
EECS 583 – Class 5

Hyperblocks, Control Height

Reduction

University of Michigan

September 21, 2011

- 1 -

Reading + Announcements Material

 Reminder – HW 1 due Friday at midnight

» Submit uniquename_hw1.tgz file to

andrew.eecs.umich.edu:/y/submit/

» Talk to Daya in office hours Thurs or Fri if having trouble

 My office hours today – cancelled due to industry visitors

 Today’s class

» "Effective Compiler Support for Predicated Execution using the

Hyperblock", S. Mahlke et al., MICRO-25, 1992.

» "Control CPR: A Branch Height Reduction Optimization for

EPIC Processors", M. Schlansker et al., PLDI-99, 1999.

 Material for next Monday

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Sections: 10.5, 10.6, 10.9, 10.10)

- 2 -

Class Problem From Last Time - Answer

if (a > 0) {

 r = t + s

 if (b > 0 || c > 0)

 u = v + 1

 else if (d > 0)

 x = y + 1

 else

 z = z + 1

}

a. Draw the CFG

b. Compute CD

c. If-convert the code

BB2

BB3

BB1

BB5

BB6 BB7

BB4

BB8

a <= 0 a > 0

b > 0

b <= 0

c <= 0
c > 0

d > 0 d <= 0

BB CD

1 -

2 1

3 -2

4 -3

5 2,3

6 -4

7 4

8 -

p3 = 0

p1 = CMPP.UN (a > 0) if T

r = t + s if p1

p2,p3 = CMPP.UC.ON (b > 0) if p1

p4,p3 = CMPP.UC.ON (c > 0) if p2

u = v + 1 if p3

p5,p6 = CMPP.UC.UN (d > 0) if p4

x = y + 1 if p6

z = z + 1 if p5

- 3 -

When to Apply If-conversion?

 Positives

» Remove branch

 No disruption to sequential fetch

 No prediction or mispredict

 No use of branch resource

» Increase potential for operation
overlap

» Enable more aggressive compiler
xforms

 Software pipelining

 Height reduction

 Negatives

» Max or Sum function applied when
overlap

 Resource usage

 Dependence height

 Hazard presence

» Executing useless operations

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 4 -

Negative 1: Resource Usage

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: Each BB requires 3 resources

Assume processor has 2 resources

No IC: 1*3 + .6*3 + .4*3 + 1*3 = 9

 9 / 2 = 4.5 = 5 cycles

IC: 1(3 + 3 + 3+ 3) = 12

 12 / 2 = 6 cycles

100

Resource usage is additive

for all BBs that are if-converted

Case 2: Each BB requires 3 resources

Assume processor has 6 resources

No IC: 1*3 + .6*3 + .4*3 + 1*3 = 9

 9 / 6 = 1.5 = 2 cycles

IC: 1(3+3+3+3) = 12

 12 / 6 = 2 cycles

BB1

BB2 if p1

BB3 if p2

BB4

- 5 -

Negative 2: Dependence Height

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: height(bb1) = 1, height(bb2) = 3

Height(bb3) = 9, height(bb4) = 2

No IC: 1*1 + .6*3 + .4*9 + 1*2 = 8.4

IC: 1*1 + 1*MAX(3,9) + 1*3 = 13

100

Dependence height is max of

for all BBs that are if-converted

(dep height = schedule length

with infinite resources)

BB1

BB2 if p1

BB3 if p2

BB4

Case 2: height(bb1) = 1, height(bb2) = 3

Height(bb3) = 3, height(bb4) = 2

No IC: 1*1 + .6*3 + .4*3 + 1*2 = 6

IC: 1*1 + 1*MAX(3,3) + 1*2 = 6

- 6 -

Negative 3: Hazard Presence

BB2

BB4

BB1

BB3

60 40

100

60 40

Case 1: Hazard in BB3

No IC : SB out of BB1, 2, 4, operations

In BB4 free to overlap with those in

BB1 and BB2

IC: operations in BB4 cannot overlap

With those in BB1 (BB2 ok)

100

Hazard = operation that forces

the compiler to be conservative,

so limited reordering or optimization,

e.g., subroutine call, pointer store, …

BB1

BB2 if p1

BB3 if p2

BB4

- 7 -

When To If-convert?

