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PrinciplesPrinciples

• Leverage zero-overhead thread scheduling

• Inter-thread communication possible locally, not 

globally

• Optimize use of on-chip memory

• Group threads to avoid SIMD penalties and memory 

port/bank conflicts

• Further optimization involves tradeoffs between 

resources
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Managing Memory LatencyManaging Memory Latency

• Global memory latency is 200+ 
cycles

• 8 instructions/cycle

• Need 1600 instructions to avoid 

stalling

• Decompose work into a fine 

granularity for TLP

• ILP and MLP within each thread 

have a multiplicative effect

Ctemp = 0;

for (i = 0; i < widthA;
     i++)
  {
    Ctemp += A[indexA]
      * B[indexB];
    indexA++;
    indexB += widthB;
  }

C[indexC] = Ctemp;

Matrix multiplication

Each thread – 1 result element

1024x1024 matrix:

1M threads
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Global Bandwidth SaturationGlobal Bandwidth Saturation

Ctemp = 0;

for (i = 0; i < widthA;
     i++)
  {
    Ctemp += A[indexA]
      * B[indexB];
    indexA++;
    indexB += widthB;
  }

C[indexC] = Ctemp;

• 2 global loads for every 6 
instructions

• Requires more than 2X the 
available bandwidth

• Inter-thread data reuse: local 

scratchpad memory can reduce 

global bandwidth usage
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Memory Access PatternMemory Access Pattern
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Reducing Memory Bandwidth UsageReducing Memory Bandwidth Usage

Ctemp = 0;

for (i = 0; i < widthA;
     i++)
  {
    Ctemp += A[indexA]
      * B[indexB];
    indexA++;
    indexB += widthB;
  }

C[indexC] = Ctemp;

Ctemp = 0;
for (...) {
__shared__ float As[16][16];
__shared__ float Bs[16][16];

  // load input tile elements
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16 * widthB;
__syncthreads();

  // compute results for tile
  for (i = 0; i < 16; i++)
    {
      Ctemp += As[ty][i]
        * Bs[i][tx];
    }

__syncthreads();
}
C[indexC] = Ctemp;

(a) Initial Version (b) Tiled Version

2 global loads, 

2 shared 

memory stores

32 shared 

memory loads

Developers must correctly manage data locality.

32 global 

loads
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Thread GroupingThread Grouping

• Each memory is specialized for certain access patterns

• Efficient global memory access is linked to tile size

• For good bandwidth utilization, accesses should be aligned and consist 
of 16 contiguous words
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Further ImprovementFurther Improvement

• Reduce non-computation instructions

– Loop unrolling

– Change threading granularity to eliminate redundancy

• TLP vs. per-thread performance: prefetching, register 

tiling, traditional optimizations

• Difficult to estimate performance without performing 

the optimization and executing the kernel
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UnrollingUnrolling
Ctemp = 0;
for (...) {

__shared__ float As[16][16];
__shared__ float Bs[16][16];

  // load input tile elements
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16 * widthB;

__syncthreads();

  // compute results for tile
  for (i = 0; i < 16; i++)
    {
      Ctemp += As[ty][i]
        * Bs[i][tx];
    }

__syncthreads();
}
C[indexC] = Ctemp;

Ctemp = 0;
for (...) {

__shared__ float As[16][16];
__shared__ float Bs[16][16];

  // load input tile elements
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16 * widthB;

__syncthreads();

  // compute results for tile
  Ctemp +=
     As[ty][0] * Bs[0][tx];
  ...
  Ctemp +=
     As[ty][15] * Bs[15][tx];

__syncthreads();
}
C[indexC] = Ctemp;

(b) Tiled Version (c) Unrolled Version

Removal of branch instructions and address calculations

Does this use 

more registers?
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Parboil: Speedup of GPUParboil: Speedup of GPU--Accelerated FunctionsAccelerated Functions

0

10

20

30

40

50

60

H.264 LBM RC5-72 FEM RPES PNS SAXPYTPACF FDTD MRI-Q MRI-

FHD

CP

Kernel

Application

G
P

U
 S

p
e
e
d
u
p

R
e
la

ti
v
e
 t
o
 x

8
6
 C

P
U

Speedup changes the usage model!

Most of these required 20+ different configurations
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LBM Fluid Simulation (from SPEC CPU 2006)LBM Fluid Simulation (from SPEC CPU 2006)

• Simulation of fluid flow in a grid

• Synchronization required after 

each time step

• Can reduce bandwidth usage by 

caching in shared memory

• But can hold data for only 200 grid 
cells – global memory latency is 

exposed
Flow through a cell (dark 

blue) is updated based on its 

flow and the flow in 18 

neighboring cells (light blue).
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ConclusionsConclusions

• Naïve mapping to GeForce 8800 does not 

always buy significant performance

• By following the presented principles, 10X or 

more performance advantage over a single-core 

CPU can be achieved

• Remaining speedup involves using specialized 

resources or trading off use of resources
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Optimization

• First order principles [PPoPP ‘08]

– Enough threads for TLP

– Little or no inter-thread communication

– Good use of on-chip memory to reduce bandwidth 

pressure

– Thread grouping to optimize SIMD & memory banking

• Second order – balancing instruction stream 

efficiency and hardware utilization
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Examples of Optimizations

• Instruction stream efficiency

– Loop unrolling

– TLP granularity changes

– Traditional optimization

• Hardware utilization

– Prefetching

– ILP-extraction transformations

– Scheduling for MLP

– Increasing TLP
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Discontinuous Optimization Space

• Begin with a version with 3 thread blocks per SM

– 256 threads per thread block, 10 registers per thread

– 3 * 256 * 10 = 7680 total registers

• Perform an optimization that uses an additional 

register per thread

– 3 * 256 * 11 = 8448 > 8k!

– Performance per thread has increased

– But this version has only 2 thread blocks per SM

• Is the optimized version better or worse?
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Resource Allocation Example

32KB Register File

16KB Shared Memory

………

SP0 SP7

(b) Post-“optimization”

Insufficient 

registers to allocate 

3 blocks

Thread Contexts

X

Increase in per-thread performance, but fewer threads:

Lower overall performance in this case
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How Close Are We to Best Performance?

• Investigated applications with many optimizations

• Exhaustive optimization space search

– Applied many different, controllable optimizations

– Parameterized code by hand

• Hand-optimized code is deficient

– Generally >15% from the best configuration

– Trapped at local maxima

– Often non-intuitive mix of optimizations
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SAD Thread Block Size
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What happens if the application or runtime changes?

Probably need to rerun the search.
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Solution: Evaluate All Likely Configurations

• Begin with a complete, parameterized 

optimization space per kernel

– Tile size and shape

– Thread block size, work per thread block

– Other optimizations, such as manual register spilling

• Compile all configurations to find resource usage

• Generate metric values for each configuration

• Prune space using a Pareto-optimal curve
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Metrics for the GeForce 8800

How efficient is our instruction stream?

Can we keep the processors utilized?

These capture first-order effects of applications.
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Space Reduction
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Summary and Conclusion

• Performance tuning involves tradeoffs between 

instruction efficiency and HW utilization

• Manual, iterative optimization usually leaves 

performance on the table

• Reoptimization needed for new hardware, 

application, or runtime

• Pareto-based pruning removes up to 98% of the 

optimization space, still finds best configuration

• Ryoo Ph.D. dissertation contains further work: 

http://www.crhc.uiuc.edu/IMPACT.




