algorithm for constructing SSA form

from the code for a procedure; this version of SSA is called “minimal” SSA.1, 3 A sub-

sequent paper presented a more complex and expensive algorithm that produces a

4 BRIGGS, COOPER, HARVEY, AND SIMPSON

smaller version of SSA, called “pruned” SSA.9 The SSA constructed by the two algo-

rithms differs in the size of its name space and the number of φ-functions that must

be inserted.

The “minimal” construction produces a form dubbed “minimal” SSA. It inserts a

φ-function and definition at every point where a control-flow merge brings together

two SSA names for a single original name. It can insert a φ-function to merge two

values that are never used after the merge – in data-flow analysis terminology, two

values that are not live.

The “pruned” construction produces a form dubbed “pruned” SSA. The pruned

construction uses global data-flow analysis to decide where values are live. It only

inserts φ-function at those merge points where the analysis indicates that the value is

potentially live. This can drastically reduce the number of φ-functions and, thus, the

number of SSA names.

The two algorithms differ in their time and space complexity. The minimal algorithm

avoids computing live information, so it is potentially less expensive than the pruned

algorithm. The consequence of algorithmic speed is a larger SSA form.

Our experience with using SSA form in a compiler suggests that neither minimal

form nor pruned form is ideal for all purposes. Instead, the compiler writer will want

to construct different “flavors” of SSA, depending on the details of how the SSA form

will be used. In our compiler, we routinely translate into SSA form at the beginning

of a transformation and back to our simple, linear external represenation at its end.

We have found that different applications of SSA call for different flavors; at different

times, our compiler builds both minimal and pruned SSA, along with a third flavor

that we call semi-pruned. The ideas in this paper apply to all three flavors of SSA.

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 5

This paper presents three algorithmic improvements to the current art of building

and using SSA form. The first creates an SSA form called semi-pruned form that has

fewer nodes than the minimal form without the expense of solving data-flow equations

to determine which values are live. The second speeds up the renaming process through

an algorithmic improvement. The third and final improvement is an algorithmic fix

to a problem that arises when translating SSA form back into executable code. The

original algorithm for this translation generates incorrect results when applied to the

SSA that can result from certain aggressive code transformations. Our improved algo-

rithm corrects these problems. We have implemented all three improvements in our

laboratory compiler. The paper presents measurements that demonstrate the impact

of the first two improvements. The third improvement is needed to ensure correctness

in the face of aggressive SSA-based program transformations.

BACKGROUND

Many techniques for the analysis and optimization of compiled code rely on the con-

struction of information chains, either from uses to definitions or from definitions to

uses.10 Modern compilers often use SSA form as a sparse alternative to classic informa-

tion chains. Informally, the code for a procedure is said to be in SSA form if it meets

two criteria:

1. each name has exactly one definition point, and

2. each use refers to exactly one name.

The first criterion creates a correspondence between names and definition points. The

second criterion forces the insertion of new definitions at points in the code where

multiple values, defined along different paths, come together.

6 BRIGGS, COOPER, HARVEY, AND SIMPSON

To satisfy the first criterion, the compiler must rewrite the code by inventing new

names for each definition and substituting these new names for subsequent uses of the

original names. To build SSA form from a straight-line fragment of code is trivial; each

time a name gets defined, the compiler invents a new name that it then substitutes

into subsequent references. At each re-definition of a name, the compiler uses the next

new name and begins substituting that name. For example, consider the code in the

left column of Figure 1. Conversion to SSA form produces the code in the right column.

The presence of control flow complicates both the renaming process and the inter-

pretation of the resulting code. If a name in the original code is defined along two

converging paths, the SSA form of the code has multiple names when it reaches a ref-

erence. To solve this problem, the construction introduces a new definition point at

the merge point in the control-flow graph (CFG). The definition uses a pseudo func-

tion, called a φ-function. The arguments of the φ-function are the names flowing into

the convergence, and the φ-function defines a single, new name. Subsequent uses of

the original name will be replaced with the new name defined by the φ-function. This

ensures the second criterion stated earlier: each use refers to exactly one name. To

understand the impact of φ-functions, consider the code fragment shown in Figure 2.

Two different definitions of x reach the use. The construction inserts a φ-function

for x at the join point; it selects from its arguments based on the path that executes

x← . . . x← . . .

← x� -
?

x1 ← . . . x2 ← . . .

x3 ← φ(x1, x2)← x3

� -
?

Before After

Figure 2. Conversion to SSA form in the presence of control flow

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 7

at run-time.

Conceptually, the SSA construction involves two steps. The first step decides where

φ-functions are needed. At each merge point in the CFG, it must consider, for each

value, whether or not to insert a φ-function. The second step systematically renames

all the values to correspond to their definition points. For a specific definition, this

involves rewriting the left-hand side of the defining statement and the right-hand side

of every reference to the value. At a merge point, the value may occur as an argument

to a φ-function. When this happens, the name propagates no further along that path.

(Subsequent uses refer to the name defined by the φ-function.)

The simplest SSA conversion algorithm would insert a φ-function at each join point

for each original name referenced in the procedure. Renaming would be done in two

reverse-postorder passes; the first pass ignores back edges and the second pass rewrites

only names that correspond to values passed along back edges. The resulting SSA

form, which might be termed “maximal” SSA, might be huge; it may have many

more φ-functions than necessary. However, it would conform to the two criteria. This

algorithm is inefficient, but it captures the essence of the SSA construction process:

decide where to place φ-functions, then rewrite the name space. The difference between

this algorithm and those that follow is optimization; all the other algorithms produce

potentially fewer φ-functions and, consequently, smaller name spaces.

Building Minimal SSA

Figure 3 shows the basic algorithm for constructing minimal SSA form from a CFG

representation of the routine. The algorithm has two basic steps: determine locations

for φ-functions and rename variables. The scheme for φ-function placement uses in-

8 BRIGGS, COOPER, HARVEY, AND SIMPSON

BUILD MINIMAL SSA()

/* STEP 1: Determine locations for φ-nodes */

Calculate the dominator tree and dominance frontiers

/* STEP 2: Place φ-functions */

For each variable, v

A(v)← {blocks containing an assignment to v}
Place a φ-node for v in the iterated dominance frontier of A(v)

/* STEP 3: Rename each variable, replacing v, with the appropriate vi */

For each variable, v

Counters[v]← 0

Stacks[v]← emptystack()

SEARCH(start)

/* Recursively walk the dominator tree, renaming variables */

SEARCH(block)

For each φ-node, v← φ(. . .), in block

i← Counters[v]

Replace v by vi
push(i,Stacks[v])

Counters[v]← i+ 1

For each instruction, v← x op y, in block

Replace x with xi, where i = top(Stacks[x])

Replace y with yi, where i = top(Stacks[y])

i← Counters[v]

Replace v by vi
Push i onto Stacks[v]

Counters[v]← i+ 1

For each successor, s, of block

j ← whichPred(s,block)

For each φ-node, p, in s

v ← jth operand of p

Replace v with vi, where i = top(Stacks[v])

For each child, c, of block in the dominator tree

SEARCH(c)

For each instruction, v← x op y, or φ-node, v ← φ(. . .), in block

pop(Stacks[v])

Figure 3. Algorithm for building minimal SSA form

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 9

formation about dominator relationships in the CFG to determine where φ-functions

are needed. The renaming step uses a preorder walk over the dominator tree and an

array of stacks to introduce new names and track their appropriate scopes.

