
Optimization Principles and Optimization Principles and

Application Performance Evaluation Application Performance Evaluation

of a Multithreaded GPU Using CUDAof a Multithreaded GPU Using CUDA

Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi,

Sam S. Stone, David B. Kirk, and Wen-mei H. Hwu

Center for Reliable and High-Performance Computing

University of Illinois at Urbana-Champaign

and NVIDIA Corporation

PPoPP 2008 – February 21, 2008

MRIMRI--FFHHD PerformanceD Performance

8.0 16.8 7.0 11.1 13.1

85.8

127.5
152.5

495.247.5

53.9

28.8

1.2 1.0 0.3

22.5

4.4

34.1

0

100

200

300

400

500

600

C
PU

.D
P

C
PU

.S
P

G
PU

.B
as

e
G

PU
.R

eg
Allo

c
G

PU
.C

oa
le

sc
e

G
PU

.C
on

st
M

em
G

PU
.F

as
tT

rig

G
PU

.T
un

e

G
PU

.M
ul

ti

Loop Unrolling Factor

G
F

L
O

P
S

0

10

20

30

40

50

60

T
im

e
 (

m
in

)

GFLOPS Time

How do we

get to here?

PPoPP 2008 – February 21, 2008

PrinciplesPrinciples

• Leverage zero-overhead thread scheduling

• Inter-thread communication possible locally, not

globally

• Optimize use of on-chip memory

• Group threads to avoid SIMD penalties and memory

port/bank conflicts

• Further optimization involves tradeoffs between

resources

PPoPP 2008 – February 21, 2008

Managing Memory LatencyManaging Memory Latency

• Global memory latency is 200+
cycles

• 8 instructions/cycle

• Need 1600 instructions to avoid

stalling

• Decompose work into a fine

granularity for TLP

• ILP and MLP within each thread

have a multiplicative effect

Ctemp = 0;

for (i = 0; i < widthA;
 i++)
 {
 Ctemp += A[indexA]
 * B[indexB];
 indexA++;
 indexB += widthB;
 }

C[indexC] = Ctemp;

Matrix multiplication

Each thread – 1 result element

1024x1024 matrix:

1M threads

PPoPP 2008 – February 21, 2008

Global Bandwidth SaturationGlobal Bandwidth Saturation

Ctemp = 0;

for (i = 0; i < widthA;
 i++)
 {
 Ctemp += A[indexA]
 * B[indexB];
 indexA++;
 indexB += widthB;
 }

C[indexC] = Ctemp;

• 2 global loads for every 6
instructions

• Requires more than 2X the
available bandwidth

• Inter-thread data reuse: local

scratchpad memory can reduce

global bandwidth usage

PPoPP 2008 – February 21, 2008

Memory Access PatternMemory Access Pattern

W
I
D
T
H

PPoPP 2008 – February 21, 2008

Reducing Memory Bandwidth UsageReducing Memory Bandwidth Usage

Ctemp = 0;

for (i = 0; i < widthA;
 i++)
 {
 Ctemp += A[indexA]
 * B[indexB];
 indexA++;
 indexB += widthB;
 }

C[indexC] = Ctemp;

Ctemp = 0;
for (...) {
__shared__ float As[16][16];
__shared__ float Bs[16][16];

 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;
__syncthreads();

 // compute results for tile
 for (i = 0; i < 16; i++)
 {
 Ctemp += As[ty][i]
 * Bs[i][tx];
 }

__syncthreads();
}
C[indexC] = Ctemp;

(a) Initial Version (b) Tiled Version

2 global loads,

2 shared

memory stores

32 shared

memory loads

Developers must correctly manage data locality.

32 global

loads

PPoPP 2008 – February 21, 2008

Thread GroupingThread Grouping

• Each memory is specialized for certain access patterns

• Efficient global memory access is linked to tile size

• For good bandwidth utilization, accesses should be aligned and consist
of 16 contiguous words

G
F
L
O

P
S

0

10

20

30

40

50

60

70

80

90

100

til
e
d

o
n
ly

til
e
d
 &

u
n
ro

lle
d

til
e
d

o
n
ly

til
e
d
 &

u
n
ro

lle
d

til
e
d

o
n
ly

til
e
d
 &

u
n
ro

lle
d

til
e
d

o
n
ly

til
e
d
 &

u
n
ro

lle
d

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

PPoPP 2008 – February 21, 2008

Further ImprovementFurther Improvement

• Reduce non-computation instructions

– Loop unrolling

– Change threading granularity to eliminate redundancy

• TLP vs. per-thread performance: prefetching, register

tiling, traditional optimizations

• Difficult to estimate performance without performing

the optimization and executing the kernel

PPoPP 2008 – February 21, 2008

UnrollingUnrolling
Ctemp = 0;
for (...) {

__shared__ float As[16][16];
__shared__ float Bs[16][16];

 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;

__syncthreads();

 // compute results for tile
 for (i = 0; i < 16; i++)
 {
 Ctemp += As[ty][i]
 * Bs[i][tx];
 }

__syncthreads();
}
C[indexC] = Ctemp;

Ctemp = 0;
for (...) {

__shared__ float As[16][16];
__shared__ float Bs[16][16];

 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;

__syncthreads();

 // compute results for tile
 Ctemp +=
 As[ty][0] * Bs[0][tx];
 ...
 Ctemp +=
 As[ty][15] * Bs[15][tx];

__syncthreads();
}
C[indexC] = Ctemp;

(b) Tiled Version (c) Unrolled Version

Removal of branch instructions and address calculations

Does this use

more registers?

