
EECS 583 – Class 21

Research Topic 3: Compilation for

GPUs

University of Michigan

December 12, 2011 – Last Class!!

- 1 -

Announcements & Reading Material

 This class reading

» “Program optimization space pruning for a multithreaded GPU,”

S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S. Ueng, J.

Straton, and W. Hwu, Proc. Intl. Sym. on Code Generation and

Optimization, Mar. 2008.

 Project demos

» Dec 13-16, 19 (19th is full)

» Send me email with date and a few timeslots if your group does

not have a slot

» Almost all have signed up already

- 2 -

Project Demos

 Demo format

» Each group gets 30 mins

 Strict deadlines because many back to back groups

 Don’t be late!

» Plan for 20 mins of presentation (no more!), 10 mins questions

 Some slides are helpful, try to have all group members say

something

 Talk about what you did (basic idea, previous work), how you did it

(approach + implementation), and results

 Demo or real code examples are good

 Report

» 5 pg double spaced including figures – same content as

presentation

» Due either when you do you demo or Dec 19 at 6pm

- 3 -

Midterm Results

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Mean: 97.9 StdDev: 13.9 High: 128 Low: 50

If you did poorly, all is not lost. This is a grad class, the project is by far most important!!

Answer key on the course webpage, pick up graded exams from Daya

- 4 -

Why GPUs?

4

0

250

500

750

1000

1250

1500

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

T
h

eo
re

ti
ca

l
G

F
L

O
P

S
/s

NVIDIA

GPU

INTEL CPU

GeForce GTX 480

GeForce GTX 280

GeForce 8800 GTX

GeForce 7800 GTX

GeForce 6800 Ultra

GeForce FX 5800

- 5 -

Efficiency of GPUs

5

High

Memory

Bandwidth

GTX 285 : 159 GB/Sec

i7 : 32 GB/Sec

High Flop

Rate
i7 :102 GFLOPS

GTX 285 :1062 GFLOPS High DP

Flop Rate

i7 : 51 GFLOPS

GTX 285 : 88.5 GFLOPS

GTX 480 : 168 GFLOPS

High Flop

Per Watt

GTX 285 : 5.2 GFLOP/W

i7 : 0.78 GFLOP/W

High Flop

Per Dollar

GTX 285 : 3.54 GFLOP/$

i7 : 0.36 GFLOP/$

- 6 -

GPU Architecture

6

Shared

Regs

0 1

2 3

4 5

6 7

Interconnection Network

Global Memory (Device Memory)
PCIe

Bridge

CPU Host

Memory

Shared

Regs

0 1

2 3

4 5

6 7

Shared

Regs

0 1

2 3

4 5

6 7

Shared

Regs

0 1

2 3

4 5

6 7

SM 0 SM 1 SM 2 SM 29

- 7 -

CUDA

 “Compute Unified Device Architecture”

 General purpose programming model

» User kicks off batches of threads on the GPU

 Advantages of CUDA

» Interface designed for compute - graphics free API

» Orchestration of on chip cores

» Explicit GPU memory management

» Full support for Integer and bitwise operations

7

- 8 -

Programming Model

8

Host

Kernel 1

Kernel 2

Grid 1

Grid 2

Device
T

im
e

- 9 -

Grid 1

GPU Scheduling

9

SM 0

Shared

Regs

0 1

2 3

4 5

6 7

SM 1

Shared

Regs

0 1

2 3

4 5

6 7

SM 2

Shared

Regs

0 1

2 3

4 5

6 7

SM 3

Shared

Regs

0 1

2 3

4 5

6 7

SM 30

Shared

Regs

0 1

2 3

4 5

6 7

- 10 -

Warp Generation

Block 0

Block 1

Block 3

Shared

Registers

0 1

2

4 5

3

6 7

SM0

10

Block 2

ThreadId

0 31 32 63 Warp 0 Warp 1

- 11 -

Memory Hierarchy

11

Per Block

Shared Memory

__shared__ int SharedVar

Block 0

Per-thread

Register

int LocalVarArray[10]

Per-thread

Local Memory

int RegisterVar

Thread 0

Grid 0

Per app

Global Memory

Host

__global__ int GlobalVar

__constant__ int ConstVar

Texture<float,1,ReadMode> TextureVar

Per app

Texture Memory

Per app

Constant Memory

D
ev

ic
e

- 12 -

Discussion Points

 Who has written CUDA, how have you optimized it,

how long did it take?

» Did you do tune using a better algorithm than trial and error?

 Is there any hope to build a GPU compiler that can

automatically do what CUDA programmers do?

» How would you do it?

» What’s the input language? C, C++, Java, StreamIt?

 Are GPUs a compiler writers best friend or worst

enemy?

 What about non-scientific codes, can they be mapped

to GPUs?

» How can GPUs be made more “general”?