The first step in placing φ-functions builds a dominator tree for the CFG and calcu-

lates dominance frontiers for the nodes in the CFG. The dominance frontier of node X

is the set of nodes Y such that X dominates a predecessor of Y , but X does not strictly

dominate Y . Intuitively, the dominance frontier of X is the set of nodes that are one

edge beyond the region that X dominates. This is precisely the set of points where

φ-functions must be inserted, since it includes only blocks that can be reached along

different control-flow paths. To improve the efficiency of φ-function placement, both

Cytron and Ferrante and Sreedhar and Gao have proposed more efficient schemes.11, 12

The improvements that we propose in the following sections are also effective in these

frameworks.

After φ-functions have been inserted, variables must be renamed to create the single-

assignment property. This is accomplished in a single recursive walk of the dominator

tree, shown in the procedure SEARCH in Figure 3. For each name in the original code,

SEARCH maintains two data structures. The first, Counters[v], contains the subscript

that will be assigned to the next definition of v. The second, Stacks[v], holds the current

subscript for v. At each definition of v, SEARCH renames v with the subscript from

Counters[v], pushes that value onto Stacks[v], and increments Counters[v]. During the

first step, it rewrites variable names, incrementing the various counters and pushing

new names onto the appropriate stacks. Next, it rewrites φ-function parameters in

any successor blocks in the CFG so that the name inherited from the current block has

the current subscript. (It uses the whichPred function to determine which φ-function

10 BRIGGS, COOPER, HARVEY, AND SIMPSON

parameter in the successor corresponds to the current block.) To continue the search,

it recurs on each child in the dominator tree. On return from the recursion, it processes

the current block again, to pop from each stack any subscripts added while processing

the block.

Building Pruned SSA

Minimal SSA form relies entirely on dominator information to determine where to

insert φ-functions. The dominance frontier correctly captures the potential flow of

values, but ignores the data-flow facts themselves – in particular, knowledge about the

lifetimes of values gleaned from analyzing their definitions and uses. Because of this,

the minimal SSA construction will insert a φ-function for v at a join point where v is

not live (see Figure 5).

Choi et al. proposed another variation on SSA that they called pruned SSA.9 To build

pruned SSA, the compiler first performs “live analysis” on the routine to define the set

of values that are live on entry to the block – that is, values that may be referenced

at some later point.13 Many algorithms exist for computing live information.4

The actual construction of pruned SSA is quite similar to the construction of minimal

SSA. In Figure 3, we need only add a prepass that computes live information and

modify the first step where φ-functions are inserted. The minimal SSA construction

inserts a φ-function for v in every node in the iterated dominance frontier of the

set of blocks containing an assignment to v (denoted DF+(A(v))). The pruned SSA

construction changes this to insert a φ-function for v in every node n ∈ DF+(A(v)),

where v ∈ live in(n). These changes can drastically reduce the number of φ-functions.

The pruned-SSA construction algorithm may cost more than the minimal SSA con-

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 11

struction. Not only does inserting φ-functions require two membership tests rather

than one, but it must also compute the live sets. Although linear-time or near-linear

time algorithms exist for this problem14-16 (and, thus, the asymptotic time complexity

of SSA construction does not change), it does raise the constant factor substantially. To

compute live sets, the analyzer must make a pass over each block to build sets con-

taining the initial information. Then, in a second step, it revisits each block to compute

the actual live sets.∗ These operations consume a nontrivial amount of time.

Equally troubling, building live analysis increases the space requirements for building

SSA, since each block has a number of large sets associated with it. These larger memory

requirements can directly degrade performance.

One final assumption

Throughout this paper, we assume that names are used in a type-consistent fashion. A

name in the original code cannot be used to hold values that have different types, such

as an integer along one path and a float along another. This is true in most modern

programming languages. It becomes somewhat trickier when the input program is at

a very-low level. For example, building SSA on code produced by a register allocator

is problematic if a single register can hold either an integer or a floating-point value.

The construction algorithms implicitly assume that they can determine the type of a

φ-function from its inputs. If its inputs have different types, the assumption is violated.
∗ The number of “visits” to each block will depend on the specific data-flow analysis algorithm used and on

the detailed structure of the routine being analyzed.

12 BRIGGS, COOPER, HARVEY, AND SIMPSON

USING FEWER φ-FUNCTIONS — SEMI-PRUNED FORM

Cytron et al. and Choi et al. described different flavors of SSA form that vary in the

number of φ-functions inserted. Minimal SSA form places φ-functions by looking only

at the dominance frontier information without regard to liveness. In other words, it is

possible that a φ-function will be inserted for a name that is not subsequently used.

Pruned SSA form relies on live analysis to ensure that no such dead φ-functions are

inserted. If we are building pruned SSA form, we only insert a φ-function for a variable v

at the beginning of a block if v is live on entry to that block. Since the pruned form

relies on additional analysis, it may be slower to build. However, the time spent on

analysis may be recovered by inserting fewer φ-functions.

Certain applications require specific flavors of SSA. Cytron et al. argued that value

numbering would benefit from minimal SSA form – the extra φ-functions provide more

opportunities to identify congruences.1 On the other hand, if SSA form is used to

support finding live ranges during register allocation, then the pruned form should be

used – φ-functions represent merging of live ranges, and unnecessary merging detracts

non-locals← ∅
For each block B

killed← ∅
For each instruction v ← x op y in B

if x 6∈ killed then
non-locals← non-locals ∪ {x}

if y 6∈ killed then
non-locals← non-locals ∪ {y}

killed← killed∪ {v}

Figure 4. Algorithm for finding non-local names

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 13

x← . . .
← x

y ← . . .
z ← . . .
?
← y

x← . . .
← x

y ← . . .
z ← . . .
?

y ← . . .
z ← . . .
?

← y

← z�-
�

Original Code

x1 ← . . .
← x1

y1 ← . . .
z1 ← . . .