PPoPP 2008 – February 21, 2008

Parboil: Speedup of GPUParboil: Speedup of GPU--Accelerated FunctionsAccelerated Functions

0

10

20

30

40

50

60

H.264 LBM RC5-72 FEM RPES PNS SAXPYTPACF FDTD MRI-Q MRI-

FHD

CP

Kernel

Application

G
P

U
 S

p
e
e
d
u
p

R
e
la

ti
v
e
 t
o
 x

8
6
 C

P
U

Speedup changes the usage model!

Most of these required 20+ different configurations

PPoPP 2008 – February 21, 2008

LBM Fluid Simulation (from SPEC CPU 2006)LBM Fluid Simulation (from SPEC CPU 2006)

• Simulation of fluid flow in a grid

• Synchronization required after

each time step

• Can reduce bandwidth usage by

caching in shared memory

• But can hold data for only 200 grid
cells – global memory latency is

exposed
Flow through a cell (dark

blue) is updated based on its

flow and the flow in 18

neighboring cells (light blue).

PPoPP 2008 – February 21, 2008

ConclusionsConclusions

• Naïve mapping to GeForce 8800 does not

always buy significant performance

• By following the presented principles, 10X or

more performance advantage over a single-core

CPU can be achieved

• Remaining speedup involves using specialized

resources or trading off use of resources

Program Optimization Space Pruning

for a Multithreaded GPU

Center for Reliable and High-Performance Computing

University of Illinois at Urbana-Champaign

Shane Ryoo, Christopher I. Rodrigues,

Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee Ueng,

John A. Stratton, and Wen-mei W. Hwu

6CGO – April 9th, 2008

Optimization

• First order principles [PPoPP ‘08]

– Enough threads for TLP

– Little or no inter-thread communication

– Good use of on-chip memory to reduce bandwidth

pressure

– Thread grouping to optimize SIMD & memory banking

• Second order – balancing instruction stream

efficiency and hardware utilization

7CGO – April 9th, 2008

Examples of Optimizations

• Instruction stream efficiency

– Loop unrolling

– TLP granularity changes

– Traditional optimization

• Hardware utilization

– Prefetching

– ILP-extraction transformations

– Scheduling for MLP

– Increasing TLP

8CGO – April 9th, 2008

Discontinuous Optimization Space

• Begin with a version with 3 thread blocks per SM

– 256 threads per thread block, 10 registers per thread

– 3 * 256 * 10 = 7680 total registers

• Perform an optimization that uses an additional

register per thread

– 3 * 256 * 11 = 8448 > 8k!

– Performance per thread has increased

– But this version has only 2 thread blocks per SM

• Is the optimized version better or worse?

9CGO – April 9th, 2008

Resource Allocation Example

32KB Register File

16KB Shared Memory

………

SP0 SP7

(b) Post-“optimization”

Insufficient

registers to allocate

3 blocks

Thread Contexts

X

Increase in per-thread performance, but fewer threads:

Lower overall performance in this case

10CGO – April 9th, 2008

How Close Are We to Best Performance?

• Investigated applications with many optimizations

• Exhaustive optimization space search

– Applied many different, controllable optimizations

– Parameterized code by hand

• Hand-optimized code is deficient

– Generally >15% from the best configuration

– Trapped at local maxima

– Often non-intuitive mix of optimizations

11CGO – April 9th, 2008

Matrix Multiplication Space
G

F
L
O

P
S

0

20

40

60

80

100

120

140

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

n
o
rm
a
l

p
re
fe
tc
h

1x1 1x2 1x4 1x1 1x2 1x4

8x8 tiles 16x16 tiles

unroll 1

unroll 2

unroll 4

complete

unroll

50% Performance Increase

Over Hand-Optimized Version

C
a

n
n

o
t

ru
n

Optimizations

12CGO – April 9th, 2008

SAD Thread Block Size

 2

 3

 4

 5

 6

 7

 8

 9

 32 64 96 128 160 192 224 256 288 320 352 384

T
im

e
(m

s)

Threads per Thread Block

What happens if the application or runtime changes?

Probably need to rerun the search.

13CGO – April 9th, 2008

Solution: Evaluate All Likely Configurations

• Begin with a complete, parameterized

optimization space per kernel

– Tile size and shape

– Thread block size, work per thread block

– Other optimizations, such as manual register spilling

• Compile all configurations to find resource usage

• Generate metric values for each configuration

• Prune space using a Pareto-optimal curve

14CGO – April 9th, 2008

Metrics for the GeForce 8800

How efficient is our instruction stream?

Can we keep the processors utilized?

These capture first-order effects of applications.

15CGO – April 9th, 2008

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

Matrix Multiplication Pareto Plot

16CGO – April 9th, 2008

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

MRI-FHD and SAD Plots

MRI-FHD SAD

17CGO – April 9th, 2008

Space Reduction

100%98%98%167.677 s908SAD

100%73%77%30771.9 s175MRI-

FHD

100%73%74%10159.5 s38CP

100%87%88%11363.3 s93MM

Selected

Perf.

Time

Reduc.

Space

Reduc.

Selected

Configs

Total

Eval

Total

Configs

Kernel

19CGO – April 9th, 2008

Summary and Conclusion

• Performance tuning involves tradeoffs between

instruction efficiency and HW utilization

• Manual, iterative optimization usually leaves

performance on the table

• Reoptimization needed for new hardware,

application, or runtime

• Pareto-based pruning removes up to 98% of the

optimization space, still finds best configuration

• Ryoo Ph.D. dissertation contains further work:

http://www.crhc.uiuc.edu/IMPACT.

