EECS 583 — Class 8
Classic Optimization

University of Michigan

October 3, 2011

Announcements & Reading Material

< Homework 2

Extend LLVM LICM optimization to perform speculative LICM
Due Friday, Nov 21, midnight (3 wks!)

This homework is significantly harder than HW 1

Best time on performance benchmarks wins prize

< Today’s class

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988,
9.9, 10.2,10.3,10.7

< Material for Wednesday

» “Compiler Code Transformations for Superscalar-Based High-
Performance Systems,” Scott Mahlke, William Chen, John
Gyllenhaal, Wen-mei Hwu, Pohua Chang, and Tokuzo Kiyohara,
Proceedings of Supercomputing '92, Nov. 1992, pp. 808-817

h

v

h

v

h

v

h

v

-1-

From Last Time: Improved Class Problem

Rename the variables so this code is in SSA form

BBO

a=
b=
c=

BB2

BB4

BB1

! 3

b=a+1
a=b=*c

b*

Step 1: Dominator Tree

BBO

l

BB1

x///j\:i:*

BB2 BB3 BB4 BB5

From Last Time: Improved Class Problem (2)

BBO

BB2

BB4

BB1

Step 2: Dominance Frontier

BB DF
0 -
BBO 1]
l 2 4
BBl 3 4,5
j]
BB2 BB3 BB4 BB5 g’ i

b=a+1
a=b=*c

b*c

For each join point X in the CFG
For each predecessor, Y, of X in the CFG
Run up to the IDOM(X) in the dominator tree,
adding X to DF(N) for each N between Y and
IDOM(X)

From Last Time: Improved Class Problem (3)

Step 3: Insert Phi Nodes

a= BB DF
BBO b= a = Phi(a,a) 0]
c= b = Phi(b,b) 1
1l ¢ = Phi(c,c) 5 ;1
BB1
3 4,5
T~ 4 5
b=a+1
a = Phi(a.a) BB2| c=b+a BB3 b 5 1
b = Phi(b,b)_| /
¢ = Phi(c,c) .
BB4| b=c-a
a = Phi(a,a) For each global name n _ _
\ b = Phi(b,b) For each BB b in which n is defined
gy a=a-c ¢ = Phi(c,c) For each BB d in b’s dominance frontier
c=b*c - Insert a Phi node fornind
- Add d to n’s list of defining BBs

Step 4: Rename variables - Do in class

-4 -

Code Optimization

< Make the code run faster on the target processor
» My (Scott’s) favorite topic !!
» QOther objectives: Power, code size

« Classes of optimization

» 1. Classical (machine independent)
* Reducing operation count (redundancy elimination)
* Simplifying operations
» Generally good for any kind of machine
» 2. Machine specific
* Peephole optimizations
» Take advantage of specialized hardware features
» 3. Parallelism enhancing
* Increasing parallelism (ILP or TLP)
* Possibly increase instructions

-5-

A Tour Through the Classical Optimizations

< For this class — Go over concepts of a small subset of the
optimizations
» What it is, why its useful
» When can it be applied (set of conditions that must be satisfied)
» How it works
» Give you the flavor but don’t want to beat you over the head

< Challenges

» Register pressure?
» Parallelism verses operation count

Dead Code Elimination

<+ Remove any operation who’s
result is never consumed

< Rules

»

»

X can be deleted
* no stores or branches

DU chain empty or dest
register not live

< This misses some dead code!!

»

»

»

»

»

Especially in loops
Critical operation
* store or branch operation

Any operation that does not
directly or indirectly feed a
critical operation is dead

Trace UD chains backwards
from critical operations

Any op not visited is dead

r1 =3
r2 =10

rd=r4+1
r’=rl>r4

N

r2

r3=r3+1

~_ _—

r3=r2+rl

store (rl, r3)

Constant Propagation

< Forward propagation of moves

of the form r1=5
» rx =L (where L is a literal) r2=rl+r3
» Maximally propagate
» AsSsume no instruction
encoding restrictions
<« Whenis it legal? r1=r1+r2 (7 =rl +r4
» SRC: Literal is a hard coded \
constant, so never a problem
» DEST: Must be available r8=rl1+3
e Guaranteed to reach
e May reach not good enough \
r9=rl+rll