?
← y1

x2 ← . . .
← x2

y2 ← . . .
z2 ← . . .

?
← y2

�-
�x3 ← φ(x1, x2)
y3 ← φ(y1, y2)
z3 ← φ(z1, z2)
← z3

x1 ← . . .
← x1

y1 ← . . .
z1 ← . . .

?
← y1

x2 ← . . .
← x2

y2 ← . . .
z2 ← . . .

?
← y2

�-
�y3 ← φ(y1, y2)
z3 ← φ(z1, z2)

← z3

x1 ← . . .
← x1

y1 ← . . .
z1 ← . . .

?
← y1

x2 ← . . .
← x2

y2 ← . . .
z2 ← . . .

?
← y2

�-
�z3 ← φ(z1, z2)
← z3

Minimal SSA Semi-pruned SSA Pruned SSA

Figure 5. Three flavors of SSA form

from the quality of allocation.17 Other applications, such as constant propagation8 and

dead code elimination,4 do not require a specific flavor of SSA. In these applications,

extra φ-functions do not detract from the quality of analysis; they simply waste space

and time.

We have developed a third flavor of SSA that we call semi-pruned SSA form. The

speed and space advantage of this form over the other two relies on the observation

that many names in a routine are defined and used wholly within a single basic block.

For example, the compiler typically generates temporary names to hold intermediate

steps in any non-trivial computation; these compiler-generated names often have short

lifetimes. Semi-pruned SSA capitalizes on this observation by computing the set of

names that are live on entry to some basic block in the program. We call these “non-

14 BRIGGS, COOPER, HARVEY, AND SIMPSON

local” names. The construction only computes A(v) for non-local names. The number

of resultant φ-functions will lie between that of the minimal and pruned forms, but

the computation of non-local names is much cheaper to compute than the full-blown

live analysis. Therefore, the semi-pruned form represents a compromise between the

time required to perform live analysis and the reduction in the number of φ-functions

that it allows.

To discover non-local names, the construction uses the algorithm shown in Figure 4.

The compiler makes a simple forward pass over each basic block. When it discovers an

operand that has not already been defined within the block (the killed set), it must

be a non-local name. Notice how much simpler this is than performing the complete

live analysis required for the pruned SSA construction. Computing non-local names

requires just two sets for the entire procedure, non-local and killed – much less space

than the three sets per block required for a full live analysis. The algorithm makes just

one pass over each block; this avoids the overhead for either iteration or elimination

in a full data-flow analysis. The non-local set is initialized once; the killed set is reset

for each block. In our implementations, we use the SparseSet data structure, so that

the time to perform these actions is constant.18 The time and space requirements for

building non-local are, therefore, quite small.

Figure 5 illustrates the differences between the three flavors of SSA. In the original

code, we define three variables, x, y, and z. The three graphs at the the bottom of

the figure compare the φ-functions inserted by the different three flavors of SSA. The

minimal SSA form contains φ-functions for all three variables. Clearly, the φ-functions

for x and y are unnecessary; these variables are never used again. The semi-pruned

form does not contain a φ-function for x because it is not live across any basic-block

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 15

boundary. However, we still insert a φ-function for y, because it is live across some

block boundary, and that is the limit of the analysis used. The pruned SSA form

contains a φ-function for z only. For pruned form, we performed the complete analysis

necessary to show that both x and y are never used again.

Each of the above three flavors has different uses. Cytron et al. show an example

where global value numbering may benefit from an extra, dead φ-function that minimal

would insert.1 However, these dead φ-functions constitute a waste of both time and

space for optimizations like constant propagation and dead-code elimination, which

can operate on any flavor. Other applications, such as determining live ranges during

register allocation, depend on the precision of the pruned form and so must bear the

extra cost needed to perform the required live analysis.19, 20

Experimental Results

We compared the various flavors of SSA using routines from the SPEC benchmark

suite.21 All tests were run on a two-processor Sparc10 model 512 running at 50 MHz

with 1 MB cache and 115 MB of memory. The times represent the average of 10 runs

on a lightly loaded machine. We used iterative data-flow analysis to determine the live-

ness information required for pruned SSA.14 Table I shows the number of φ-functions

and the time required to build the three flavors for each routine (including the time

required to perform any necessary data-flow analysis). The number of φ-functions re-

quired by semi-pruned form always falls between that of minimal and pruned, the time

required to build semi-pruned form is almost always shorter than the time required

for either minimal or pruned. This is due to the effective compromise between the

fast analysis and a reduction in the number of φ-functions inserted. The exception

16 BRIGGS, COOPER, HARVEY, AND SIMPSON

Number of φ-nodes Time to build SSA (sec) Value numbering (sec)

