
EECS 583 – Class 6

Dataflow Analysis

University of Michigan

September 26, 2011

- 1 -

Announcements & Reading Material

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Sections: 10.5, 10.6, 10.9, 10.10)

 Material for Wednesday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988,

9.9, 10.2, 10.3, 10.7

- 2 -

Live Variable (Liveness) Analysis

 Defn: For each point p in a program and each variable y,

determine whether y can be used before being redefined

starting at p

 Algorithm sketch

» For each BB, y is live if it is used before defined in the BB or it is

live leaving the block

» Backward dataflow analysis as propagation occurs from uses

upwards to defs

 4 sets

» GEN = set of external variables consumed in the BB

» KILL = set of external variable uses killed by the BB

 equivalent to set of variables defined by the BB

» IN = set of variables that are live at the entry point of a BB

» OUT = set of variables that are live at the exit point of a BB

- 3 -

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do

 GEN(X) = 0

 KILL(X) = 0

 for each operation in reverse sequential order in X, op, do

 for each destination operand of op, dest, do

 GEN(X) -= dest

 KILL(X) += dest

 endfor

 for each source operand of op, src, do

 GEN(X) += src

 KILL(X) -= src

 endfor

 endfor

endfor

- 4 -

Compute IN/OUT Sets for all BBs

initialize IN(X) to 0 for all basic blocks X

change = 1

while (change) do

 change = 0

 for each basic block in procedure, X, do

 old_IN = IN(X)

 OUT(X) = Union(IN(Y)) for all successors Y of X

 IN(X) = GEN(X) + (OUT(X) – KILL(X))

 if (old_IN != IN(X)) then

 change = 1

 endif

 endfor

endfor

- 5 -

Example – Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
r1 = MEM[r2+0]

r2 = MEM[r1 + 1]

r8 = r1 * r2

r1 = r1 + 5

r3 = r5 – r1

r7 = r3 * 2

r2 = 0

r7 = r1 + r2

r3 = 4

r3 = r3 + r7

r1 = r2 – r8

r3 = r1 * 2

BB1

BB2 BB3

BB4

- 6 -

Class Problem

r1 = 3

r2 = r3

r3 = r4

r1 = r1 + 1

r7 = r1 * r2

r4 = r4 + 1 r4 = r3 + r2

r8 = 8

r9 = r7 + r8

Compute liveness

 Calculate GEN/KILL for each BB

 Calculate IN/OUT for each BB

- 7 -

Reaching Definition Analysis (rdefs)

 A definition of a variable x is an operation that assigns, or
may assign, a value to x

 A definition d reaches a point p if there is a path from the
point immediately following d to p such that d is not
“killed” along that path

 A definition of a variable is killed between 2 points when
there is another definition of that variable along the path

» r1 = r2 + r3 kills previous definitions of r1

 Liveness vs Reaching defs

» Liveness variables (e.g., virtual registers), don’t care about
specific users

» Reaching defs operations, each def is different

» Forward dataflow analysis as propagation occurs from defs
downwards (liveness was backward analysis)

- 8 -

Compute Rdef GEN/KILL Sets for each BB

for each basic block in the procedure, X, do

 GEN(X) = 0

 KILL(X) = 0

 for each operation in sequential order in X, op, do

 for each destination operand of op, dest, do

 G = op

 K = {all ops which define dest – op}

 GEN(X) = G + (GEN(X) – K)

 KILL(X) = K + (KILL(X) – G)

 endfor

 endfor

endfor

GEN = set of definitions created by an operation

KILL = set of definitions destroyed by an operation

- Assume each operation only has 1 destination for simplicity

 so just keep track of “ops”..

- 9 -

Compute Rdef IN/OUT Sets for all BBs

initialize IN(X) = 0 for all basic blocks X

initialize OUT(X) = GEN(X) for all basic blocks X

change = 1

while (change) do

 change = 0

 for each basic block in procedure, X, do

 old_OUT = OUT(X)

 IN(X) = Union(OUT(Y)) for all predecessors Y of X

 OUT(X) = GEN(X) + (IN(X) – KILL(X))

 if (old_OUT != OUT(X)) then

 change = 1

 endif

 endfor

endfor

IN = set of definitions reaching the entry of BB

OUT = set of definitions leaving BB

- 10 -

Example Rdef Calculation

r1 = MEM[r2+0]

r2 = MEM[r1 + 1]

r8 = r1 * r2

r1 = r1 + 5

r3 = r5 – r1

r7 = r3 * 2

r2 = 0

r7 = r1 + r2

r3 = 4

r3 = r3 + r7

r1 = r2 – r8

r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

- 11 -

Class Problem

r1 = 3

r2 = r3

r3 = r4

r1 = r1 + 1

r7 = r1 * r2

r4 = r4 + 1 r4 = r3 + r2

r8 = 8

r9 = r7 + r8

Compute reaching defs

 Calculate GEN/KILL for each BB

 Calculate IN/OUT for each BB

- 12 -

DU/UD Chains

 Convenient way to access/use reaching defs info

 Def-Use chains

» Given a def, what are all the possible consumers of the

operand produced

» Maybe consumer

 Use-Def chains

» Given a use, what are all the possible producers of the

operand consumed

» Maybe producer

- 13 -

Example – DU/UD Chains

r1 = 3

r2 = r3

r3 = r4

r1 = r1 + 1

r7 = r1 * r2

r4 = r4 + 1 r4 = r3

r8 = 8

r9 = r7 + r8

- 14 -

Generalizing Dataflow Analysis

 Transfer function

» How information is changed by “something” (BB)