LLocal Constant Propagation

< Consider 2 ops, Xand Y ina
BB, X is before Y

» 1. XIS a move

< o literal rl1=5
» 2.srcl(X) is a litera =°x
» 3.'Y consumes dest(X) 3=7
» 4. There is no definition of rd=r4+r]
dest(X) between X and Y l=rl+r2
» 5. No danger betw X and Y r1=r1+1
e When dest(X) is a Macro r3=12
reg, BRL destroys the value (8=rl-r2
_ _ r9=r3+r5
<+ Note, Ignore operation format R=r2+1
Issues, so all operations can (10 = r3 —rl

have literals in either operand
position

Global Constant Propagation

< Consider 2 ops, Xand Y in
different BBs r1=5

»

»

»

»

»

»

1. X is a move

2=°x’
2. src1(X) is a literal
3. Y consumes dest(X) / \
4. Xisina_in(BB(Y))

5. Dest(x) is not modified between ri=rl+r2 7=rl-r2
the top of BB(Y) and Y
6. No danger betw X and Y \
e When dest(X) is a Macro reg, r8=r1*r2
BRL destroys the value \
r9=rl+r2

-10 -

Constant Folding

< Simplify 1 operation based on values of src operands
» Constant propagation creates opportunities for this

< All constant operands
» Evaluate the op, replace with a move
e 11=3*4->r1=12
e r1=3/0-> ??? Don’t evaluate excepting ops !, what about floating-point?
» Evaluate conditional branch, replace with BRU or noop
* if (1< 2) goto BB2 > BRU BB2
e if (1> 2) goto BB2 - convert to a noop
< Algebraic identities
» r1=r2+0,r2-0,r2|0,r2720,r2<<0,r2>>0
° rl=r2
» r1=0*r2,0/r2,0&r2
* rl=0
» rl=r2*1,r2/1
e rl=r2

-11 -

Class Problem

rt=0
r2 =10
r3=0

|

r4=1
r’=rl*4
6 =8
If (r3>0)

—_—

r2=0
re=r6*r7
r3=r2/r6

Optimize this applying

1. constant propagation
2. constant folding

—

r3=r4
r3=r3+r2
r1=r6

——

2=r2+1
ri=rl+1
if (r1 <100)

|

store (r1, r3)

-12 -

Forward Copy Propagation

< Forward propagation of the RHS
of moves

»

»

»

r1=r2

rA=rl+1 2>r4=r2+1

< Benefits

»

»

Reduce chain of dependences
Eliminate the move

< Rules (ops X and Y)

»

»

»

»

»

X 1s a move

src1(X) is a register

Y consumes dest(X)

X.dest is an available def at Y

X.srcl is an available expr at Y

-13-

rl=r2
3=r4

/\

r2 =

re=r3+1

\/

r5=r2+1r3

CSE — Common Subexpression Elimination

< Eliminate recomputation of an
expression by reusing the previous

result
» rl=r2*r3 r1=r2=*ro
» -2 r100=r1 el
» r4d=r2*r3 2> rd4=r100
< Benefits R=r2+1 r6=r3*7
» Reduce work

» Moves can get copy propagated \ /

< Rules (ops X and Y)
5=r2*r6
» Xand Y have the same opcode
_ 8=rad/r7
» src(X) = src(Y), for all srcs
_) r9=r3*7
» expr(X) is available at Y

» 1f X Is a load, then there is no store
that may write to address(X) along jf op is a load, call it redundant
any path between X and Y load elimination rather than CSE

-14 -

Class Problem

r4 =rl

r6 =rlb
r2=r3*r4
rI8=r2+r5
r9=r

r7 = load(r2)
if (r2>1r8)

/

r5=r9*r4
r1l1 =r2

if (r12 1= 0)

r12 = load(r1l)

—

Optimize this applying

r3 = load(r2)

rl0=r3/r6
rll =r8

store (rll, r7)

— o~ _—

store (rl12, r3)

1. dead code elimination
2. forward copy propagation
3. CSE

-15 -

L_oop Optimizations — Optimize Where
Programs Spend Their Time

Loop Terminology

r1 =3

r2 =10

r4—r4+1

loop preheader

r/f=r4*3

/\

r2

loop header

- 11, r4 are basic

I3=r2+1 |e——— exitBB

\/

ri=rl+2

/

iInduction variables
- r7 1s a derived
induction variable

backedge BB

store (rl, r3)