Routine Minimal Semi Pruned Minimal Semi Pruned Minimal Semi Pruned

twldrv 73778 11989 9886 1.265 0.332 0.427 8.545 4.890 4.727

deseco 8610 2216 1842 0.231 0.172 0.232 1.972 1.537 1.524

ddeflu 5852 1560 1222 0.116 0.070 0.091 0.803 0.644 0.636

iniset 5364 1080 462 0.127 0.101 0.157 0.343 0.201 0.173

debflu 4715 1748 1542 0.098 0.069 0.087 0.856 0.750 0.738

paroi 3597 767 632 0.079 0.060 0.077 0.352 0.229 0.210

efill 3170 357 74 0.047 0.020 0.025 0.128 0.035 0.030

inisla 2722 267 141 0.048 0.025 0.034 0.134 0.057 0.048

tomcatv 2699 365 145 0.051 0.033 0.042 0.159 0.056 0.060

pastem 2584 374 62 0.055 0.036 0.049 0.183 0.114 0.100

prophy 2021 436 401 0.054 0.042 0.054 0.363 0.296 0.295

inithx 1967 267 85 0.042 0.033 0.044 0.207 0.151 0.148

debico 1880 171 112 0.045 0.030 0.039 0.132 0.075 0.079

repvid 1094 141 45 0.029 0.020 0.031 0.059 0.034 0.029

bilan 1080 70 34 0.028 0.020 0.028 0.097 0.068 0.070

dyeh 857 79 40 0.017 0.011 0.017 0.047 0.030 0.029

sgemm 809 341 279 0.018 0.013 0.013 0.061 0.046 0.037

orgpar 803 143 98 0.027 0.017 0.024 0.080 0.053 0.055

integr 799 89 34 0.016 0.011 0.012 0.040 0.018 0.019

gamgen 761 85 39 0.015 0.008 0.010 0.047 0.022 0.018

heat 667 50 22 0.024 0.018 0.020 0.044 0.030 0.025

fmtgen 653 127 33 0.016 0.007 0.010 0.030 0.017 0.011

inideb 645 148 131 0.015 0.016 0.015 0.065 0.045 0.045

yeh 624 154 122 0.024 0.019 0.024 0.117 0.094 0.090

drepvi 617 76 52 0.024 0.021 0.030 0.060 0.043 0.034

cardeb 601 96 54 0.017 0.013 0.013 0.039 0.021 0.019

ihbtr 597 88 31 0.017 0.011 0.014 0.033 0.019 0.014

bilsla 569 67 38 0.015 0.008 0.011 0.031 0.018 0.013

drigl 557 169 121 0.012 0.010 0.011 0.041 0.030 0.029

saturr 541 27 25 0.024 0.023 0.028 0.074 0.054 0.052

dcoera 334 36 33 0.009 0.007 0.008 0.031 0.022 0.023

sgemv 327 89 61 0.006 0.006 0.008 0.017 0.009 0.012

lissag 311 42 15 0.009 0.006 0.010 0.027 0.017 0.016

colbur 310 15 9 0.014 0.010 0.014 0.034 0.022 0.022

fmtset 275 77 61 0.009 0.009 0.012 0.025 0.019 0.016

sortie 241 19 17 0.009 0.009 0.015 0.027 0.014 0.015

coeray 238 30 26 0.005 0.006 0.004 0.015 0.012 0.014

inter 132 14 7 0.002 0.001 0.006 0.007 0.005 0.003

saxpy 88 12 4 0.004 0.000 0.002 0.003 0.002 0.002

fpppp 0 0 0 0.18 0.22 0.27 0.71 0.76 0.73

Table I. Comparison of three flavors of SSA

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 17

Stacks

v - i+3 - i+2 - i+1 -
?

i - · · · 0

Figure 6. Stacks after variable v is defined three times

is fpppp; this routine is composed of one basic block. The semi-pruned and pruned

algorithms performed some analysis to determine that no φ-functions were needed,

but the minimal algorithm proceeded directly to the φ-function-insertion step, where

no φ-functions were inserted.

We also compared the time required for global value numbering (after the code

is in SSA form) with each flavor of SSA.5 The value numbering algorithm requires

O(E logN) time, where N and E are the number of nodes and edges in the SSA

graph.∗ The experiments confirm that reducing the number of φ-functions can improve

the execution time of this analysis.

EFFICIENT STACK MANIPULATION

In the second step of the SSA construction (see Figure 3), the compiler renumbers all

the names to ensure that each assignment (including φ-functions) defines a unique

name. The renumbering is handled by a recursive preorder walk over the dominator

tree.

We can summarize the renaming process as follows: we declare an array of stacks

∗ In the SSA graph, each node represents an assignment and edges flow from uses to definitions.

18 BRIGGS, COOPER, HARVEY, AND SIMPSON

- · · ·

- · · ·

-

-

�
� -

�

pushedList

� -

Stacks

Figure 7. The Stacks data structure, showing the connection between nodes in each stack

(indexed by the original name) to hold the subscripts used to replace each original

name, and we use the topmost name on the stack to annotate each use of that name.

We push a new subscript onto a name’s stack each time we encounter a definition of

that name.

When we have finished processing a block (and its descendants in the dominator

tree), we must restore the stacks to the same state as when we began processing the

block. The method suggested by Cytron et al. is to iterate a second time through

the current block’s φ-functions and instructions, this time popping a name from the

appropriate stack for each definition. However, pushing a node for each definition in a

block is wasteful. Consider a basic block that defines a variable v three times. Figure 6

shows the stack for v after processing the definitions in the block. The vertical arrow

indicates the point where we must restore the stack. Notice that once the i+2 node gets

pushed, the i+ 1 node can never be accessed again, because any subsequent reference

to v will use the name in the i+2 node and restoring the state of the stack will remove

the i+1 node. Similarly, after the i+3 node gets pushed, the i+2 node will never be

accessed again. We can reduce the number of nodes allocated if we overwrite the i+1

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 19

node with i+2 and then with i+3. However, we cannot overwrite the i node, because

it must remain after we have restored the state of the stack. Therefore, we push a node

onto the stack for v at the first definition of v in the block, but subsequent definitions

of v in the same block will simply overwrite the node. To accomplish this, we record

which variables have already had a node pushed for the current block. If a variable

is redefined inside the block, we overwrite its top-of-stack instead of pushing a new

node.

Since we are pushing at most one node for each variable when we process the def-

initions in a block, we can no longer restore the state of the stack by iterating over

the operations in the block and popping a node for each definition. For each block, we

maintain a list of the variables with a node that has been pushed. Nodes are added to

the list as they are pushed (i.e., after the first definition in the block). Thus, restor-

ing the state of the stacks requires popping the nodes in the list. This data structure

is shown in Figure 7. The net result is reminiscent of schemes for updating lexically

scoped symbol tables on exit from a scope.

In summary, we must ensure that at most one node per variable gets pushed per

block, and we use a list to guide the popping of the stacks. This improvement not

only keeps us from allocating superfluous nodes, but it also speeds up the popping

phase at the end. The approach used by Cytron et al. requires a second pass through

the instructions in the block, popping a node from each definition’s stack as it is

encountered. With this new method, we can simply iterate down the list of elements,

popping just one node from each stack.

20 BRIGGS, COOPER, HARVEY, AND SIMPSON

Experimental Results

We compared the two stack manipulation methods experimentally. The earlier ex-

perimental results section describes the details of the experiment. Table II compares

the number of pushes required by each stack manipulation method. The old method

performs a push for each definition in the routine, but the new method performs at

most one push per variable per block. The number of pushes (and, thus, the amount

of memory required) is significantly reduced when the new method is used. We also

compared the total time required to build semi-pruned form using each of the meth-

ods. For large routines, a significant proportion of the time is often saved; however,

we note that none of these times are very large, so that further exploration in this

area would be fruitless. (Note that our implementation uses an Arena-style memory

allocator, so allocation costs are minimal.22)

REPLACING φ-FUNCTIONS WITH COPIES

After optimization, the compiler must translate the SSA form of a routine back into

an executable form. We know of no computer that has a hardware φ-function; thus,

the compiler must translate the semantics of the φ-function into commonly imple-

mented instructions. Cytron et al. present a simple algorithm for accomplishing this

translation.

