
EECS 583 – Class 9

Classic and ILP Optimization

University of Michigan

October 5, 2011

- 1 -

Announcements & Reading Material

 Look on Phorum for help with HW #2

» Daya’s post on adding/deleting instructions

» Splitting a BB

 Today’s class

» “Compiler Code Transformations for Superscalar-Based High-

Performance Systems,” Scott Mahlke, William Chen, John

Gyllenhaal, Wen-mei Hwu, Pohua Chang, and Tokuzo Kiyohara,

Proceedings of Supercomputing '92, Nov. 1992, pp. 808-817

 Next class (instruction scheduling)

» “Machine Description Driven Compilers for EPIC Processors”,

B. Rau, V. Kathail, and S. Aditya, HP Technical Report, HPL-

98-40, 1998. (long paper but informative)

- 2 -

HW#2 – Best Times from Last Semester

 Times in seconds for each application

» no spec LICM with spec LICM

» Perf1 .008453 .000095

» Perf2 .023796 .000133

» Perf3 .012391 .000099

» 583wc .002813 .001644

 This translates to: 89x, 178x and 125x and 1.7x speedup

 Note: These generated with an older LLVM

» But, gives you an idea of what to expect.

- 3 -

Course Project – Time to Start Thinking About This

 Mission statement: Design and implement something
“interesting” in a compiler
» LLVM preferred, but others are fine

» Groups of 2-3 people (1 or 4 persons is possible in some cases)

» Extend existing research paper or go out on your own

 Topic areas
» Automatic parallelization/SIMDization

» Optimizing for GPUs

» Targeting VLIW processors

» Memory system optimization

» Reliability

» Energy

» For the adventurous
 Dynamic optimization

 Streaming applications

 Binary optimization

- 4 -

Course Projects – Timetable

 Now

» Start thinking about potential topics, identify teammates

 Oct 24-28: Project proposals

» No class that week

» Daya/I will meet with each group

» Informal proposal discussed at meeting

» Written proposal (a paragraph or 2 plus some references) due Oct

31

 Last 2 wks of Nov: Project checkpoint

» Class as usual

» Daya/I will again meet with each group

» Update on your progress, what left to do

 Dec 13-16: Project demos

- 5 -

Sample Project Ideas (in random order)

 Memory system

» Cache profiler for LLVM IR – miss rates, stride determination

» Data cache prefetching

» Data layout for improved cache behavior

 Optimizing for GPUs

» Dumb OpenCL/CUDA  smart OpenCL/CUDA – selection of

threads/blocks and managing on-chip memory

» Reducing uncoalesced memory accesses – measurement of

uncoalesced accesses, code restructuring to reduce these

» Matlab  CUDA/OpenCL

» StreamIt to CUDA/OpenCL (single or multiple GPUs)

 Reliability

» AVF profiling, reducing vulnerability to soft errors

» Coarse-grain code duplication for soft error protection

- 6 -

More Project Ideas

 Parallelization/SIMDization

» CUDA/OpenCL/Matlab/OpenMP to x86+SSE or Arm+NEON

» DOALL loop parallelization, dependence breaking transformations

» Stream parallelism analysis tool - profiling tool to identify maximal

program regions the exhibit stream (or DOALL) parallelism

» Access-execute program decomposition - decompose program into

memory access/compute threads

 Dynamic optimization (Dynamo, Dalvik VM)

» Run-time DOALL loop parallelization

» Run-time program analysis for security (taint tracking)

» Run-time classic optimization (if they don’t have it already!)

 Profiling tools

» Distributed control flow/energy profiling (profiling + aggregation)

- 7 -

And More Project Ideas

 VLIW

» Superblock formation in LLVM

» Acyclic BB scheduler for LLVM

» Modulo BB scheduler for LLVM

 Binary optimizer

» Arm binary to LLVM IR, de-register allocation

» X86 binary (clean) to LLVM IR

 Energy

» Minimizing instruction bit flips

 Misc

» Program distillation - create a subset program with equivalent

memory/branch behavior

» Code sharing analysis for mobile applications

- 8 -

From Last Time: Class Problem Solution

r1 = 0

r2 = 10

r3 = 0

r4 = 1

r7 = r1 * 4

r6 = 8

if (r3 > 0)

store (r1, r3)

Optimize this applying

1. constant propagation

2. constant folding

3. Dead code elim

r2 = 0

r6 = r6 * r7

r3 = r2 / r6

r3 = r4

r3 = r3 + r2

r1 = r6

r2 = r2 + 1

r1 = r1 + 1

if (r1 < 100)

r1 = 0

r2 = 10

r3 = 0

r7 = r1 * 4

if (r3 > 0)

store (r1, r3)

r2 = 0

r3 = 0

r3 = 1 + r2

r1 = 8

r2 = r2 + 1

r1 = r1 + 1

if (r1 < 100)