 Resources

» Small resource usage ideal for

less important paths

 Dependence height

» Matched heights are ideal

» Close to same heights is ok

 Remember everything is relative

for resources and dependence

height !

 Hazards

» Avoid hazards unless on most

important path

 Estimate of benefit

» Branches/Mispredicts removed

» Fudge factor

BB2

BB4

BB1

BB3

60 40

100

60 40

100

BB1

BB2 if p1

BB3 if p2

BB4

- 8 -

The Hyperblock

 Hyperblock - Collection of basic

blocks in which control flow may

only enter at the first BB. All

internal control flow is eliminated

via if-conversion

» “Likely control flow paths”

» Acyclic (outer backedge ok)

» Multiple intersecting traces with

no side entrances

» Side exits still exist

 Hyperblock formation

» 1. Block selection

» 2. Tail duplication

» 3. If-conversion

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 9 -

Block Selection

 Block selection

» Select subset of BBs for

inclusion in HB

» Difficult problem

» Weighted cost/benefit

function

 Height overhead

 Resource overhead

 Hazard overhead

 Branch elimination benefit

 Weighted by frequency

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 10 -

Block Selection

 Create a trace “main path”

» Use a heuristic function to select other blocks that are

“compatible” with the main path

» Consider each BB by itself for simplicity

 Compute priority for other BB’s

 Normalize against main path.

 BSVi = (K x (weight_bbi / size_bbi) x (size_main_path /

weight_main_path) x bb_chari)

» weight = execution frequency

» size = number of operations

» bb_char = characteristic value of each BB

 Max value = 1, Hazardous instructions reduce this to 0.5, 0.25, ...

» K = constant to represent processor issue rate

 Include BB when BSVi > Threshold

- 11 -

Example - Step 1 - Block Selection

BB2 - 8

BB4 - 3

BB6 - 2

BB5 - 5

BB1 - 5

BB3 – 2

80 20

10

90

10

90

10

80 20

10

main path = 1,2,4,6

 num_ops = 5 + 8 + 3 + 2 = 18

 weight = 80

Calculate the BSVs for BB3, BB5

assuming no hazards, K = 4

BSV3 = 4 x (20 / 2) x (18 / 80) = 9

BSV5 = 4 x (10 / 5) x (18 / 80) = 1.8

If Threshold = 2.0, select BB3 along with

main path

- 12 -

Example - Step 2 - Tail Duplication

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation

- 13 -

Example - Step 3 – If-conversion

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1 9

10

If-convert intra-HB branches only!!

- 14 -

Class Problem

BB2 - 8

BB4 - 2

BB7 -1

BB5 - 3

BB1- 3

BB3 - 2

20 80

100

20 80

BB6 - 2

BB8 -2

BB9 -1

45 55

55

10

35

10

35

Form the HB for this subgraph

Assume K = 4, BSV Threshold = 2

- 15 -

Control CPR: A Branch Height Reduction

Optimization for EPIC Architectures – PLDI 99

 Dependences limit performance

» Data

» Control

» Long dependence chains

» Sequential code

 Problem worse wide-issue
processors

» High degree hardware
parallelism

» Low degree of program
parallelism

» Resources idle most of the time

 Height reduction optimizations

» Traditional compilers focus on
reducing operation count

» VLIW compilers need on
increasing program parallelism

*b++ = t1;

if (*a == 0) break;

*b++ = t2;

if (*a == 0) break;

*b++ = t3;

Loop:

if (*a != 0) goto Loop;

t3 = *a++;

t2 = *a++;

t1 = *a++;

