
EECS 583 – Class 8

Classic Optimization

University of Michigan

October 3, 2011

- 1 -

Announcements & Reading Material

 Homework 2

» Extend LLVM LICM optimization to perform speculative LICM

» Due Friday, Nov 21, midnight (3 wks!)

» This homework is significantly harder than HW 1

» Best time on performance benchmarks wins prize

 Today‟s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988,

9.9, 10.2, 10.3, 10.7

 Material for Wednesday

» “Compiler Code Transformations for Superscalar-Based High-

Performance Systems,” Scott Mahlke, William Chen, John

Gyllenhaal, Wen-mei Hwu, Pohua Chang, and Tokuzo Kiyohara,

Proceedings of Supercomputing '92, Nov. 1992, pp. 808-817

- 2 -

From Last Time: Improved Class Problem

c = b + a
b = a + 1

a = b * c

b = c - a

a = a - c

c = b * c

a =

b =

c =
BB0

BB1

BB2 BB3

BB4

BB5

Rename the variables so this code is in SSA form

Step 1: Dominator Tree

BB0

BB1

BB2 BB3 BB4 BB5

- 3 -

From Last Time: Improved Class Problem (2)

c = b + a
b = a + 1

a = b * c

b = c - a

a = a - c

c = b * c

a =

b =

c =
BB0

BB1

BB2 BB3

BB4

BB5

BB0

BB1

BB2 BB3 BB4 BB5

For each join point X in the CFG

 For each predecessor, Y, of X in the CFG

 Run up to the IDOM(X) in the dominator tree,

 adding X to DF(N) for each N between Y and

 IDOM(X)

BB DF

0 -

1 -

2 4

3 4, 5

4 5

5 1

Step 2: Dominance Frontier

- 4 -

From Last Time: Improved Class Problem (3)

c = b + a
b = a + 1

a = b * c

b = c - a

a = a - c

c = b * c

a =

b =

c =
BB0

BB1

BB2 BB3

BB4

BB5

BB DF

0 -

1 -

2 4

3 4, 5

4 5

5 1

Step 3: Insert Phi Nodes

For each global name n

For each BB b in which n is defined

For each BB d in b‟s dominance frontier

- Insert a Phi node for n in d

- Add d to n‟s list of defining BBs

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

a = Phi(a,a)

b = Phi(b,b)

c = Phi(c,c)

Step 4: Rename variables Do in class

- 5 -

Code Optimization

 Make the code run faster on the target processor

» My (Scott‟s) favorite topic !!

» Other objectives: Power, code size

 Classes of optimization

» 1. Classical (machine independent)

 Reducing operation count (redundancy elimination)

 Simplifying operations

 Generally good for any kind of machine

» 2. Machine specific

 Peephole optimizations

 Take advantage of specialized hardware features

» 3. Parallelism enhancing

 Increasing parallelism (ILP or TLP)

 Possibly increase instructions

- 6 -

A Tour Through the Classical Optimizations

 For this class – Go over concepts of a small subset of the

optimizations

» What it is, why its useful

» When can it be applied (set of conditions that must be satisfied)

» How it works

» Give you the flavor but don‟t want to beat you over the head

 Challenges

» Register pressure?

» Parallelism verses operation count

- 7 -

Dead Code Elimination

 Remove any operation who‟s
result is never consumed

 Rules

» X can be deleted

 no stores or branches

» DU chain empty or dest
register not live

 This misses some dead code!!

» Especially in loops

» Critical operation

 store or branch operation

» Any operation that does not
directly or indirectly feed a
critical operation is dead

» Trace UD chains backwards
from critical operations

» Any op not visited is dead

r1 = 3

r2 = 10

r4 = r4 + 1

r7 = r1 * r4

r2 = 0 r3 = r3 + 1

r3 = r2 + r1

store (r1, r3)

- 8 -

Constant Propagation

 Forward propagation of moves

of the form

» rx = L (where L is a literal)

» Maximally propagate

» Assume no instruction

encoding restrictions

 When is it legal?

