EECS 583 — Class 5
Hyperblocks, Control Height
Reduction

University of Michigan

September 21, 2011

Reading + Announcements Material

< Reminder — HW 1 due Friday at midnight

» Submit uniquename_hw1.tgz file to
andrew.eecs.umich.edu:/y/submit/

» Talk to Daya in office hours Thurs or Fri if having trouble
< My office hours today — cancelled due to industry visitors

<+ Today’s class

» "Effective Compiler Support for Predicated Execution using the
Hyperblock™, S. Mahlke et al., MICRO-25, 1992.

» "Control CPR: A Branch Height Reduction Optimization for
EPIC Processors", M. Schlansker et al., PLDI-99, 1999.

< Material for next Monday

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.
(Sections: 10.5, 10.6, 10.9, 10.10)

-1-

Class Problem From Last Time - Answer

. BB CD
f(a>0){ BB1 1 -
r=t+s a>0 2 1
If(b>0]c>0) 3 2
BB2 4 3
u=v+1 5 2,3
else if (d > 0) bs0 g ;14
X=y+1 BB3) 3)
else |
y z=z+1 BB4 BB5
d<=0_~ \d~0 p3=0
BB7 pl=CMPP.UN (a>0)if T
r=t+sifpl
\ / p2,p3 = CMPP.UC.ON (b > 0) if p1
p4,p3 = CMPP.UC.ON (c > 0) if p2
BBS u=v+1ifp3
2. Draw the CEG 25_,p;s+: lCiI}/IFI;’6P.UC.UN (d > 0) if p4
b. Compute CD z=z+1ifp5

c. If-convert the code

When to Apply If-conversion?

< Positives
» Remove branch
* No disruption to sequential fetch BB1

e N dicti ispredict
o prediction or mispredic 90 80/\20

* No use of branch resource
» Increase potential for operation

overlap 8N. ./2 0

» Enable more aggressive compiler
xforms BB4

e Software pipelining 1V

* Height reduction
% Negatives BBS 90
» Max or Sum function applied when 1N
overlap *
* Resource usage BB6

e Dependence height
e Hazard presence 10
» Executing useless operations

Negative 1: Resource Usage

Resource usage is additive

for all BBs that are if-converted

} 100

BB1

6040

BB1

B

B3

BB2 if p1

B2 B
60N~ 4
BB4

100

0

BB3 if p2

BB4

Case 1: Each BB requires 3 resources
Assume processor has 2 resources

No IC: 1*3 + .6*3 + 4*3+1*3=9
9/2=45=5cycles

IC: 1(3+3+3+3)=12
12 /2 =6 cycles

Case 2: Each BB requires 3 resources
Assume processor has 6 resources

No IC: 1*3+ .6*3+ 4*3+1*3=9
9/6=15=2cycles

IC: 1(3+3+3+3) = 12
12 /6 =2 cycles

Negative 2: Dependence Height

Dependence height is max of Case 1: height(bbl) = 1, height(bb2) = 3
for all BBs that are if-converted Height(bb3) = 9, height(bb4) = 2

(dep height = schedule length

with infinite resources) NolIC:1*1+ .6*3+.4*9+1*2=84

IC: 11 + 1*MAX(3,9) + 1*3 = 13

100
60 i 5Bl Case 2: height(bb1) = 1, height(bb2) = 3
40 smaner | Helant(bbd) =3, height(bbd) = 2
e — # No IC: 1*1 + .6*3 + .4*3 + 1*2 = 6
BB3 if p2 : : , =
60, 40
BB4 BB4 IC: 1*1 + 1*MAX(3,3) + 1*2 = 6

Negative 3: Hazard Presence

Hazard = operation that forces Case 1: Hazard in BB3
the compiler to be conservative,
so limited reordering or optimization, No IC : SB out of BB1, 2, 4, operations
e.g., subroutine call, pointer store, ... In BB4 free to overlap with those in
BB1 and BB2
100 IC: operations in BB4 cannot overlap
| With those in BB1 (BB2 ok)
BB1 BB1
60 40

BB2 if p1
BB2 BB3 #
BB3 if p2

60~ 40

BB4
\ 100

BB4

When To If-convert?

/
0‘0

Resources

» Small resource usage ideal for
less important paths

Dependence height

» Matched heights are ideal

» Close to same heights is ok
Remember everything is relative
for resources and dependence
height !
Hazards

» Avold hazards unless on most
important path

Estimate of benefit
» Branches/Mispredicts removed
» Fudge factor

60

} 100

BB1

BB2

BB1

BB3

BB2 if p1

60N, 40

BB4

\ 100

BB3 if p2

BB4

The Hyperblock

<« Hyperblock - Collection of basic
blocks in which control flow may
only enter at the first BB. All
internal control flow is eliminated
via if-conversion

» “Likely control flow paths”
» Acyclic (outer backedge ok)

» Multiple intersecting traces with
no side entrances

» Side exits still exist

<« Hyperblock formation
» 1. Block selection
» 2. Tail duplication
» 3. If-conversion

90

|10

BB1

80 .20

BB2

BB3

80N~ 20

BB4

l(?/

BB5

90

BB6

10

Block Selection

90

\10

90

10

X/
0‘0

Block selection

» Select subset of BBs for
inclusion in HB

» Difficult problem
» Weighted cost/benefit
function
e Height overhead
e Resource overhead
e Hazard overhead
e Branch elimination benefit
* Weighted by frequency

Block Selection

< Create a trace > “main path”

» Use a heuristic function to select other blocks that are
“compatible” with the main path

» Consider each BB by itself for simplicity
e Compute priority for other BB’s
* Normalize against main path.

