
EECS 583 – Class 7 

Static Single Assignment Form 

 

University of Michigan 

 

September 28, 2011 



- 1 - 

Reading Material 

 Today’s class 

» “Practical Improvements to the Construction and Destruction of 

Static Single Assignment Form,” P. Briggs, K. Cooper, T. 

Harvey, and L. Simpson, Software--Practice and Experience, 

28(8), July 1998, pp. 859-891. 

 Next class – Optimization 

» Compilers: Principles, Techniques, and Tools, 

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988, 

9.9, 10.2, 10.3, 10.7 

 



- 2 - 

Last Class in 1 Slide 

OUT = Union(IN(succs)) 

IN = GEN + (OUT – KILL) 

Liveness Reaching Definitions/DU/UD 

IN = Union(OUT(preds)) 

OUT = GEN + (IN – KILL) 

Bottom-up dataflow 

Any path 

Keep track of variables/registers 

Uses of variables  GEN 

Defs of variables  KILL 

Top-down dataflow 

Any path 

Keep track of instruction IDs 

Defs of variables  GEN 

Defs of variables  KILL 

Available Definitions 

IN = Intersect(OUT(preds)) 

OUT = GEN + (IN – KILL) 

Top-down dataflow 

All path 

Keep track of instruction IDs 

Defs of variables  GEN 

Defs of variables  KILL 

Available Expressions 

IN = Intersect(OUT(preds)) 

OUT = GEN + (IN – KILL) 

Top-down dataflow 

All path 

Keep track of instruction IDs 

Expressions of variables  GEN 

Defs of variables  KILL 



- 3 - 

From Last Time: Class Problem - Rdefs 

1: r1 = 3 

2: r2 = r3 

3: r3 = r4 

4: r1 = r1 + 1 

5: r7 = r1 * r2 

6: r4 = r4 + 1 7: r4 = r3 + r2 

8: r8 = 8 

9: r9 = r7 + r8 

Compute reaching defs 

    Calculate GEN/KILL for each BB 

    Calculate IN/OUT for each BB IN = {} 

Gen = {1,2,3} 

Kill = {4} 

OUT = {1,2,3} 

IN = {1,2,3,8}  {1,2,3,4,5,6,7,8} 

Gen = {4,5} 

Kill = {1} 

OUT = {2,3,4,5,8}  {2,3,4,5,6,7,8} 

IN = {2,3,4,5,8}  {2,3,4,5,6,7,8} 

Gen = {7} 

Kill = {6} 

OUT = {2,3,4,5,7,8}  {2,3,4,5,7,8} 

IN = {2,3,4,5,6,7,8} 

Gen = {8} 

Kill = {} 

OUT = {2,3,4,5,6,7,8} 

IN = {2,3,4,5,6,7,8} 

Gen = {9} 

Kill = {} 

OUT = {2,3,4,5,6,7,8,9} 

IN = {2,3,4,5,8}  {2,3,4,5,6,7,8} 

Gen = {6} 

Kill = {7} 

OUT = {2,3,4,5,6,8}  {2,3,4,5,6,8} 

Remember, initial value for the OUT of 

BB5 is Gen(BB5) = 8. 

BB1 

BB2 

BB4 

BB5 

BB6 

BB3 



- 4 - 

From Last Time: 

Computation of Aexpr GEN/KILL Sets 

for each basic block in the procedure, X, do 

    GEN(X) = 0 

    KILL(X) = 0 

    for each operation in sequential order in X, op, do 

         K = 0 

        for each destination operand of op, dest, do 

             K += {all ops which use dest} 

        endfor 
         if (op not in K) 

 G = op 

         else 

 G = 0 
         GEN(X) = G + (GEN(X) – K) 

         KILL(X) = K + (KILL(X) – G) 

    endfor 

endfor 

We can also formulate the GEN/KILL slightly differently so you do not 

need to break up instructions like “r2 = r2 + 1”. 



- 5 - 

Class Problem - Aexprs Calculation 

1: r1 = r6 * r9 

2: r2 = r2 + 1 

3: r5 = r3 * r4 

4: r1 = r2 + 1 

5: r3 = r3 * r4 

6: r8 = r3 * 2 

7: r7 = r3 * r4 

8: r1 = r1 + 5 

9: r7 = r1 - 6 

10: r8 = r2 + 1 

11: r1 = r3 * r4 

12: r3 = r6 * r9 



- 6 - 

Some Things to Think About 

 Liveness and rdefs are basically the same thing 

» All dataflow is basically the same with a few parameters 

 Meaning of gen/kill – src vs dest, variable vs operation 

 Backward / Forward 

 All paths / some paths (must/may) 

 Dataflow can be slow 

» How to implement it efficiently? 