-16 -

Loop Invariant Code Motion (LICM)

< Move operations whose source
operands do not change within rl1=3
the loop to the loop preheader 5=0

» Execute them only 1x per

invocation of the loop] |
» Be careful with memory r4 = load(r5)
operations! (7 =rd*3
» Be careful with ops not
executed every iteration / \
B=r2+1 _
7 =r8*r4 el
ri=rl+r7

store (rl, r3)

-17 -

LICM (2)

< Rules
» X can be moved r1=3
» src(X) not modified in loop body =0
» X s the only op to modify dest(X)

» for all uses of dest(X), X is in the
available defs set * .
» for all exit BB, if dest(X) is live on the r4 = load(rs)
exit edge, X is in the available defs set on r/i=r4*3
the edge
» if X not executed on every iteration, then / \
X must provably not cause exceptions r8=r2+1 3=24+1
» 1f Xis a load or store, then there are no r7=r8*r4 =0
writes to address(X) in loop \ /
ri=rl+r7

store (rl, r3)

-18 -

Homework 2 — Speculative LICM

rl1 =3
5 = &A

~ r4 = load(r5)

" r/=r4*3 \

o

r8=r2+1 store (r1, r7)

o~

ri=rl+r7

|

-19 -

Cannot perform LICM on load, because there

(/? / may be an alias with the store

Memory profile says that these rarely
alias

Speculative LICM:

1)

2)
3)

4)
5)

Remove infrequent dependence between
loads and stores

Perform LICM on load

Perform LICM on any consumers of the

load that become invariant

Check that an alias occurred at run-time
Insert fix-up code to restore correct execution

Speculative LICM (2)

r1=3
s = &A
r4 = load(r5) redo load and any dependent
r7=r4*3 Instructions when alias occurred
: : r4 = load(r5)
if (alias)™_ rr=r4=*3
r2=r2+1
/ \

5 store (rl, r7)
gL check for alias

o~

(1=rl+r7 Check for alias by comparing addresses of the load

\ and store at run-time

-20 -

Global Variable Migration

< Assign a global variable
temporarily to a register for the
duration of the loop

» Load in preheader

» Store at exit points * *
. Rul r4 = load(rb)
* RUIES r4=r4+1
» Xs a load or store
» address(X) not modified in the / \
r8 = load(rb)
loop _ store(r5, r4)
_ 7 =r8*r4
» 1f X not executed on every
iteration, then X must provably \ /
not cause an exception store(r5,r7)
» All memory ops in loop whose

address can equal address(X)
must always have the same
address as X

-21 -

Induction Variable Strength Reduction

< Create basic induction
variables from derived
Induction variables

< Induction variable
» BIV (1++)
* 0,1,2,3/4,...
» DIV (=1*4)
* 0,4,8,12,16, ...
» DIV can be converted into a
BIV that is incremented by 4
< Issues
» Initial and increment vals
» Where to place increments

-22.

rI5=r4-3
r4d=r4+1

/\

r’=r4*r9

o~

re=r4<<?2

Induction Variable Strength Reduction (2)

< Rules

»

»

»

»

»

»

Xisa™*, <<, + or—operation
src1(X) is a basic ind var
src2(X) is invariant

No other ops modify dest(X)
dest(X) = src(X) for all srcs
dest(X) is a register

< Transformation

»

»

»

»

»

Insert the following into the preheader

* new_reg = RHS(X)
If opcode(X) is not add/sub, insert to the
bottom of the preheader

e new_inc = inc(src1(X)) opcode(X) src2(X)
else

e new_inc = inc(src1(X))
Insert the following at each update of
src1(X)

° new_reg +=new_inc
Change X - dest(X) = new_reg

5=r4-3
rd=r4+1

/\

r’=r4*r9

o~

6=r4<<?2

-23 -

Class Problem

1=0 Optimize this applying
=0 induction var str reduction

I=r5+1
r11=r5*2
rio=rll+2
r12 = load (r10+0)
rN=rl<<l1
r4 =r9 - 10
r3 = load(r4+4)
r3=r3+1
store(r4+0, r3)
r7=r3<<?2
r6 = load(r7+0)
r13=r2-1
rt=r1+1

2=r2+1 r13, r12, r6, r10
liveout

-24 -