<« BSVI = (K x (weight_bbi / size_bbi) x (size_main_path /
weight_main_path) x bb_chari)
» weight = execution frequency
» Slze = number of operations

» bb_char = characteristic value of each BB
* Max value =1, Hazardous instructions reduce this to 0.5, 0.25, ...

» K = constant to represent Processor Issue rate
< Include BB when BSVi > Threshold

-10 -

Example - Step 1 - Block Selection

90

\10

BB1-5

80/

BB2 -8

B0,

BB3 -2

BB4 - 3

1(?/

BBS5 -5

10\

90

BB6 - 2

10

20

20

-11 -

main path =1,2,4,6
num ops=5+8+3+2=18
weight = 80

Calculate the BSVs for BB3, BB5
assuming no hazards, K =4

BSV3=4x(20/2)x (18/80) =9
BSV5 =4 x (10/5) x (18/80) = 1.8

If Threshold = 2.0, select BB3 along with
main path

Example - Step 2 - Tail Duplication

Tail duplication same as with Superblock formation

\ 10

| ho
BB1 I"BB .

89/\20 89/\20

BB B3

BB B3

2 B
2 B
éﬁ\\‘///éo éa\\‘///éo
BB4 B4

10— —_10
BB5 90 0 .
1& } | 10
BB6 -
90 / 81
9

-12 -

Example - Step 3 — If-conversion

If-convert intra-HB branches only!!

bo
- 10
BB1 | |
80
) N 20 BB1
BB2 BB3 01,p2 = CMPP
80N, 20 BB2 if pl
= BB3 if p2
\10‘
BB4
90 BB5
BB6
" 0 | BB5
BB6 81 9
81
9 1 5
1 9

-13-

Class Problem

100

BB1- 3

39///’\\\\§0

BB2 -8

AN

BB3 -2

e

BB/ -1

BBS -2

55

BB9 -1

-14 -

Form the HB for this subgraph
Assume K =4, BSV Threshold = 2

Control CPR: A Branch Height Reduction
Optimization for EPIC Architectures — PLDI 99

< Dependences limit performance

» Data
» Control _
» Long dependence chains Loop.tl — kgt
» Sequential code St = tl’;
< Problem worse wide-issue It (*a == 0) break;
processors 2 = *a++;
» High degree hardware *b++ = 12;
parallelism if (*a == 0) break;
» Low degree of program
parallel?sm Pros t3 = *a++,
» Resources idle most of the time *b++ =13;

If (*a !=0) goto Loop;
< Height reduction optimizations
» Traditional compilers focus on
reducing operation count

» VLIW compilers need on
increasing program parallelism

-15 -

Our Approach to Control Height Reduction

< Goals
» Reduce dependence height through a network of branches
» Reduce number of executed branches

Applicable to a large fraction of the program

Fit into our existing compiler infrastructure

h

v

h

v

< Difficulty
» Reducing height while
» Not increasing operation count

< lrredundant Consecutive Branch Method (ICBM)

» Use branch profile information
» Optimize likely the important control flow paths
» Possibly penalize less important paths

-16 -

Definitions

< Superblock
» single-entry linear sequence of

0 b0
operations containing 1 or more)
branches
» Our basic compilation unit -
» Non-speculative operations
< EXit branch
al bl
» branch to allow early transfer out
of the superblock
» compare condition (ai < bi) Eo
< On-trace
» preferred execution path (E4)
» identified by profiling a2 b2

< Off-trace
» non-preferred paths (E1, E2, E3) E3
» taking an exit branch

E4

-17 -

|ICBM for a Simple RISC Processor - Step 1

Input superblock Insert bypassEBranch

-18 -

|ICBM for a Simple RISC Processor - Step 2

off-trace
code

E4 E4

Superblock with bypass branch Move code down through bypass branch

-19 -

ICBM for a Simple RISC Processor - Step 3

c2

off-trace
code

off-trace
code

c0

branch

cl
L
E2

E4 E4

Code after downward motion Simplify resultant code

-20 -

ICBM for a Simple RISC Processor - Step 4

i 11
? j LT
t °f§::§se’ 7 \ | 1
Vv
|

v

Code after simplification Sequential b_oolean Height regluced
expression expression

E4

a2l kIZ

-21 -

Is the ICBM Transformation Always Correct?