- 16 -

Our Approach to Control Height Reduction

 Goals

» Reduce dependence height through a network of branches

» Reduce number of executed branches

» Applicable to a large fraction of the program

» Fit into our existing compiler infrastructure

 Difficulty

» Reducing height while

» Not increasing operation count

 Irredundant Consecutive Branch Method (ICBM)

» Use branch profile information

» Optimize likely the important control flow paths

» Possibly penalize less important paths

- 17 -

Definitions

 Superblock

» single-entry linear sequence of
operations containing 1 or more
branches

» Our basic compilation unit

» Non-speculative operations

 Exit branch

» branch to allow early transfer out
of the superblock

» compare condition (ai < bi)

 On-trace

» preferred execution path (E4)

» identified by profiling

 Off-trace

» non-preferred paths (E1, E2, E3)

» taking an exit branch

E1
branch

store 1

E2
branch

E3
branch

store 2

store 0

E4

a0 b0

<

a1 b1

<

a2 b2

<

- 18 -

ICBM for a Simple RISC Processor - Step 1

Input superblock Insert bypass branch

E1
branch

store 1

E2
branch

E3
branch

store 2

store 0

c0

c1

c2

bypass
never
occurs

E4

c0
c1

c2

- 19 -

ICBM for a Simple RISC Processor - Step 2

Superblock with bypass branch Move code down through bypass branch

E1
branch

store 1

E2
branch

E3
branch

store 2

store 0

c0

c1

c2

bypass
never
occurs

E4

c0
c1

c2

store 0

bypass

off-trace

code

c0
c1

c2

E4

E1
branch

store 1

E2
branch

E3

store 2

c0

c1

c2

branch

E4

E1
branch

store 1

E2
branch

E3

store 2

c0

c1

c2

branch

- 20 -

ICBM for a Simple RISC Processor - Step 3

Code after downward motion Simplify resultant code

store 0

bypass

off-trace

code

c0
c1

c2

E4

E1
branch

store 1

E2
branch

E3

store 2

c0

c1

c2

branch

E4

E1
branch

store 1

E2
branch

E3

store 2

c0

c1

c2

branch

store 0

bypass

off-trace

code

c0
c1

c2

E4

store 1

store 2
E1

branch

store 1

E2
branch

E3

store 2

c0

c1

jump

- 21 -

ICBM for a Simple RISC Processor - Step 4

Code after simplification
Sequential boolean Height reduced

expression expression

store 0

bypass

off-trace

code

c0
c1

c2

E4

store 1

store 2
E1

branch

store 1

E2
branch

E3

store 2

c0

c1

jump

<

a0 b0

<

a1 b1

<

a2 b2

<

a0 b0

<

a2 b2

<

a1 b1

- 22 -

store 1

E2
branch

E3
branch

store 2

E1
branch

store 0

c0

c1

c2

bypass
never
occurs

c0
c1

c2

E4

load 1

Is the ICBM Transformation Always Correct?

 Answer is no

 Problem with downward

motion

» S1: ops to compute c0, c1, c2

» S2: ops dependent on

branches

» S1 ops must remain on-trace

» S2 ops must move downward

» No dependences permitted

between S1 and S2

 Separability violation

» Experiments - 6% branches

failed

» Memory dependences

- 23 -

Blocking

 Transforming an entire superblock

» May not be possible

» May not be profitable

 Solution - CPR blocks

» Block into smaller subregions

» Linear sequences of basic blocks

» Apply CPR to each subregion

 Grow CPR block incrementally

 Terminate CPR block when

» Correctness violation

» Performance heuristic

B1

B2

B3

E1

E2

E3

E4

E5

E7

E6

E7

E1

E2

E4

E5

E6

E3

a) blocked input b) transformed result

- 24 -

ICBM for an EPIC Processor (HPL-PlayDoh)