» SRC: Literal is a hard coded

constant, so never a problem

» DEST: Must be available

 Guaranteed to reach

 May reach not good enough

r1 = 5

r2 = r1 + r3

r1 = r1 + r2 r7 = r1 + r4

r8 = r1 + 3

r9 = r1 + r11

- 9 -

Local Constant Propagation

 Consider 2 ops, X and Y in a

BB, X is before Y

» 1. X is a move

» 2. src1(X) is a literal

» 3. Y consumes dest(X)

» 4. There is no definition of

dest(X) between X and Y

» 5. No danger betw X and Y

 When dest(X) is a Macro

reg, BRL destroys the value

 Note, ignore operation format

issues, so all operations can

have literals in either operand

position

r1 = 5

r2 = „_x‟

r3 = 7

r4 = r4 + r1

r1 = r1 + r2

r1 = r1 + 1

r3 = 12

r8 = r1 - r2

r9 = r3 + r5

r3 = r2 + 1

r10 = r3 – r1

- 10 -

Global Constant Propagation

 Consider 2 ops, X and Y in

different BBs

» 1. X is a move

» 2. src1(X) is a literal

» 3. Y consumes dest(X)

» 4. X is in a_in(BB(Y))

» 5. Dest(x) is not modified between

the top of BB(Y) and Y

» 6. No danger betw X and Y

 When dest(X) is a Macro reg,

BRL destroys the value

r1 = 5

r2 = „_x‟

r1 = r1 + r2 r7 = r1 – r2

r8 = r1 * r2

r9 = r1 + r2

- 11 -

Constant Folding

 Simplify 1 operation based on values of src operands

» Constant propagation creates opportunities for this

 All constant operands

» Evaluate the op, replace with a move

 r1 = 3 * 4 r1 = 12

 r1 = 3 / 0 ??? Don‟t evaluate excepting ops !, what about floating-point?

» Evaluate conditional branch, replace with BRU or noop

 if (1 < 2) goto BB2 BRU BB2

 if (1 > 2) goto BB2 convert to a noop

 Algebraic identities

» r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0

 r1 = r2

» r1 = 0 * r2, 0 / r2, 0 & r2

 r1 = 0

» r1 = r2 * 1, r2 / 1

 r1 = r2

- 12 -

Class Problem

r1 = 0

r2 = 10

r3 = 0

r4 = 1

r7 = r1 * 4

r6 = 8

if (r3 > 0)

store (r1, r3)

Optimize this applying

1. constant propagation

2. constant folding

r2 = 0

r6 = r6 * r7

r3 = r2 / r6

r3 = r4

r3 = r3 + r2

r1 = r6

r2 = r2 + 1

r1 = r1 + 1

if (r1 < 100)

- 13 -

Forward Copy Propagation

 Forward propagation of the RHS

of moves

» r1 = r2

» …

» r4 = r1 + 1 r4 = r2 + 1

 Benefits

» Reduce chain of dependences

» Eliminate the move

 Rules (ops X and Y)

» X is a move

» src1(X) is a register

» Y consumes dest(X)

» X.dest is an available def at Y

» X.src1 is an available expr at Y

r1 = r2

r3 = r4

r2 = 0 r6 = r3 + 1

r5 = r2 + r3

- 14 -

CSE – Common Subexpression Elimination

 Eliminate recomputation of an

expression by reusing the previous

result

» r1 = r2 * r3

» r100 = r1

» …

» r4 = r2 * r3 r4 = r100

 Benefits

» Reduce work

» Moves can get copy propagated

 Rules (ops X and Y)

» X and Y have the same opcode

» src(X) = src(Y), for all srcs

» expr(X) is available at Y

» if X is a load, then there is no store

that may write to address(X) along

any path between X and Y

r1 = r2 * r6

r3 = r4 / r7

r2 = r2 + 1 r6 = r3 * 7

r5 = r2 * r6

r8 = r4 / r7

r9 = r3 * 7

if op is a load, call it redundant

load elimination rather than CSE

- 15 -

Class Problem

Optimize this applying

1. dead code elimination

2. forward copy propagation

3. CSE

r4 = r1

r6 = r15

r2 = r3 * r4

r8 = r2 + r5

r9 = r

r7 = load(r2)

if (r2 > r8)

r5 = r9 * r4

r11 = r2

r12 = load(r11)

if (r12 != 0)

r3 = load(r2)

r10 = r3 / r6

r11 = r8

store (r11, r7)

store (r12, r3)

- 16 -

Loop Optimizations – Optimize Where

Programs Spend Their Time

r1 = 3

r2 = 10

r4 = r4 + 1

r7 = r4 * 3

r2 = 0 r3 = r2 + 1

r1 = r1 + 2

store (r1, r3)

loop preheader

loop header

backedge BB

exit BB

- r1, r4 are basic

induction variables

- r7 is a derived

induction variable

Loop Terminology

- 17 -

Loop Invariant Code Motion (LICM)

 Move operations whose source
operands do not change within
the loop to the loop preheader

» Execute them only 1x per
invocation of the loop

» Be careful with memory
operations!