To replace a φ-function in block b, this algorithm inserts a copy operation into each

of b’s predecessors. Since the meaning of a φ-function is a mapping of all of the incoming

values to a single name, n, placing a copy to n at the end of each predecessor block

is equivalent. The copy moves the value corresponding to the appropriate φ-function

parameter into n. To insert copies for all φ-functions, the compiler must iterate through

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 21

Number of pushes Build SSA (sec)

Routine Old method New method Old method New method

twldrv 27295 19569 0.341 0.340

fpppp 19963 5641 0.260 0.222

deseco 14121 8625 0.173 0.171

iniset 6608 5298 0.103 0.096

ddeflu 6393 4651 0.079 0.073

debflu 6389 4225 0.071 0.075

paroi 4881 2864 0.058 0.060

prophy 3609 1947 0.040 0.040

pastem 2755 2060 0.043 0.039

inithx 2686 1706 0.037 0.032

debico 2667 1348 0.031 0.030

tomcatv 2633 1490 0.035 0.033

inisla 2373 1308 0.031 0.026

supp 2037 1734 0.023 0.022

bilan 1994 878 0.024 0.020

subb 1733 1311 0.021 0.020

saturr 1689 1522 0.021 0.023

drepvi 1597 1109 0.023 0.022

yeh 1547 1157 0.023 0.024

orgpar 1499 1053 0.017 0.020

repvid 1449 1010 0.021 0.020

efill 1439 1047 0.018 0.020

inideb 1242 729 0.014 0.016

heat 944 845 0.012 0.014

sgemm 941 681 0.014 0.009

dyeh 941 794 0.014 0.011

cardeb 893 643 0.012 0.012

gamgen 849 417 0.011 0.010

drigl 805 648 0.011 0.011

integr 804 499 0.014 0.009

bilsla 750 339 0.010 0.009

ihbtr 732 605 0.014 0.013

lissag 724 292 0.008 0.007

colbur 716 538 0.010 0.011

fmtset 668 447 0.011 0.009

fmtgen 635 548 0.011 0.013

sortie 595 503 0.010 0.010

dcoera 556 455 0.007 0.006

Table II. Comparison of stack handling methods

22 BRIGGS, COOPER, HARVEY, AND SIMPSON

the blocks in the CFG and insert a copy for each parameter of each φ-function in the

predecessor of the block containing the φ-function.

The example in Figure 8 illustrates this process. The left-hand side of the figure

shows a fragment of the CFG with the code in SSA form. The right-hand side of the

figure shows the same fragment with copies inserted for the φ-function. Note that the

insertion of copy operations has made the φ-function obsolete, so we can discard it.

This translation can insert a large number of copies; in our compiler, we rely on the

coalescing phase of a graph-coloring register allocator to remove as many of these as

possible.19, 20

The algorithm given by Cytron et al. works well for the SSA-form produced by trans-

formations that do not radically change the name space. Examples include constant

propagation8 and dead code elimination.4 However, transformations that radically al-

ter the name space can cause the naive copy insertion algorithm to produce incorrect

code. For example, aggressive value numbering5, 7 benefits from using SSA form, but

can create circumstances that cause the naive algorithm to fail. Copy folding exhibits

similar problems. These problems arise from interactions among names along different

paths in the CFG. To explain the problem, we first present some necessary background

material. Next, we describe two examples that cause problems for the naive algo-

rithm. We use each example to motivate and illustrate part of our new copy insertion

algorithm. In the final subsection, we discuss the generality of our new technique.

Background

The problems that break the naive copy insertion algorithm are subtle. They involve

both transformations applied to the code while it is in SSA form, and properties of the

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 23

x0 ← . . . x1 ← . . .

x2 ← φ(x0, x1)� -
?

x0 ← . . .
x2 ← x0

x1 ← . . .
x2 ← x1

� -
?

Before After

Figure 8. The impact of inserting copies for φ-functions

control-flow graph. This section describes copy folding, a form of subsumption that is

particularly well matched to SSA form, and introduces the notion of a critical edge, a

feature of some CFGs that can complicate copy insertion.

Copy Folding

Folding copies reduces the size of the name space and simplifies the SSA graph. During

the renaming phase of the SSA construction, the compiler can perform copy folding

in a particularly simple and elegant manner, and this can speed both analysis and

optimization. To perform copy folding, the compiler interprets a copy as an operation

on the name stacks; at a copy vi ← xj, it pushes the name xj onto the name stack

for v. This ensures that the compiler rewrites subsequent uses of vi to refer directly

to xj .

Critical Edges

A critical edge is defined as an edge between a block with multiple successors and a

block with multiple predecessors (i.e., (i, j) is a critical edge if and only if |succ(i)| > 1

and |pred(j)| > 1). On a critical edge, the copy insertion described above breaks down.

The copy cannot be inserted into the edge’s source (the predecessor), because it would

execute along paths not leading to the φ-function. Similarly, it cannot be inserted in

24 BRIGGS, COOPER, HARVEY, AND SIMPSON

A

B

�����
�����

H
H
HHj

A
�����
Z
ZZ~

B

�����
Z
ZZ~

Before Splitting After Splitting

Figure 9. Splitting a critical edge

the edge’s sink (the successor), because it would destroy values coming from other

predecessors.

This problem can be addressed by splitting the critical edge – inserting an empty

basic block along the edge. Figure 9 shows a critical edge and how it could be split.

In the presence of certain control-flow operations (e.g., a jump to a location that

cannot be determined at compile time), it is not always possible to split critical edges.

Similarly, in the late stages of compilation, particularly instruction scheduling, splitting

the edge may be both undesirable and impractical. Critical edges are important for

code placement algorithms, because their presence can restrict the movement of code

and because they can also cause naming conflicts when replacing φ-functions with

copies.

The “Lost-Copy” Problem

The lost-copy problem can only occur when copies are folded and one or more critical

back-edges are present. It requires care not only in the method of inserting the copies

into a block, but also the order in which we iterate through the blocks.

Consider the code on the left side of Figure 10. At each iteration, the loop increments

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 25

x← 1

?
y ← x

x← x + 1
if p then

?
RTN y

�
��

x1 ← 1

?
x2 ← φ(x1, x3)
x3 = x2 + 1
if p then

?
RTN x2

�
��

x1 ← 1
x2 ← x1

?
x3 = x2 + 1
x2 ← x3

if p then

?
RTN x2

�
��

x1 ← 1
x2 ← x1

?
x3 = x2 + 1
if p then

?
RTN x2

�6
x2 ← x3

��
?

Original code Code in SSA form Copies inserted Copies inserted when

(Copies folded) (Incorrect) critical edges are split

(Correct)

Figure 10. An example of the code leading to the “Lost-Copy” problem

a variable, and the value from the penultimate iteration is then returned.∗ The second

column shows the code translated into SSA form with copy folding. Notice how y

has disappeared. The third column shows the result of replacing the φ-function with

copies using the naive algorithm. Clearly, the result of the code has changed; it now

returns the value of the last iteration. The final column shows how splitting the critical

back-edge cures the problem.