- 9 -

From Last Time: Class Problem Solution
Optimize this applying

1. dead code elimination

2. forward copy propagation

3. CSE

r4 = r1

r6 = r15

r2 = r3 * r4

r8 = r2 + r5

r9 = r3

r7 = load(r2)

if (r2 > r8)

r5 = r9 * r4

r11 = r2

r12 = load(r11)

if (r12 != 0)

r3 = load(r2)

r10 = r3 / r6

r11 = r8

store (r11, r7)

store (r12, r3)

r2 = r3 * r1

r8 = r2 + r5

r7 = load(r2)

if (r2 > r8)

if (r7 != 0)

r3 = r7

store (r8, r7)

store (r12, r3)

- 10 -

Loop Invariant Code Motion (LICM)

 Move operations whose source
operands do not change within
the loop to the loop preheader

» Execute them only 1x per
invocation of the loop

» Be careful with memory
operations!

» Be careful with ops not
executed every iteration

r1 = 3

r5 = &A

r4 = load(r5)

r7 = r4 * 3

r8 = r2 + 1

r7 = r8 * r4
r3 = r2 + 1

r1 = r1 + r7

store (r1, r3)

- 11 -

LICM (2)

 Rules

» X can be moved

» src(X) not modified in loop body

» X is the only op to modify dest(X)

» for all uses of dest(X), X is in the
available defs set

» for all exit BB, if dest(X) is live on the
exit edge, X is in the available defs set on
the edge

» if X not executed on every iteration, then
X must provably not cause exceptions

» if X is a load or store, then there are no
writes to address(X) in loop

r1 = 3

r5 = &A

r4 = load(r5)

r7 = r4 * 3

r8 = r2 + 1

r7 = r8 * r4
r3 = r2 + 1

r1 = r1 + r7

store (r1, r3)

- 12 -

Global Variable Migration

 Assign a global variable

temporarily to a register for the

duration of the loop

» Load in preheader

» Store at exit points

 Rules

» X is a load or store

» address(X) not modified in the

loop

» if X not executed on every

iteration, then X must provably

not cause an exception

» All memory ops in loop whose

address can equal address(X)

must always have the same

address as X

r4 = load(r5)

r4 = r4 + 1

r8 = load(r5)

r7 = r8 * r4
store(r5, r4)

store(r5,r7)

- 13 -

Induction Variable Strength Reduction

 Create basic induction

variables from derived

induction variables

 Induction variable

» BIV (i++)

 0,1,2,3,4,...

» DIV (j = i * 4)

 0, 4, 8, 12, 16, ...

» DIV can be converted into a

BIV that is incremented by 4

 Issues

» Initial and increment vals

» Where to place increments

r5 = r4 - 3

r4 = r4 + 1

r7 = r4 * r9

r6 = r4 << 2

- 14 -

Induction Variable Strength Reduction (2)

 Rules

» X is a *, <<, + or – operation

» src1(X) is a basic ind var

» src2(X) is invariant

» No other ops modify dest(X)

» dest(X) != src(X) for all srcs

» dest(X) is a register

 Transformation

» Insert the following into the preheader

 new_reg = RHS(X)

» If opcode(X) is not add/sub, insert to the
bottom of the preheader

 new_inc = inc(src1(X)) opcode(X) src2(X)

» else

 new_inc = inc(src1(X))

» Insert the following at each update of
src1(X)

 new_reg += new_inc

» Change X  dest(X) = new_reg

r5 = r4 - 3

r4 = r4 + 1

r7 = r4 * r9

r6 = r4 << 2

- 15 -

Class Problem

Optimize this applying

induction var str reduction

r5 = r5 + 1

r11 = r5 * 2

r10 = r11 + 2

r12 = load (r10+0)

r9 = r1 << 1

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r2 - 1

r1 = r1 + 1

r2 = r2 + 1

r1 = 0

r2 = 0

r13, r12, r6, r10

liveout

- 16 -

ILP Optimization

 Traditional optimizations

» Redundancy elimination

» Reducing operation count

 ILP (instruction-level parallelism) optimizations

» Increase the amount of parallelism and the ability to overlap

operations

» Operation count is secondary, often trade parallelism for extra

instructions (avoid code explosion)