 Forward analysis – DFS order 

 Backward analysis – PostDFS order 

» How to represent the info?   Bitvectors 

 Predicates 

» Throw a monkey wrench into this stuff 

» So, how are predicates handled? 

 See “Analysis techniques for predicated code,” R. Johnson and M. 
Schlansker, MICRO 1996. 



- 7 - 

Static Single Assignment (SSA) Form 

 Difficulty with optimization 

» Multiple definitions of the 

same register 

» Which definition reaches 

» Is expression available? 

 

 

 

 Static single assignment 

» Each assignment to a variable is given a unique name 

» All of the uses reached by that assignment are renamed 

» DU chains become obvious based on the register name! 

r1 = r2 + r3 

r6 = r4 – r5 

r4 = 4 

r6 = 8 

r6 = r2 + r3 

r7 = r4 – r5 



- 8 - 

Converting to SSA Form 

 Trivial for straight line code 

 

 

 

 

 More complex with control flow – Must use Phi nodes 

x = -1 

y = x  

x = 5 

z = x 

x0 = -1 

y = x0 

x1 = 5 

z = x1 

if ( ... ) 

    x = -1 

else 

    x = 5 

y = x 

if ( ... ) 

    x0 = -1 

else 

    x1 = 5 

x2 = Phi(x0,x1) 

y = x2 



- 9 - 

Converting to SSA Form (2) 

 What about loops? 

» No problem!, use Phi nodes again 

i = 0 

do { 

    i = i + 1 

} 

while (i < 50) 

 

i0 = 0 

do { 

    i1 = Phi(i0, i2) 

    i2 = i1 + 1 

} 

while (i2 < 50) 

 

 



- 10 - 

SSA Plusses and Minuses 

 Advantages of SSA 

» Explicit DU chains – Trivial to figure out what defs reach a use 

 Each use has exactly 1 definition!!! 

» Explicit merging of values 

» Makes optimizations easier 

 Disadvantages 

» When transform the code, must either recompute (slow) or 

incrementally update (tedious) 



- 11 - 

Phi Nodes (aka Phi Functions) 

 Special kind of copy that selects one of its inputs 

 Choice of input is governed by the CFG edge along which 

control flow reached the Phi node 

 

 

 

 

 

 Phi nodes are required when 2 non-null paths XZ and 

YZ converge at node Z, and nodes X and Y contain 

assignments to V 

 

x0 =  x1 =  

x2 = Phi(x0,x1) 



- 12 - 

SSA Construction 

 High-level algorithm 

1. Insert Phi nodes 

2. Rename variables 

 A dumb algorithm 

» Insert Phi functions at every join for every variable 

» Solve reaching definitions 

» Rename each use to the def that reaches it (will be unique) 

 Problems with the dumb algorithm 

» Too many Phi functions (precision) 

» Too many Phi functions (space) 

» Too many Phi functions (time) 



- 13 - 

Need Better Phi Node Insertion Algorithm 

 A definition at n forces a Phi node at m iff n not in DOM(m), but n in DOM(p) 

for some predecessors p of m 

BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

def in BB4 forces Phi in BB6 

def in BB6 forces Phi in BB7 

def in BB7 forces Phi in BB1 

Dominance frontier 

The dominance frontier of node X is the 

set of nodes Y such that 

    * X dominates a predecessor of Y, but 

    * X does not strictly dominate Y 

Phi is placed in the block that 

is just outside the dominated region 

of the definition BB 



- 14 - 

Dominator Tree 

BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB5 

BB7 

BB DOM 

0 0 

1 0,1 

2 0,1,2 

3 0,1,3 

BB DOM 

4 0,1,3,4 

5 0,1,3,5 

6 0,1,3,6 

7 0,1,7 

Dom tree 

First BB is the root node, each node 

dominates all of its descendants 



- 15 - 

Computing Dominance Frontiers 

BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB5 

BB7 

For each join point X in the CFG 

    For each predecessor, Y, of X in the CFG 

        Run up to the IDOM(X) in the dominator tree, 

        adding X to DF(N) for each N between Y and 

        IDOM(X) 

BB DF 

0 - 

1 - 

2 7 

3 7 

4 6 

5 6 

6 7 

7 1 



- 16 - 

Class Problem 

BB0 

BB1 

BB2 BB3 

BB4 

BB5 

Draw the dominator tree, calculate the dominance frontier for each BB 



- 17 - 

Phi Node Insertion Algorithm 

 Compute dominance frontiers 

 Find global names (aka virtual registers) 