Intuitively, the naive copy insertion failed because it created a reference to x2 beyond

the scope of the φ-function that defined it. Folding x2 for y extends the lifetime of x2

beyond the redefinition that creates x3.

To avoid this problem, the compiler must notice that the value overwritten by the

new copy is live past the point where the copy is inserted. When it detects this situ-

ation, it can insert a copy to a new temporary name prior to inserting the copy, and

rewrite subsequent uses of the overwritten name with the temporary’s name. This is

the fundamental idea underlying our copy insertion algorithm. This rewriting mimics

∗ While this example might seem contrived, the situation arises routinely in Fortran DO-loops.

26 BRIGGS, COOPER, HARVEY, AND SIMPSON

the name rewriting phase in the SSA construction, implying that the compiler must

walk the dominator tree to insert copies. It also means that the implementation will

require a stack of names similar to the Stacks used when building SSA form. However,

copy insertion only needs to push names onto stacks corresponding to the names de-

fined by the inserted copies – these are the only names that need to have their uses

rewritten.

REPLACE PHI NODES()
Perform live analysis
For each variable v

Stacks[v]← emptystack()
insert copies(start)

insert copies(block)
pushed ← ∅
For all instructions i in block

Replace all uses u with Stacks[u]

schedule copies(block) /* see Figure 14 */
For each child c of block in the dominator tree

insert copies(c)
For each name n ∈ pushed

pop(Stacks[n])

Figure 11. Algorithm for iterating through the blocks to perform φ-function replacement

The algorithm, shown in Figure 11, uses LIVE-OUT information to determine which

registers require insertion of additional copies to temporaries. It uses a structure like

the Stacks array to record the newly-created temporary names. This results in an

algorithm that walks the dominator tree in preorder. For each block, it replaces uses

in φ-functions and instructions with any new names. Next, it builds a list of copies that

must be inserted and uses the algorithm outlined in the following section to determine

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 27

the order to insert the copies. If a copy’s source is live at the end of the block, the

algorithm pushes the destination name onto the source’s stack and resets a flag to

show that the source is live outside the block. Finally, if the destination of the copy

to be inserted is live past the end of the block, it inserts a copy to a temporary at the

φ-function that defines the register.

Some careful engineering is required to make this efficient. A block B can be the

predecessor to many other blocks, but imagine the case where each of the successor

blocks requires a copy to its own temporary for some value flowing out of B. A naive

implementation would insert as many copies to temporaries as B has successors. One

solution to this problem is to insert a copy to a temporary (when it is needed) at the

top of the block to which the current φ-function is attached and to use this temporary’s

name whenever the value is needed as the source of a copy. This has the practical effect

of capturing the value in question immediately after it is defined by the φ-function,

so that it cannot be overwritten. Other solutions exist, but their effect on code size is

unpredictable.

The algorithm for inserting copies for φ-functions that avoids the lost-copy problem

is shown in Figure 11. Notice that the code is in the form of a recursive routine to

perform the walk. Clearly, the algorithmic complexity is bounded by the live analysis

rather than this walk over the CFG.

The “Swap” Problem

Copy folding exposes another problem with the naive copy insertion algorithm. Fig-

ure 12 shows an example. We refer to this as the swap problem.

The left side of the figure shows a simple loop that swaps the values of two variables

28 BRIGGS, COOPER, HARVEY, AND SIMPSON

using a temporary named x. The middle column shows the SSA form after folding

copies. Since all of the operations in the body of the loop were copies, they have all

been absorbed, and all that is left in the body are the φ-functions.

The right side of Figure 12 shows the result of naively inserting copy operations

for the φ-functions. This code is clearly incorrect. On the first iteration of the loop,

the value of a2 gets overwritten, and both a2 and b2 subsequently contain the same

value. The problem stems from the fact that the φ-functions in a block are considered

to execute in parallel. To solve this problem, the compiler can introduce a temporary

variable for each copied value.

Naively inserting copies of all values into temporaries, however, is not an ideal solu-

tion. It potentially doubles the number of copies necessary for φ-function replacement.

Instead, the compiler should insert the minimal number of copies to temporaries nec-

essary for correctness. Consider again the example in Figure 12. The problem is that

some of the parameters to the φ-functions are defined by other φ-functions in the same

block. Notice that the copies inserted into the top block do not contain references to

other names defined by a φ-function. These copies have been inserted correctly – that

is, they do not change the meaning of the code. It is only the copy operations inserted

for parameters that were themselves defined by φ-functions in this block that caused

the problem. Thus, inserting copies to temporaries for these special cases will produce

correct code.

This is slightly simplistic, however. Consider the code in Figure 13. Here, there is

not a cycle of dependences as in the swap problem, although the name a2 is used in a

successive φ-function in the block. According to the above rule, since the φ-function is

used as a parameter in another φ-function in that block, a copy to a temporary should

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 29

a← . . .

b← . . .

?
x← a
a← b
b← x
if p then

?

�

��

a1 ← . . .
b1 ← . . .

?
a2 ← φ(a1, b2)
b2 ← φ(b1, a2)
if p then

?

�
�

�

a1 ← . . .
b1 ← . . .
a2 ← a1

b2 ← b1

?
a2 ← b2
b2 ← a2

if p then

?

�
�

�

Original code SSA form with φ-nodes naively

copies folded replaced

Figure 12. An example of the code leading to the “Swap” Problem

be inserted for it. Simple analysis, though, will show that reordering the copies will

produce correct code without the addition of a temporary, as shown in the right side

of this figure.

In some sense, the choice of how to insert copy operations for φ-functions and when

to insert copies to temporaries is a scheduling problem. A copy operation has two argu-

ments, the source and the destination. We want to insert copies for a set of φ-functions

subject to the following restriction: to schedule a copy c, all other copy operations that

include c’s destination as their source must be scheduled first. That is, before a name

is overwritten, any other operation that needed its value must have it already.

Another way to look at this problem is to model the interaction of the set of copies

as a graph whose nodes represent the copies and whose edges represent a name defined

by one copy and used in another copy. If the graph is acyclic, the schedule of copies

can then be found by a simple topological sort of the graph – although we do not

actually need to build this graph if we are careful about the data structures we use to

build the schedule.

Our algorithm makes three passes over the list of φ-functions. In the first pass,

30 BRIGGS, COOPER, HARVEY, AND SIMPSON

a1 ← . . .

b1 ← . . .

?
a2 ← φ(a1, a3)
b2 ← φ(b1, a2)
if p then

?

�
��

a1 ← . . .
b1 ← . . .
a2 ← a1

b2 ← b1

?
t← a2

a2 ← a3

b2 ← t
if p then

?