 Predicated execution

» Boolean guard for all
operations

» a = b + c if p

 Increases complexity of ICBM

» Generalize the schema

» Analyze and transform
complex predicated code

» Suitability pattern match

» Proof of correct code
generation

 Increases efficiency of ICBM

» Wired-AND/wired-OR
compares

» Accumulate disjunction of
conditions into a predicate

» Compare network reduced to
1 level

- 25 -

Taste of the Results

Sequential Narrow Medium Wide Infinite

099.go 0.96 1.01 1.02 1.02 1.02

cmp 1.53 1.25 1.79 2.87 3.6

085.cc1 1.13 1.06 1.12 1.15 1.18

Gmean-all 1.13 1.05 1.18 1.33 1.41

Speedup

S total S branch D total D branch

099.go 1.08 1.04 1.04 0.86

cmp 1.08 1.01 0.71 0.13

085.cc1 1.05 1.02 0.97 0.63

Gmean-all 1.08 1.03 0.93 0.42

Operation Dilation

Next Topic: Dataflow Analysis +

Optimization

- 27 -

Looking Inside the Basic Blocks:

Dataflow Analysis + Optimization

 Control flow analysis

» Treat BB as black box

» Just care about branches

 Now

» Start looking at ops in BBs

» What’s computed and where

 Classical optimizations

» Want to make the

computation more efficient

 Ex: Common Subexpression

Elimination (CSE)

» Is r2 + r3 redundant?

» Is r4 – r5 redundant?

» What if there were 1000 BB’s

» Dataflow analysis !!

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

- 28 -

Dataflow Analysis Introduction

Which VRs contain useful

data values? (liveness or upward

exposed uses)

Which definitions may reach

this point? (reaching defns)

Which definitions are guaranteed

to reach this point? (available defns)

Which uses below are exposed?

(downward exposed uses)

Pick an arbitrary point in the program

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

Dataflow analysis – Collection of information

that summarizes the creation/destruction of

values in a program. Used to identify legal

optimization opportunities.

- 29 -

Live Variable (Liveness) Analysis

 Defn: For each point p in a program and each variable y,

determine whether y can be used before being redefined

starting at p

 Algorithm sketch

» For each BB, y is live if it is used before defined in the BB or it is

live leaving the block

» Backward dataflow analysis as propagation occurs from uses

upwards to defs

 4 sets

» GEN = set of external variables consumed in the BB

» KILL = set of external variable uses killed by the BB

 equivalent to set of variables defined by the BB

» IN = set of variables that are live at the entry point of a BB

» OUT = set of variables that are live at the exit point of a BB

- 30 -

Computing GEN/KILL Sets For Each BB

for each basic block in the procedure, X, do

 GEN(X) = 0

 KILL(X) = 0

 for each operation in reverse sequential order in X, op, do

 for each destination operand of op, dest, do

 GEN(X) -= dest

 KILL(X) += dest

 endfor

 for each source operand of op, src, do

 GEN(X) += src

 KILL(X) -= src

 endfor

 endfor

endfor

- 31 -

Compute IN/OUT Sets for all BBs

initialize IN(X) to 0 for all basic blocks X

change = 1

while (change) do

 change = 0

 for each basic block in procedure, X, do

 old_IN = IN(X)

 OUT(X) = Union(IN(Y)) for all successors Y of X

 IN(X) = GEN(X) + (OUT(X) – KILL(X))

 if (old_IN != IN(X)) then

 change = 1

 endif

 endfor

endfor

- 32 -

Example – Liveness Computation
OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)
r1 = MEM[r2+0]

r2 = MEM[r1 + 1]

r8 = r1 * r2

r1 = r1 + 5

r3 = r5 – r1

r7 = r3 * 2

r2 = 0

r7 = r1 + r2

r3 = 4

r3 = r3 + r7

r1 = r2 – r8

r3 = r1 * 2

BB1

BB2 BB3

BB4