< Answer is no
T
< Problem with downward @ 2
motion
» S1: ops to compute c0, cl, c2 o
» S2: 0ps dependent on —»E2
branches
» S1 ops must remain on-trace
» S2 ops must move downward
» No dependences permitted /L.
between S1 and S2 62 @ E3

< Separability violation W l

» Experiments - 6% branches e
failed

» Memory dependences =

-22.-

Blocking

< Transforming an entire superblock

»

»

May not be possible
May not be profitable

< Solution - CPR blocks

»

»

»

Block into smaller subregions
Linear sequences of basic blocks
Apply CPR to each subregion

< Grow CPR block incrementally

< Terminate CPR block when

»

»

Correctness violation
Performance heuristic

E7
a) blocked input

———
v

E7

b) transformed result

~—

ES

E6

|ICBM for an EPIC Processor (HPL-PlayDoh)

< Predicated execution

» Boolean guard for all
operations

» a=b+cifp
< Increases complexity of ICBM
» Generalize the schema

» Analyze and transform
complex predicated code

» Suitability pattern match
» Proof of correct code
generation
< Increases efficiency of ICBM

» Wired-AND/wired-OR
Compares f0 a0 b0 f0 a1 b1 f0 a2 b2

» Accumulate disjunction of implp <l implp <l implp <l
conditions into a predicate - . .

. |
» Compare network reduced to
1 level

=24 -

Taste of the Results

Operation Dilation
Stotal | S branch| D total | D branch
099.g0 1.08 1.04 1.04 0.86
cmp 1.08 1.01 0.71 0.13
085.ccl 1.05 1.02 0.97 0.63
Gmean-all 1.08 1.03 0.93 0.42
Speedup
Seguentiall Narrow | Medium Wide Infinite
099.g0 0.96 1.01 1.02 1.02 1.02
cmp 1.53 1.25 1.79 2.87 3.6
085.ccl 1.13 1.06 1.12 1.15 1.18
Gmean-all 1.13 1.05 1.18 1.33 1.41

- 925

Next Topic: Dataflow Analysis +
Optimization

_ooking Inside the Basic Blocks:
Dataflow Analysis + Optimization

rt=r2+r3
re=r4—-rb

0.0

r6=r2+r3
r‘'=rd—-rb5

Control flow analysis

» Treat BB as black box

» Just care about branches
Now

» Start looking at ops in BBs

» What’s computed and where
Classical optimizations

» Want to make the
computation more efficient

Ex: Common Subexpression
Elimination (CSE)
» 1sr2 + r3 redundant?
» Is r4 —r5 redundant?
» What if there were 1000 BB’s
» Dataflow analysis !!

Dataflow Analysis Introduction

Dataflow analysis — Collection of information
that summarizes the creation/destruction of
values in a program. Used to identify legal
optimization opportunities.

Pick an arbitrary point in the program

Which VRs contain useful
data values? (liveness or upward
exposed uses)

Which definitions may reach

rt=r2+r3
re=r4—-rb
r6=r2+r3
r‘'=rd—-rb5

_— this point? (reaching defns)

Which definitions are guaranteed
to reach this point? (available defns)

Which uses below are exposed?
(downward exposed uses)

-28 -

Live Variable (Liveness) Analysis

< Defn: For each point p in a program and each variable y,
determine whether y can be used before being redefined

starting at p

- Algorithm sketch

» Foreach BB, yis live if it is used before defined in the BB or it is
live leaving the block

» Backward dataflow analysis as propagation occurs from uses
upwards to defs

<+ 4 sets
» GEN = set of external variables consumed in the BB
» KILL = set of external variable uses killed by the BB
 equivalent to set of variables defined by the BB
» IN = set of variables that are live at the entry point of a BB
» OUT = set of variables that are live at the exit point of a BB
_29.

&

D)

D)

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do
GEN(X) =0
KILL(X) =0
for each operation in reverse sequential order in X, op, do
for each destination operand of op, dest, do
GEN(X) -= dest
KILL(X) +=dest
endfor
for each source operand of op, src, do
GEN(X) +=src
KILL(X) -=src
endfor
endfor
endfor

-30 -

Compute IN/OUT Sets for all BBs

Initialize IN(X) to O for all basic blocks X
change =1
while (change) do
change =0
for each basic block in procedure, X, do
old_IN = IN(X)
OUT(X) = Union(IN(Y)) for all successors Y of X
IN(X) = GEN(X) + (OUT(X) — KILL(X))
if (old_IN '=IN(X)) then
change =1
endif
endfor
endfor

-31-

Example — Liveness Computation

BB1

rl = MEM[r2+0]
r2=MEMJrl + 1]
r8e=rl>r2

OUT = Union(IN(succs))
IN = GEN + (OUT — KILL)

BB2

ril=rl+5 r2=0
r3=r5-rl r'=rl+r2
r’'=r3>2 r3=4

r3=r3+rv/
rl1=r2-r8
r3=rl1*2

-32-

