Optimization Principles and Application Performance Evaluation of a Multithreaded GPU Using CUDA

Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and Wen-mei H. Hwu

Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign
and NVIDIA Corporation
MRI-FHD Performance

How do we get to here?
Principles

- Leverage zero-overhead thread scheduling
- Inter-thread communication possible locally, not globally
- Optimize use of on-chip memory
- Group threads to avoid SIMD penalties and memory port/bank conflicts

- Further optimization involves tradeoffs between resources
Managing Memory Latency

- Global memory latency is 200+ cycles
- 8 instructions/cycle
- Need 1600 instructions to avoid stalling
- Decompose work into a fine granularity for TLP
- ILP and MLP within each thread have a multiplicative effect

```c
Ctemp = 0;
for (i = 0; i < widthA; i++)
{
    Ctemp += A[indexA] * B[indexB];
    indexA++;
    indexB += widthB;
}
C[indexC] = Ctemp;
```

Matrix multiplication
Each thread – 1 result element
1024x1024 matrix:
1M threads
Global Bandwidth Saturation

- 2 global loads for every 6 instructions
- Requires more than 2X the available bandwidth
- Inter-thread data reuse: local scratchpad memory can reduce global bandwidth usage

C_{\text{temp}} = 0;

\text{for } (i = 0; i < \text{width}_{A}; i++)
{\text{\begin{align*}
C_{\text{temp}} &= A[\text{index}_{A}] \\
& \times B[\text{index}_{B}]; \\
\text{index}_{A} &= \text{index}_{A} + 1; \\
\text{index}_{B} &= \text{width}_{B}; \\
\end{align*}}} \\
C[\text{index}_{C}] = C_{\text{temp}};
Memory Access Pattern

Original Access Pattern

Tiled Access Pattern

Copy into scratchpad memory

Perform multiplication with scratchpad values

WIDTH
Reducing Memory Bandwidth Usage

Developers must correctly manage data locality.
Thread Grouping

- Each memory is specialized for certain access patterns
- Efficient global memory access is linked to tile size
- For good bandwidth utilization, accesses should be aligned and consist of 16 contiguous words
Further Improvement

• Reduce non-computation instructions
 – Loop unrolling
 – Change threading granularity to eliminate redundancy
• TLP vs. per-thread performance: prefetching, register tiling, traditional optimizations
• Difficult to estimate performance without performing the optimization and executing the kernel
Unrolling

Unrolling

Ctemp = 0;
for (...) {
 __shared__ float As[16][16];
 __shared__ float Bs[16][16];
 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;
 __syncthreads();
 // compute results for tile
 for (i = 0; i < 16; i++)
 {
 Ctemp += As[ty][i] * Bs[i][tx];
 }
 __syncthreads();
} C[indexC] = Ctemp;

(b) Tiled Version

Ctemp = 0;
for (...) {
 __shared__ float As[16][16];
 __shared__ float Bs[16][16];
 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;
 __syncthreads();
 // compute results for tile
 Ctemp +=
 As[ty][0] * Bs[0][tx];
 ...
 Ctemp +=
 As[ty][15] * Bs[15][tx];
 __syncthreads();
} C[indexC] = Ctemp;

(c) Unrolled Version

Removal of branch instructions and address calculations

Does this use more registers?
Parboil: Speedup of GPU-Accelerated Functions

Most of these required 20+ different configurations

Speedup changes the usage model!
LBM Fluid Simulation (from SPEC CPU 2006)

- Simulation of fluid flow in a grid
- Synchronization required after each time step
- Can reduce bandwidth usage by caching in shared memory
- But can hold data for only 200 grid cells – global memory latency is exposed
Conclusions

• Naïve mapping to GeForce 8800 does not always buy significant performance
• By following the presented principles, 10X or more performance advantage over a single-core CPU can be achieved
• Remaining speedup involves using specialized resources or trading off use of resources
Program Optimization Space Pruning for a Multithreaded GPU

Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee Ueng, John A. Stratton, and Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign
Optimization

