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Announcements & Reading Material 

 Homework 2 

» Extend LLVM LICM optimization to perform speculative LICM 

» Due Friday, Nov 21, midnight (3 wks!) 

» This homework is significantly harder than HW 1 

» Best time on performance benchmarks wins prize 

 Today‟s class 

» Compilers: Principles, Techniques, and Tools, 

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988, 

9.9, 10.2, 10.3, 10.7 

 Material for Wednesday 

» “Compiler Code Transformations for Superscalar-Based High-

Performance Systems,” Scott Mahlke, William Chen, John 

Gyllenhaal, Wen-mei Hwu, Pohua Chang, and Tokuzo Kiyohara, 

Proceedings of Supercomputing '92, Nov. 1992, pp. 808-817 
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From Last Time: Improved Class Problem 

c = b + a 
b = a + 1 

a = b * c 

b = c - a  

a = a - c 

c = b * c 

a = 

b = 

c =  
BB0 

BB1 

BB2 BB3 

BB4 

BB5 

Rename the variables so this code is in SSA form 

Step 1: Dominator Tree 

BB0 

BB1 

BB2 BB3 BB4 BB5 
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From Last Time: Improved Class Problem (2) 

c = b + a 
b = a + 1 

a = b * c 

b = c - a  

a = a - c 

c = b * c 

a = 

b = 

c =  
BB0 

BB1 

BB2 BB3 

BB4 

BB5 

BB0 

BB1 

BB2 BB3 BB4 BB5 

For each join point X in the CFG 

    For each predecessor, Y, of X in the CFG 

        Run up to the IDOM(X) in the dominator tree, 

        adding X to DF(N) for each N between Y and 

        IDOM(X) 

BB DF 

0 - 

1 - 

2 4 

3 4, 5 

4 5 

5 1 

Step 2: Dominance Frontier 
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From Last Time: Improved Class Problem (3) 

c = b + a 
b = a + 1 

a = b * c 

b = c - a  

a = a - c 

c = b * c 

a = 

b = 

c =  
BB0 

BB1 

BB2 BB3 

BB4 

BB5 

BB DF 

0 - 

1 - 

2 4 

3 4, 5 

4 5 

5 1 

Step 3: Insert Phi Nodes 

For each global name n 

For each BB b in which n is defined 

For each BB d in b‟s dominance frontier 

- Insert a Phi node for n in d 

- Add d to n‟s list of defining BBs 

 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

Step 4: Rename variables  Do in class 
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Code Optimization 

 Make the code run faster on the target processor 

» My (Scott‟s) favorite topic !! 

» Other objectives: Power, code size 

 Classes of optimization 

» 1. Classical (machine independent) 

 Reducing operation count (redundancy elimination) 

 Simplifying operations 

 Generally good for any kind of machine 

» 2. Machine specific 

 Peephole optimizations 

 Take advantage of specialized hardware features 

» 3. Parallelism enhancing 

 Increasing parallelism (ILP or TLP) 

 Possibly increase instructions 
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A Tour Through the Classical Optimizations 

 For this class – Go over concepts of a small subset of the 

optimizations 

» What it is, why its useful 

» When can it be applied (set of conditions that must be satisfied) 

» How it works 

» Give you the flavor but don‟t want to beat you over the head 

 Challenges 

» Register pressure? 

» Parallelism verses operation count 
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Dead Code Elimination 

 Remove any operation who‟s 
result is never consumed 

 Rules 

» X can be deleted 

 no stores or branches 

» DU chain empty or dest 
register not live 

 This misses some dead code!! 

» Especially in loops 

» Critical operation 

 store or branch operation 

» Any operation that does not 
directly or indirectly feed a 
critical operation is dead 

» Trace UD chains backwards 
from critical operations 

» Any op not visited is dead 

r1 = 3 

r2 = 10 

r4 = r4 + 1 

r7 = r1 * r4 

r2 = 0 r3 = r3 + 1 

r3 = r2 + r1 

store (r1, r3) 
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Constant Propagation 

 Forward propagation of moves 

of the form 

» rx = L (where L is a literal) 

» Maximally propagate 

» Assume no instruction 

encoding restrictions 

 When is it legal? 