�

��

a1 ← . . .

b1 ← . . .
a2 ← a1

b2 ← b1

?
b2 ← a2

a2 ← a3

if p then

?

�
��

Original SSA form Unnecessary copy to a Correctly scheduled

temporary copies

Figure 13. Simple ordering example

the compiler counts the number of times a name is used by other φ-functions. In

the second pass, it builds a worklist of names that are not used in other φ-functions.

The third pass iterates over the worklist, scheduling a copy for each element in the

worklist. Obviously, the copy operations whose destinations are not used by other copy

operations can be scheduled immediately. Furthermore, each time the compiler inserts

a copy operation, it can add the source of that operation to the worklist.

Consider a block where the name n is used as the source for five other copy oper-

ations. By the rule given above, a copy redefining n cannot be inserted until all of

the other five copies that use n have been inserted. The rule’s intent is to ensure that

all of the copy operations refer to the value of n before it is overwritten. But, once

the first copy has been inserted, n’s value has been preserved in its destination d, and

overwriting n will not destroy that value. If the four remaining copy operations refer

to d rather than n, then the compiler is free to overwrite n.

This tactic will ensure that the copy operations are ordered correctly, but it still

does not address the problem of cycles of dependence. In the swap problem, we have

a set of copies in which each of the destinations is used as a source in another copy

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 31

in the set, forming a cycle. In the algorithm described thus far, none of the copies

would ever be put on the worklist. To break this cycle, the algorithm can arbitrarily

pick one of the edges and break it, by inserting a copy to a temporary for one of the

destinations. As we pointed out in the previous paragraph, this allows the algorithm

to put that copy onto the worklist, and (with the cycle broken) schedule the rest of

the copies.

The algorithm for solving the swap problem is shown in Figure 14. It is applied

to each block and has three steps. The first step builds a list of the copies to be

inserted by running through the φ-functions in each of the block’s successors. During

this accumulation phase, it also records some facts, such as which destinations of the

copies to be inserted are used as the sources of other copies in the list. The second

pass builds up a worklist of those copies whose destinations are not used in any copies.

The third step iterates through the worklist, inserting a copy for each member and

then removing that member.

Each time a copy is removed from the worklist, its source is checked to see if it is

a destination of another copy in the set of copies yet to be inserted. If so, it adds

that new copy to the worklist. This is safe even if this new copy is used as the source

for numerous other copies waiting to be inserted. Remember that this algorithm is

concerned with preserving values. Each time it inserts a copy, it records that the value

formerly held in the source is now held in the destination. Any subsequent reference to

the source in any inserted copy will use the destination’s name instead of the source’s

name. Thus, it is free to overwrite the source after it copies the value into another

location.

Whenever the algorithm inserts a copy, it must also consider the lost-copy problem.

32 BRIGGS, COOPER, HARVEY, AND SIMPSON

schedule copies(block)
/* Pass One: Initialize the data structures */
copy set← ∅
For all successors s of block

j ← whichPred(s, block)
For each φ-function dest← φ(. . .) in s

src← jth operand of φ-function
copy set← copy set ∪ {〈src, dest〉}
map[src]← src

map[dest]← dest

used by another[src]← TRUE

/* Pass Two: Set up the worklist of initial copies */
For each copy 〈src, dest〉 in copy set

If ¬used by another[dest]
worklist← worklist ∪ {〈src, dest〉}
copy set← copy set− {〈src, dest〉}

/* Pass Three: Iterate over the worklist, inserting copies */
While worklist 6= ∅ or copy set 6= ∅

While worklist 6= ∅
Pick a 〈src, dest〉 from worklist

worklist← worklist− {〈src, dest〉}
If dest ∈ live outb

Insert a copy from dest to a new temp t at φ-node defining dest

push(t, Stacks[dest])
Insert a copy operation from map[src] to dest at the end of b
map[src]← dest

If src is the name of a destination in copy set

Add that copy to worklist

If copy set 6= ∅
Pick a 〈src, dest〉 from copy set

copy set← copy set− {〈src, dest〉}
Insert a copy from dest to a new temp t at the end of b
map[dest]← t

worklist← worklist ∪ {〈src, dest〉}

Figure 14. Algorithm for scheduling the copies to be inserted

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 33

Thus, before it inserts a copy, it must check to see if the destination is in the the block’s

live-out set. If it is, the compiler first inserts a copy of the destination’s value to a

temporary. Then, it pushes the temporary’s name onto the Stacks. Subsequent blocks

dominated by the current block will use the temporary’s name in place of references

to the destination’s name.

We can summarize the process as follows. During the first step of this algorithm,

the compiler built up the list of copies that needed to be inserted. Any copies left on

this list when the worklist clears are involved in cycles. We know that at least one

temporary will then need to be inserted, so the algorithm arbitrarily picks one of the

destination names to copy into a temporary name. This allows that copy to be put

onto the worklist – the value is safely stored, so the compiler can overwrite the name.

This breaks the cycle, and the the worklist-clearing loop can continue. It alternates

between these two sections until all of the copies in the original list have been inserted.

Generality

The preceding subsections developed a new copy insertion algorithm by addressing the

problems introduced by two simple and subtle examples. The problem that the new

method addresses is actually more general than the examples suggest; the situation

can be created by using SSA form with transformations that aggressively move code

or rename values.

Abstracting slightly from the example in Figure 12, the lost-copy problem arises

when copy folding extends the lifetime of a value xi past the definition of an argument

to the φ-function that defines xi. Specifically, if there exists a use p of xi such that the

path from xi’s definition to p contains a definition of xj, and xj is an argument to the

34 BRIGGS, COOPER, HARVEY, AND SIMPSON

φ-function defining xi, then the naive algorithm produces code that delivers xj to the

use at p rather than xi. We should note that this problem cannot arise inside a single

block, because copies are only inserted at the end of a block.

The swap problem is related, but arises due to an important quirk in the definition

of SSA form–the assumption that all the φ-functions in a block execute concurrently.

Parallel execution of the φ-functions is important because it allows algorithms that

manipulate SSA form to insert φ-functions in arbitrary order. If φ-function execution

were ordered, every algorithm that inserted a φ-function would need to perform the

same steps that the copy insertion algorithm does. When a set of φ-function definitions

creates a cyclic flow of values, no serialized order can preserve all the live values, unless

an additional temporary name is introduced. This is precisely how the copy insertion

algorithm fixes the problem–by introducing a temporary name to break the cycle.

Inserting the temporary breaks the cycle and creates an obvious serialization order.

The lost-copy problem is the more general case. It can occur within a block and

across blocks. The swap problem is a special case of the lost-copy problem where the

path has zero length; it arises as a direct consequence of φ-function semantics. The

concurrent model of φ-function execution simplifies every algorithm that inserts or

rewrites φ-functions; the price of this simplification must be paid in a more complex

copy insertion algorithm.