» Be careful with ops not
executed every iteration

r1 = 3

r5 = 0

r4 = load(r5)

r7 = r4 * 3

r8 = r2 + 1

r7 = r8 * r4
r3 = r2 + 1

r1 = r1 + r7

store (r1, r3)

- 18 -

LICM (2)

 Rules

» X can be moved

» src(X) not modified in loop body

» X is the only op to modify dest(X)

» for all uses of dest(X), X is in the
available defs set

» for all exit BB, if dest(X) is live on the
exit edge, X is in the available defs set on
the edge

» if X not executed on every iteration, then
X must provably not cause exceptions

» if X is a load or store, then there are no
writes to address(X) in loop

r1 = 3

r5 = 0

r4 = load(r5)

r7 = r4 * 3

r8 = r2 + 1

r7 = r8 * r4
r3 = r2 + 1

r1 = r1 + r7

store (r1, r3)

- 19 -

Homework 2 – Speculative LICM

r1 = 3

r5 = &A

r4 = load(r5)

r7 = r4 * 3

r2 = r2 + 1

r8 = r2 + 1 store (r1, r7)

r1 = r1 + r7

Cannot perform LICM on load, because there

may be an alias with the store

Memory profile says that these rarely

alias

Speculative LICM:

1) Remove infrequent dependence between

loads and stores

2) Perform LICM on load

3) Perform LICM on any consumers of the

load that become invariant

4) Check that an alias occurred at run-time

5) Insert fix-up code to restore correct execution

- 20 -

Speculative LICM (2)
r1 = 3

r5 = &A

r4 = load(r5)

r7 = r4 * 3

if (alias)

r2 = r2 + 1

r8 = r2 + 1
store (r1, r7)

check for alias

r1 = r1 + r7

r4 = load(r5)

r7 = r4 * 3

redo load and any dependent

instructions when alias occurred

Check for alias by comparing addresses of the load

and store at run-time

- 21 -

Global Variable Migration

 Assign a global variable

temporarily to a register for the

duration of the loop

» Load in preheader

» Store at exit points

 Rules

» X is a load or store

» address(X) not modified in the

loop

» if X not executed on every

iteration, then X must provably

not cause an exception

» All memory ops in loop whose

address can equal address(X)

must always have the same

address as X

r4 = load(r5)

r4 = r4 + 1

r8 = load(r5)

r7 = r8 * r4
store(r5, r4)

store(r5,r7)

- 22 -

Induction Variable Strength Reduction

 Create basic induction

variables from derived

induction variables

 Induction variable

» BIV (i++)

 0,1,2,3,4,...

» DIV (j = i * 4)

 0, 4, 8, 12, 16, ...

» DIV can be converted into a

BIV that is incremented by 4

 Issues

» Initial and increment vals

» Where to place increments

r5 = r4 - 3

r4 = r4 + 1

r7 = r4 * r9

r6 = r4 << 2

- 23 -

Induction Variable Strength Reduction (2)

 Rules

» X is a *, <<, + or – operation

» src1(X) is a basic ind var

» src2(X) is invariant

» No other ops modify dest(X)

» dest(X) != src(X) for all srcs

» dest(X) is a register

 Transformation

» Insert the following into the preheader

 new_reg = RHS(X)

» If opcode(X) is not add/sub, insert to the
bottom of the preheader

 new_inc = inc(src1(X)) opcode(X) src2(X)

» else

 new_inc = inc(src1(X))

» Insert the following at each update of
src1(X)

 new_reg += new_inc

» Change X dest(X) = new_reg

r5 = r4 - 3

r4 = r4 + 1

r7 = r4 * r9

r6 = r4 << 2

- 24 -

Class Problem

Optimize this applying

induction var str reduction

r5 = r5 + 1

r11 = r5 * 2

r10 = r11 + 2

r12 = load (r10+0)

r9 = r1 << 1

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r2 - 1

r1 = r1 + 1

r2 = r2 + 1

r1 = 0

r2 = 0

r13, r12, r6, r10

liveout