» SRC: Literal is a hard coded 

constant, so never a problem 

» DEST: Must be available 

 Guaranteed to reach 

 May reach not good enough 

 

r1 = 5 

r2 = r1 + r3 

r1 = r1 + r2 r7 = r1 + r4 

r8 = r1 + 3 

r9 = r1 + r11 
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Local Constant Propagation 

 Consider 2 ops, X and Y in a 

BB, X is before Y 

» 1. X is a move 

» 2. src1(X) is a literal 

» 3. Y consumes dest(X) 

» 4. There is no definition of 

dest(X) between X and Y 

» 5. No danger betw X and Y 

 When dest(X) is a Macro 

reg, BRL destroys the value 

 

 Note, ignore operation format 

issues, so all operations can 

have literals in either operand 

position 

r1 = 5 

r2 = „_x‟ 

r3 = 7 

r4 = r4 + r1 

r1 = r1 + r2 

r1 = r1 + 1 

r3 = 12 

r8 = r1 - r2 

r9 = r3 + r5 

r3 = r2 + 1 

r10 = r3 – r1 
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Global Constant Propagation 

 Consider 2 ops, X and Y in 

different BBs 

» 1. X is a move 

» 2. src1(X) is a literal 

» 3. Y consumes dest(X) 

» 4. X is in a_in(BB(Y)) 

» 5. Dest(x) is not modified between 

the top of BB(Y) and Y 

» 6. No danger betw X and Y 

 When dest(X) is a Macro reg, 

BRL destroys the value 

 

r1 = 5 

r2 = „_x‟ 

r1 = r1 + r2 r7 = r1 – r2 

r8 = r1 * r2 

r9 = r1 + r2 
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Constant Folding 

 Simplify 1 operation based on values of src operands 

» Constant propagation creates opportunities for this 

 All constant operands 

» Evaluate the op, replace with a move 

 r1 = 3 * 4  r1 = 12 

 r1 = 3 / 0  ???  Don‟t evaluate excepting ops !, what about floating-point? 

» Evaluate conditional branch, replace with BRU or noop 

 if (1 < 2) goto BB2  BRU BB2 

 if (1 > 2) goto BB2  convert to a noop 

 Algebraic identities 

» r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0 

 r1 = r2 

» r1 = 0 * r2, 0 / r2, 0 & r2 

 r1 = 0 

» r1 = r2 * 1, r2 / 1 

 r1 = r2 
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Class Problem 

r1 = 0 

r2 = 10 

r3 = 0 

r4 = 1 

r7 = r1 * 4 

r6 = 8 

if (r3 > 0) 

store (r1, r3) 

Optimize this applying 

1. constant propagation 

2. constant folding 

r2 = 0 

r6 = r6 * r7 

r3 = r2 / r6 

r3 = r4 

r3 = r3 + r2 

r1 = r6 

r2 = r2 + 1 

r1 = r1 + 1 

if (r1 < 100) 
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Forward Copy Propagation 

 Forward propagation of the RHS 

of moves 

» r1 = r2 

» … 

» r4 = r1 + 1   r4 = r2 + 1 

 Benefits 

» Reduce chain of dependences 

» Eliminate the move 

 Rules (ops X and Y) 

» X is a move 

» src1(X) is a register 

» Y consumes dest(X) 

» X.dest is an available def at Y 

» X.src1 is an available expr at Y 

 

r1 = r2 

r3 = r4 

r2 = 0 r6 = r3 + 1 

r5 = r2 + r3 
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CSE – Common Subexpression Elimination 

 Eliminate recomputation of an 

expression by reusing the previous 

result 

» r1 = r2 * r3 

»                     r100 = r1 

» … 

» r4 = r2 * r3   r4 = r100 

 Benefits 

» Reduce work 

» Moves can get copy propagated 

 Rules (ops X and Y) 

» X and Y have the same opcode 

» src(X) = src(Y), for all srcs 

» expr(X) is available at Y 

» if X is a load, then there is no store 

that may write to address(X) along 

any path between X and Y 

 

r1 = r2 * r6 

r3 = r4 / r7 

r2 = r2 + 1 r6 = r3 * 7 

r5 = r2 * r6 

r8 = r4 / r7 

r9 = r3 * 7 

if op is a load, call it redundant 

load elimination rather than CSE 
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Class Problem 

Optimize this applying 

1. dead code elimination 

2. forward copy propagation 

3. CSE 

r4 = r1 

r6 = r15 

r2 = r3 * r4 

r8 = r2 + r5 

r9 = r 

r7 = load(r2) 

if (r2 > r8) 

r5 = r9 * r4 

r11 = r2 

r12 = load(r11) 

if (r12 != 0) 

r3 = load(r2) 

r10 = r3 / r6 

r11 = r8 

store (r11, r7) 

store (r12, r3) 
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Loop Optimizations – Optimize Where 

Programs Spend Their Time 

r1 = 3 

r2 = 10 

r4 = r4 + 1 

r7 = r4 * 3 

r2 = 0 r3 = r2 + 1 

r1 = r1 + 2 

store (r1, r3) 

loop preheader 

loop header 

backedge BB 

exit BB 

- r1, r4 are basic 

induction variables 

- r7 is a derived 

induction variable 

Loop Terminology 
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Loop Invariant Code Motion (LICM) 

 Move operations whose source 
operands do not change within 
the loop to the loop preheader 

» Execute them only 1x per 
invocation of the loop 

» Be careful with memory 
operations! 