Our copy insertion algorithm corrects both of these problems. It correctly replaces

φ-functions with copies in all of the situations that can arise; we know that it cures

the problems that we have seen in practice.

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 35

CONCLUSIONS

The discovery of SSA form has revolutionized design and implementation of optimiza-

tions. This paper has examined the implementation details in greater detail than the

seminal literature on this subject.

The first half of this paper should serve as a survey of the different forms of SSA.

All three forms are useful in an optimizing compiler. Choosing between them requires

careful consideration of the application, the impact of dead φ-functions on the results,

and the relationship between SSA construction time and the time required to perform

the transformation. We presented a discussion of how to build each flavor, including the

new semi-pruned form. This form is a compromise between the time required for live

analysis necessary to the pruned form and the large number of dead φ-functions found

in minimal form. We presented a more efficient method for manipulating the stacks

used during the renaming phase of the SSA construction algorithm. Our algorithm

reduces the number of nodes pushed and simplifies the process of popping nodes.

The benefits and costs of each technique were discussed to give implementors insights

before they begin work.

The second half of the paper tackled the thorny problem of inserting copies for

φ-functions. We firmly believe that this a case of Backus’ separation of concerns.23

That is, each optimization pass should not be concerned with its impact on the final

transformability of the φ-functions, but, rather, the SSA transformer itself should have

the ability to handle the code, regardless of the motion of instructions from a given

optimization pass. This high ideal suffers from practical considerations, but we present

an algorithmic solution to handle the problems.

When replacing φ-functions with copies, we have found both the swap problem and

36 BRIGGS, COOPER, HARVEY, AND SIMPSON

the lost-copy problem in real world codes. Implementation of the special algorithms

for inserting copies is essential to avoiding the incorrect code these two problems

cause. We presented an algorithm that can efficiently insert φ-functions in control-

flow graphs without critical edges. When critical edges are present, we must perform

a more complicated algorithm that includes live analysis and a preorder walk over the

dominator tree in addition to the existing copy insertion algorithm.

ACKNOWLEDGEMENTS

This work was supported by DARPA through Army contract DABT63-95-C-0115 and

by IBM through a graduate fellowship to L. Taylor Simpson. The work described

in this paper has been done as part of the Massively Scalar Compiler Project at

Rice University. The many people who have contributed to that project deserve our

gratitude. Cliff Click of Motorola initially pointed out the swap problem to us. Bob

Morgan of DEC served as a sounding board for some of our ideas on φ-function-directed

copy insertion. The referees have earned our utmost gratitude for their many insightful

improvements.

REFERENCES

1. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck,

‘Efficiently computing static single assignment form and the control dependence graph’, ACM

Transactions on Programming Languages and Systems, 13(4), 451–490 (1991).

2. L. Taylor Simpson, ‘Value-driven redundancy elimination’, Ph.D. Thesis, Rice University, May

1996.

3. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck, ‘An

PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 37

efficient method of computing static single assignment form’, Conference Record of the Sixteenth

Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, January 1989,

pp. 25–35.

4. Ken Kennedy, ‘A survey of data flow analysis techniques’, in Steven S. Muchnick and Neil D.

Jones (eds.), Program Flow Analysis: Theory and Applications, Prentice-Hall, 1981.

5. Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck, ‘Detecting equality of variables in

programs’, Conference Record of the Fifteenth Annual ACM Symposium on Principles of Pro-

gramming Languages, San Diego, California, January 1988, pp. 1–11.

6. Preston Briggs and Keith D. Cooper, ‘Effective partial redundancy elimination’, SIGPLAN No-

tices, 29(6), 159–170 (1994). Proceedings of the ACM SIGPLAN ’94 Conference on Programming

Language Design and Implementation.

7. Preston Briggs, Keith D. Cooper, and L. Taylor Simpson, ‘Value numbering’, Software – Practice

and Experience (1997). (to appear).

8. Mark N. Wegman and F. Kenneth Zadeck, ‘Constant propagation with conditional branches’,

ACM Transactions on Programming Languages and Systems, 13(2), 181–210 (1991).

9. Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante, ‘Automatic construction of sparse data flow

evaluation graphs’, Conference Record of the Eighteenth Annual ACM Symposium on Principles

of Programming Languages, Orlando, Florida, January 1991, pp. 55–66.

10. Ken Kennedy, ‘Use-definition chains with applications’, Computer Languages, 3, 163–179 (1978).

11. Ron K. Cytron and Jeanne Ferrante, ‘Efficiently computing φ-nodes on-the-fly’, ACM Transac-

tions on Programming Languages and Systems, 17(3), 487–506 (1995).

12. Vugranam C. Sreedhar and Guang R. Gao, ‘A linear time algorithm for placing φ-nodes’, Con-

ference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, San Francisco, California, January 1995, pp. 62–73.

13. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles, Techniques, and Tools,

Addison-Wesley, 1986.

14. John B. Kam and Jeffrey D. Ullman, ‘Global data flow analysis and iterative algorithms’, Journal

of the ACM, 23(1), 158–171 (1976).

15. Susan L. Graham and Mark Wegman, ‘A fast and usually linear algorithm for global flow analysis’,

38 BRIGGS, COOPER, HARVEY, AND SIMPSON

Conference Record of the Second ACM Symposium on Principles of Programming Languages, Palo

Alto, California, January 1975, pp. 22–34.

16. F. Kenneth Zadeck, ‘Incremental data flow analysis in a structured program editor’, SIGPLAN

Notices, 19(6), 132–143 (1984). Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler

Construction.

17. Preston Briggs, ‘Register allocation via graph coloring’, Ph.D. Thesis, Rice University, April 1992.

18. Preston Briggs and Linda Torczon, ‘An efficient representation for sparse sets’, ACM Letters on

Programming Languages and Systems, 2(1–4), 59–69 (1993).

19. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and

Peter W. Markstein, ‘Register allocation via coloring’, Computer Languages, 6, 47–57 (1981).

20. Preston Briggs, Keith D. Cooper, and Linda Torczon, ‘Improvements to graph coloring register

allocation’, ACM Transactions on Programming Languages and Systems, 16(3), 428–455 (1994).

21. SPEC release 1.2, September 1990. Standards Performance Evaluation Corporation.

22. David R. Hanson, ‘Fast allocation and deallocation of memory based on object lifetimes’, Software

– Practice and Experience, 20(1), 5–12 (1990).

23. John Backus, ‘The history of Fortran I, II, and III’, in Wexelblat (ed.), History of Programming

Languages, Academic Press, 1981, pp. 25–45.