 ILP increased by breaking dependences

» True or flow = read after write dependence

» False or (anti/output) = write after read, write after write

- 17 -

a: r1 = r2 + r3

b: r13 = r4 + r5

c: r11 = r7 * r8

d: r17 = r11 + r5

e: r21 = r13 + 4

f: r14 = r17 + 4

Register Renaming

 Similar goal to SSA

construction, but simpler

 Remove dependences caused

by variable re-use

» Re-use of source variables

» Re-use of temporaries

» Anti, output dependences

 Create a new variable to hold

each unique life time

 Very simple transformation

with straight-line code

» Make each def a unique

register

» Substitute new name into

subsequent uses

a: r1 = r2 + r3

b: r3 = r4 + r5

c: r1 = r7 * r8

d: r7 = r1 + r5

e: r1 = r3 + 4

f: r4 = r7 + 4

- 18 -

Global Register Renaming

 Straight-line code strategy

does not work

» A single use may have

multiple reaching defs

 Web = Collection of defs/uses

which have possible value

flow between them

» Identify webs

 Take a def, add all uses

 Take all uses, add all

reaching defs

 Take all defs, add all uses

 repeat until stable soln

» Each web renamed if name is

the same as another web

x =

y =

= y

= x

x =

y =

= y = x

y =

= y

- 19 -

Back Substitution

 Generation of expressions by
compiler frontends is very
sequential

» Account for operator
precedence

» Apply left-to-right within
same precedence

 Back substitution

» Create larger expressions

 Iteratively substitute RHS
expression for LHS variable

» Note – may correspond to
multiple source statements

» Enable subsequent optis

 Optimization

» Re-compute expression in a
more favorable manner

r9 = r1 + r2

r10 = r9 + r3

r11 = r10 - r4

r12 = r11 + r5

r13 = r12 – r6

Subs r12:

 r13 = r11 + r5 – r6

Subs r11:

 r13 = r10 – r4 + r5 – r6

Subs r10

 r13 = r9 + r3 – r4 + r5 – r6

Subs r9

 r13 = r1 + r2 + r3 – r4 + r5 – r6

y = a + b + c – d + e – f;

- 20 -

Tree Height Reduction

 Re-compute expression as a

balanced binary tree

» Obey precedence rules

» Essentially re-parenthesize

» Combine literals if possible

 Effects

» Height reduced (n terms)

 n-1 (assuming unit latency)

 ceil(log2(n))

» Number of operations remains

constant

» Cost

 Temporary registers “live”

longer

» Watch out for

 Always ok for integer arithmetic

 Floating-point – may not be!!

r9 = r1 + r2

r10 = r9 + r3

r11 = r10 - r4

r12 = r11 + r5

r13 = r12 – r6

r13 = r1 + r2 + r3 – r4 + r5 – r6

r1 + r2 r3 – r4 r5 – r6

+

+

t1 = r1 + r2

t2 = r3 – r4

t3 = r5 – r6

t4 = t1 + t2

r13 = t4 + t3

r13

after back subs:

original:

final code:

- 21 -

Class Problem

Assume: + = 1, * = 3

0

r1

0

r2

0

r3

1

r4

2

r5

0

r6

operand

arrival times

r10 = r1 * r2

r11 = r10 + r3

r12 = r11 + r4

r13 = r12 – r5

r14 = r13 + r6

Back susbstitute

Re-express in tree-height reduced form

 Account for latency and arrival times

- 22 -

Optimizing Unrolled Loops

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

Unroll = replicate loop body

n-1 times.

Hope to enable overlap of

operation execution from

different iterations

Not possible!

loop:

unroll 3 times

- 23 -

Register Renaming on Unrolled Loop

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 24 -

Register Renaming is Not Enough!

 Still not much overlap possible

 Problems

» r2, r4, r6 sequentialize the

iterations

» Need to rename these

 2 specialized renaming optis

» Accumulator variable

expansion (r6)

» Induction variable expansion

(r2, r4)

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 25 -

Accumulator Variable Expansion

 Accumulator variable

» x = x + y or x = x – y

» where y is loop variant!!

 Create n-1 temporary

accumulators

 Each iteration targets a

different accumulator

 Sum up the accumulator

variables at the end

 May not be safe for floating-

point values

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r16 = r16 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 26 -

Induction Variable Expansion

 Induction variable

» x = x + y or x = x – y

» where y is loop invariant!!

 Create n-1 additional induction

variables

 Each iteration uses and

modifies a different induction

variable

 Initialize induction variables to

init, init+step, init+2*step, etc.

 Step increased to n*original

step

 Now iterations are completely

independent !!

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 12

r4 = r4 + 12

r11 = load(r12)

r13 = load(r14)

r15 = r11 * r13

r16 = r16 + r15

r12 = r12 + 12

r14 = r14 + 12

r21 = load(r22)

r23 = load(r24)

r25 = r21 * r23

r26 = r26 + r25

r22 = r22 + 12

r24 = r24 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

r12 = r2 + 4, r22 = r2 + 8

r14 = r4 + 4, r24 = r4 + 8

- 27 -

Better Induction Variable Expansion

 With base+displacement

addressing, often don’t need

additional induction variables

» Just change offsets in each

iterations to reflect step

» Change final increments to n

* original step

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r11 = load(r2+4)

r13 = load(r4+4)

r15 = r11 * r13

r16 = r16 + r15

r21 = load(r2+8)

r23 = load(r4+8)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 12

r4 = r4 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 28 -

Homework Problem

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

Optimize the unrolled

loop

Renaming

Tree height reduction

Ind/Acc expansion