» Be careful with ops not 
executed every iteration 

r1 = 3 

r5 = 0 

r4 = load(r5) 

r7 = r4 * 3 

r8 = r2 + 1 

r7 = r8 * r4 
r3 = r2 + 1 

r1 = r1 + r7 

store (r1, r3) 
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LICM (2) 

 Rules 

» X can be moved 

» src(X) not modified in loop body 

» X is the only op to modify dest(X) 

» for all uses of dest(X), X is in the 
available defs set 

» for all exit BB, if dest(X) is live on the 
exit edge, X is in the available defs set on 
the edge 

» if X not executed on every iteration, then 
X must provably not cause exceptions 

» if X is a load or store, then there are no 
writes to address(X) in loop 

r1 = 3 

r5 = 0 

r4 = load(r5) 

r7 = r4 * 3 

r8 = r2 + 1 

r7 = r8 * r4 
r3 = r2 + 1 

r1 = r1 + r7 

store (r1, r3) 
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Homework 2 – Speculative LICM 

r1 = 3 

r5 = &A 

r4 = load(r5) 

r7 = r4 * 3 

r2 = r2 + 1 

r8 = r2 + 1 store (r1, r7) 

r1 = r1 + r7 

Cannot perform LICM on load, because there 

may be an alias with the store 

Memory profile says that these rarely 

alias  

Speculative LICM: 

1) Remove infrequent dependence between 

loads and stores 

2) Perform LICM on load 

3) Perform LICM on any consumers of the 

load that become invariant 

4) Check that an alias occurred at run-time 

5) Insert fix-up code to restore correct execution 
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Speculative LICM (2) 
r1 = 3 

r5 = &A 

r4 = load(r5) 

r7 = r4 * 3 

if (alias) 

r2 = r2 + 1 

r8 = r2 + 1 
store (r1, r7) 

check for alias 

r1 = r1 + r7 

r4 = load(r5) 

r7 = r4 * 3 

redo load and any dependent 

instructions when alias occurred 

Check for alias by comparing addresses of the load 

and store at run-time 
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Global Variable Migration 

 Assign a global variable 

temporarily to a register for the 

duration of the loop 

» Load in preheader 

» Store at exit points 

 Rules 

» X is a load or store 

» address(X) not modified in the 

loop 

» if X not executed on every 

iteration, then X must provably 

not cause an exception 

» All memory ops in loop whose 

address can equal address(X) 

must always have the same 

address as X 

r4 = load(r5) 

r4 = r4 + 1 

r8 = load(r5) 

r7 = r8 * r4 
store(r5, r4) 

store(r5,r7) 
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Induction Variable Strength Reduction 

 Create basic induction 

variables from derived 

induction variables 

 Induction variable 

» BIV (i++) 

 0,1,2,3,4,... 

» DIV (j = i * 4) 

 0, 4, 8, 12, 16, ... 

» DIV can be converted into a 

BIV that is incremented by 4 

 Issues 

» Initial and increment vals 

» Where to place increments 

r5 = r4 - 3 

r4 = r4 + 1 

r7 = r4 * r9 

r6 = r4 << 2 
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Induction Variable Strength Reduction (2) 

 Rules 

» X is a *, <<, + or – operation 

» src1(X) is a basic ind var 

» src2(X) is invariant 

» No other ops modify dest(X) 

» dest(X) != src(X) for all srcs 

» dest(X) is a register 

 Transformation 

» Insert the following into the preheader 

 new_reg = RHS(X) 

» If opcode(X) is not add/sub, insert to the 
bottom of the preheader 

 new_inc = inc(src1(X)) opcode(X) src2(X) 

» else 

 new_inc = inc(src1(X)) 

» Insert the following at each update of 
src1(X) 

 new_reg += new_inc 

» Change X  dest(X) = new_reg 

 

r5 = r4 - 3 

r4 = r4 + 1 

r7 = r4 * r9 

r6 = r4 << 2 
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Class Problem 

Optimize this applying 

induction var str reduction 

r5 = r5 + 1 

r11 = r5 * 2 

r10 = r11 + 2 

r12 = load (r10+0) 

r9 = r1 << 1 

r4 = r9 - 10 

r3 = load(r4+4) 

r3 = r3 + 1 

store(r4+0, r3) 

r7 = r3 << 2 

r6 = load(r7+0) 

r13 = r2 - 1 

r1 = r1 + 1 

r2 = r2 + 1 

 

r1 = 0 

r2 = 0 

r13, r12, r6, r10 

liveout 