• First order principles [PPoPP ‘08]
 – Enough threads for TLP
 – Little or no inter-thread communication
 – Good use of on-chip memory to reduce bandwidth pressure
 – Thread grouping to optimize SIMD & memory banking

• Second order – balancing instruction stream efficiency and hardware utilization
Examples of Optimizations

• Instruction stream efficiency
 – Loop unrolling
 – TLP granularity changes
 – Traditional optimization

• Hardware utilization
 – Prefetching
 – ILP-extraction transformations
 – Scheduling for MLP
 – Increasing TLP
Discontinuous Optimization Space

• Begin with a version with 3 thread blocks per SM
 – 256 threads per thread block, 10 registers per thread
 – 3 * 256 * 10 = 7680 total registers

• Perform an optimization that uses an additional register per thread
 – 3 * 256 * 11 = 8448 > 8k!
 – Performance per thread has increased
 – But this version has only 2 thread blocks per SM

• Is the optimized version better or worse?
Resource Allocation Example

Thread Contexts

32KB Register File

16KB Shared Memory

(a) Pre-“optimization”

(b) Post-“optimization”

Increase in per-thread performance, but fewer threads:
Lower overall performance in this case

Insufficient registers to allocate 3 blocks
How Close Are We to Best Performance?

- Investigated applications with many optimizations
- Exhaustive optimization space search
 - Applied many different, controllable optimizations
 - Parameterized code by hand
- Hand-optimized code is deficient
 - Generally >15% from the best configuration
 - Trapped at local maxima
 - Often non-intuitive mix of optimizations
Matrix Multiplication Space

50% Performance Increase Over Hand-Optimized Version

GFLOPS

unroll 1
unroll 2
unroll 4
complete unroll

Cannot run

Optimizations

normal
prefetch
normal
prefetch
normal
prefetch
normal
prefetch
normal
prefetch

1x1
1x2
1x4
8x8 tiles

1x1
1x2
1x4
16x16 tiles
SAD Thread Block Size

What happens if the application or runtime changes? Probably need to rerun the search.
Solution: Evaluate All Likely Configurations

- Begin with a complete, parameterized optimization space per kernel
 - Tile size and shape
 - Thread block size, work per thread block
 - Other optimizations, such as manual register spilling
- Compile all configurations to find resource usage
- Generate metric values for each configuration
- Prune space using a Pareto-optimal curve
Metrics for the GeForce 8800

How efficient is our instruction stream?

\[\text{Efficiency} = \frac{1}{\text{Instr} \times \text{Threads}} \]

Can we keep the processors utilized?

\[\text{Utilization} = \frac{\text{Instr}}{\text{Regions}} \left[\frac{W_{TB} - 1}{2} + (B_{SM} - 1)(W_{TB}) \right] \]

These capture first-order effects of applications.
MRI-FHD and SAD Plots

MRI-FHD

SAD
Space Reduction

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Total Configs</th>
<th>Total Eval</th>
<th>Selected Configs</th>
<th>Space Reduc.</th>
<th>Time Reduc.</th>
<th>Selected Perf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>93</td>
<td>363.3 s</td>
<td>11</td>
<td>88%</td>
<td>87%</td>
<td>100%</td>
</tr>
<tr>
<td>CP</td>
<td>38</td>
<td>159.5 s</td>
<td>10</td>
<td>74%</td>
<td>73%</td>
<td>100%</td>
</tr>
<tr>
<td>SAD</td>
<td>908</td>
<td>7.677 s</td>
<td>16</td>
<td>98%</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>MRI-FHD</td>
<td>175</td>
<td>771.9 s</td>
<td>30</td>
<td>77%</td>
<td>73%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Summary and Conclusion

- Performance tuning involves tradeoffs between instruction efficiency and HW utilization
- Manual, iterative optimization usually leaves performance on the table
- Reoptimization needed for new hardware, application, or runtime
- Pareto-based pruning removes up to 98% of the optimization space, still finds best configuration
- Ryoo Ph.D. dissertation contains further work: http://www.crhc.uiuc.edu/IMPACT.