» OUT = GEN + (IN – KILL) /* forward analysis */

» IN = GEN + (OUT – KILL) /* backward analysis */

 Meet function

» How information from multiple paths is combined

» IN = Union(OUT(predecessors)) /* forward analysis */

» OUT = Union(IN(successors)) /* backward analysis */

 Generalized dataflow algorithm

» while (change)

 change = false

 for each BB

 apply meet function

 apply transfer functions

 if any changes change = true

- 15 -

Beyond Liveness or Upward Exposed Uses

 Upward exposed defs

» IN = GEN + (OUT – KILL)

» OUT = Union(IN(successors))

» Walk ops reverse order

 GEN += dest; KILL += dest

 Downward exposed uses

» IN = Union(OUT(predecessors))

» OUT = GEN + (IN-KILL)

» Walk ops forward order

 GEN += src; KILL -= src;

 GEN -= dest; KILL += dest;

 Downward exposed defs

» IN = Union(OUT(predecessors))

» OUT = GEN + (IN-KILL)

» Walk ops forward order

 GEN += dest; KILL += dest;

- 16 -

What About All Path Problems?

 Up to this point

» Any path problems (maybe relations)

 Definition reaches along some path

 Some sequence of branches in which def reaches

 Lots of defs of the same variable may reach a point

» Use of Union operator in meet function

 All-path: Definition guaranteed to reach

» Regardless of sequence of branches taken, def reaches

» Can always count on this

» Only 1 def can be guaranteed to reach

» Availability (as opposed to reaching)

 Available definitions

 Available expressions (could also have reaching expressions, but not

that useful)

- 17 -

Reaching vs Available Definitions

1:r1 = r2 + r3

2:r6 = r4 – r5

3:r4 = 4

4:r6 = 8

5:r6 = r2 + r3

6:r7 = r4 – r5
1,2,3,4 reach

1 available

1,2 reach

1,2 available

1,3,4 reach

1,3,4 available

1,2 reach

1,2 available

- 18 -

Available Definition Analysis (Adefs)

 A definition d is available at a point p if along all paths

from d to p, d is not killed

 Remember, a definition of a variable is killed between 2

points when there is another definition of that variable

along the path

» r1 = r2 + r3 kills previous definitions of r1

 Algorithm

» Forward dataflow analysis as propagation occurs from defs

downwards

» Use the Intersect function as the meet operator to guarantee the

all-path requirement

» GEN/KILL/IN/OUT similar to reaching defs

 Initialization of IN/OUT is the tricky part

- 19 -

Compute GEN/KILL Sets for each BB (Adefs)

for each basic block in the procedure, X, do

 GEN(X) = 0

 KILL(X) = 0

 for each operation in sequential order in X, op, do

 for each destination operand of op, dest, do

 G = op

 K = {all ops which define dest – op}

 GEN(X) = G + (GEN(X) – K)

 KILL(X) = K + (KILL(X) – G)

 endfor

 endfor

endfor

Exactly the same as reaching defs !!!

- 20 -

Compute IN/OUT Sets for all BBs (Adefs)

U = universal set of all operations in the Procedure

IN(0) = 0

OUT(0) = GEN(0)

for each basic block in procedure, W, (W != 0), do

 IN(W) = 0

 OUT(W) = U – KILL(W)

change = 1

while (change) do

 change = 0

 for each basic block in procedure, X, do

 old_OUT = OUT(X)

 IN(X) = Intersect(OUT(Y)) for all predecessors Y of X

 OUT(X) = GEN(X) + (IN(X) – KILL(X))

 if (old_OUT != OUT(X)) then

 change = 1

 endif

 endfor

endfor

- 21 -

Available Expression Analysis (Aexprs)

 An expression is a RHS of an operation

» r2 = r3 + r4, r3+r4 is an expression

 An expression e is available at a point p if along all paths
from e to p, e is not killed

 An expression is killed between 2 points when one of its
source operands are redefined

» r1 = r2 + r3 kills all expressions involving r1

 Algorithm

» Forward dataflow analysis as propagation occurs from defs
downwards

» Use the Intersect function as the meet operator to guarantee the
all-path requirement

» Looks exactly like adefs, except GEN/KILL/IN/OUT are the
RHS’s of operations rather than the LHS’s

- 22 -

Computation of Aexpr GEN/KILL Sets

for each basic block in the procedure, X, do

 GEN(X) = 0

 KILL(X) = 0

 for each operation in sequential order in X, op, do

 K = 0

 for each destination operand of op, dest, do

 K += {all ops which use dest}

 endfor
 if (op not in K)

 G = op

 else

 G = 0
 GEN(X) = G + (GEN(X) – K)

 KILL(X) = K + (KILL(X) – G)

 endfor

endfor

We can also formulate the GEN/KILL slightly differently so you do not

need to break up instructions like “r2 = r2 + 1”.

- 23 -

Class Problem - Aexprs Calculation

1: r1 = r6 * r9

2: r2 = r2 + 1

3: r5 = r3 * r4

4: r1 = r2 + 1

5: r3 = r3 * r4

6: r8 = r3 * 2

7: r7 = r3 * r4

8: r1 = r1 + 5

9: r7 = r1 - 6

10: r8 = r2 + 1

11: r1 = r3 * r4

12: r3 = r6 * r9

- 24 -

Some Things to Think About

 Liveness and rdefs are basically the same thing

» All dataflow is basically the same with a few parameters

 Meaning of gen/kill – src vs dest, variable vs operation

 Backward / Forward

 All paths / some paths (must/may)

 So far, we have looked at may analysis algorithms

 How do you adjust to do must algorithms?

 Dataflow can be slow

» How to implement it efficiently?

 Forward analysis – DFS order

 Backward analysis – PostDFS order

» How to represent the info?

 Predicates

» Throw a monkey wrench into this stuff

» So, how are predicates handled?