» Global if name live on entry to some block 

» For each name, build a list of blocks that define it 

 Insert Phi nodes 

» For each global name n 

 For each BB b in which n is defined 

 For each BB d in b’s dominance frontier 

o Insert a Phi node for n in d 

o Add d to n’s list of defining BBs 



- 18 - 

Phi Node Insertion - Example 

a = 

c = 

b = 

c = 

d = 

a = 

d = 

c = d = 

b = 

i = 

a = 

b = 

c = 

i = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

BB DF 

0 - 

1 - 

2 7 

3 7 

4 6 

5 6 

6 7 

7 1 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

d = Phi(d,d) 

i = Phi(i,i) 

a is defined in 0,1,3 

    need Phi in 7 

then a is defined in 7 

    need Phi in 1 

b is defined in 0, 2, 6 

    need Phi in 7 

then b is defined in 7 

    need Phi in 1 

c is defined in 0,1,2,5 

    need Phi in 6,7 

then c is defined in 7 

    need Phi in 1 

d is defined in 2,3,4 

    need Phi in 6,7 

then d is defined in 7 

    need Phi in 1 

i is defined in BB7 

    need Phi in BB1 

c = Phi(c,c) 

d = Phi(d,d) 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

d = Phi(d,d) 



- 19 - 

Class Problem 

c = 
b = 

a = 

b = 

a = 

c = 

a = 

b = 
BB0 

BB1 

BB2 BB3 

BB4 

BB5 

Insert the Phi nodes 



- 20 - 

SSA Step 2 – Renaming Variables 

 Use an array of stacks, one stack per global variable (VR) 

 Algorithm sketch 

» For each BB b in a preorder traversal of the dominator tree 

 Generate unique names for each Phi node 

 Rewrite each operation in the BB 

 Uses of global name: current name from stack 

 Defs of global name: create and push new name 

 Fill in Phi node parameters of successor blocks 

 Recurse on b’s children in the dominator tree 

 <on exit from b> pop names generated in b from stacks 



- 21 - 

Renaming – Example (Initial State) 

a = 

c = 

b = 

c = 

d = 

a = 

d = 

c = d = 

b = 

i = 

a = 

b = 

c = 

i = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

d = Phi(d,d) 

i = Phi(i,i) 

c = Phi(c,c) 

d = Phi(d,d) 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

d = Phi(d,d) 

var: a    b    c    d     i 

ctr:  0    0    0    0    0 

stk: a0   b0  c0  d0  i0 



- 22 - 

Renaming – Example (After BB0) 

a = 

c = 

b = 

c = 

d = 

a = 

d = 

c = d = 

b = 

i = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a = Phi(a0,a) 

b = Phi(b0,b) 

c = Phi(c0,c) 

d = Phi(d0,d) 

i = Phi(i0,i) 

c = Phi(c,c) 

d = Phi(d,d) 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

d = Phi(d,d) 

var: a    b    c    d     i 

ctr:  1    1    1    1    1 

stk: a0   b0  c0  d0  i0 



- 23 - 

Renaming – Example (After BB1) 

a2 = 

c2 = 

b = 

c = 

d = 

a = 

d = 

c = d = 

b = 

i = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a1 = Phi(a0,a) 

b1 = Phi(b0,b) 

c1 = Phi(c0,c) 

d1 = Phi(d0,d) 

i1 = Phi(i0,i) 

c = Phi(c,c) 

d = Phi(d,d) 

a = Phi(a,a) 

b = Phi(b,b) 

c = Phi(c,c) 

d = Phi(d,d) 

var: a    b    c    d     i 

ctr:  3    2    3    2    2 

stk: a0   b0  c0  d0  i0 

       a1   b1  c1  d1  i1 

       a2         c2 



- 24 - 

Renaming – Example (After BB2) 

a2 = 

c2 = 

b2 = 

c3 = 

d2 = 

a = 

d = 

c = d = 

b = 

i = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a1 = Phi(a0,a) 

b1 = Phi(b0,b) 

c1 = Phi(c0,c) 

d1 = Phi(d0,d) 

i1 = Phi(i0,i) 

c = Phi(c,c) 

d = Phi(d,d) 

a = Phi(a2,a) 

b = Phi(b2,b) 

c = Phi(c3,c) 

d = Phi(d2,d) 

var: a    b    c    d     i 

ctr:  3    3    4    3    2 

stk: a0   b0  c0  d0  i0 

       a1   b1  c1  d1  i1 

       a2   b2  c2  d2 

                    c3 



- 25 - 

Renaming – Example (Before BB3) 

a2 = 

c2 = 

b2 = 

c3 = 

d2 = 

a = 

d = 

c = d = 

b = 

i = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a1 = Phi(a0,a) 

b1 = Phi(b0,b) 

c1 = Phi(c0,c) 

d1 = Phi(d0,d) 

i1 = Phi(i0,i) 

c = Phi(c,c) 

d = Phi(d,d) 

a = Phi(a2,a) 

b = Phi(b2,b) 

c = Phi(c3,c) 

d = Phi(d2,d) 

var: a    b    c    d     i 

ctr:  3    3    4    3    2 

stk: a0   b0  c0  d0  i0 

       a1   b1  c1  d1  i1 

       a2         c2 

 

This just updates 

the stack to remove the 

stuff from the left path 

out of BB1 



- 26 - 

Renaming – Example (After BB3) 

a2 = 

c2 = 

b2 = 

c3 = 

d2 = 

a3 = 

d3 = 

c = d = 

b = 

i = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a1 = Phi(a0,a) 

b1 = Phi(b0,b) 

c1 = Phi(c0,c) 

d1 = Phi(d0,d) 

i1 = Phi(i0,i) 

c = Phi(c,c) 

d = Phi(d,d) 

a = Phi(a2,a) 

b = Phi(b2,b) 

c = Phi(c3,c) 

d = Phi(d2,d) 

var: a    b    c    d     i 

ctr:  4    3    4    4    2 

stk: a0   b0  c0  d0  i0 

       a1   b1  c1  d1  i1 

       a2         c2  d3 

       a3 



- 27 - 

Renaming – Example (After BB4) 

a2 = 

c2 = 

b2 = 

c3 = 

d2 = 

a3 = 

d3 = 

c = d4 = 

b = 

i = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a1 = Phi(a0,a) 

b1 = Phi(b0,b) 

c1 = Phi(c0,c) 

d1 = Phi(d0,d) 

i1 = Phi(i0,i) 

c = Phi(c2,c) 

d = Phi(d4,d) 

a = Phi(a2,a) 

b = Phi(b2,b) 

c = Phi(c3,c) 

d = Phi(d2,d) 

var: a    b    c    d     i 

ctr:  4    3    4    5    2 

stk: a0   b0  c0  d0  i0 

       a1   b1  c1  d1  i1 

       a2         c2  d3 

       a3               d4 



- 28 - 

Renaming – Example (After BB5) 

a2 = 

c2 = 

b2 = 

c3 = 

d2 = 

a3 = 

d3 = 

c4 = d4 = 

b = 

i = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a1 = Phi(a0,a) 

b1 = Phi(b0,b) 

c1 = Phi(c0,c) 

d1 = Phi(d0,d) 

i1 = Phi(i0,i) 

c = Phi(c2,c4) 

d = Phi(d4,d3) 

a = Phi(a2,a) 

b = Phi(b2,b) 

c = Phi(c3,c) 

d = Phi(d2,d) 

var: a    b    c    d     i 

ctr:  4    3    5    5    2 

stk: a0   b0  c0  d0  i0 

       a1   b1  c1  d1  i1 

       a2         c2  d3 

       a3         c4 



- 29 - 

Renaming – Example (After BB6) 

a2 = 

c2 = 

b2 = 

c3 = 

d2 = 

a3 = 

d3 = 

c4 = d4 = 

b3 = 

i = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a1 = Phi(a0,a) 

b1 = Phi(b0,b) 

c1 = Phi(c0,c) 

d1 = Phi(d0,d) 

i1 = Phi(i0,i) 

c5 = Phi(c2,c4) 

d5 = Phi(d4,d3) 

a = Phi(a2,a3) 

b = Phi(b2,b3) 

c = Phi(c3,c5) 

d = Phi(d2,d5) 

var: a    b    c    d     i 

ctr:  4    4    6    6    2 

stk: a0   b0  c0  d0  i0 

       a1   b1  c1  d1  i1 

       a2   b3  c2  d3 

       a3         c5  d5 



- 30 - 

Renaming – Example (After BB7) 

a2 = 

c2 = 

b2 = 

c3 = 

d2 = 

a3 = 

d3 = 

c4 = d4 = 

b3 = 

i2 = 

a0 = 

b0 = 

c0 = 

i0 = 
BB0 

BB1 

BB2 BB3 

BB4 

BB6 

BB7 

BB5 

a1 = Phi(a0,a4) 

b1 = Phi(b0,b4) 

c1 = Phi(c0,c6) 

d1 = Phi(d0,d6) 

i1 = Phi(i0,i2) 

c5 = Phi(c2,c4) 

d5 = Phi(d4,d3) 

a4 = Phi(a2,a3) 

b4 = Phi(b2,b3) 

c6 = Phi(c3,c5) 

d6 = Phi(d2,d5) 

var: a    b    c    d     i 

ctr:  5    5    7    7    3 

stk: a0   b0  c0  d0  i0 

       a1   b1  c1  d1  i1 

       a2   b4  c2  d6  i2 

       a4         c6 

Fin! 



- 31 - 

Class Problem 

c = 
b = 

a = 

b =  

a = 

c = 

a = 

b = 
BB0 

BB1 

BB2 BB3 

BB4 

BB5 

Rename the variables so this code is in SSA form 


