
EECS 583 – Class 21

Research Topic 3: Compilation for

GPUs

University of Michigan

December 12, 2011 – Last Class!!

- 1 -

Announcements & Reading Material

 This class reading

» “Program optimization space pruning for a multithreaded GPU,”

S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S. Ueng, J.

Straton, and W. Hwu, Proc. Intl. Sym. on Code Generation and

Optimization, Mar. 2008.

 Project demos

» Dec 13-16, 19 (19th is full)

» Send me email with date and a few timeslots if your group does

not have a slot

» Almost all have signed up already

- 2 -

Project Demos

 Demo format

» Each group gets 30 mins

 Strict deadlines because many back to back groups

 Don’t be late!

» Plan for 20 mins of presentation (no more!), 10 mins questions

 Some slides are helpful, try to have all group members say

something

 Talk about what you did (basic idea, previous work), how you did it

(approach + implementation), and results

 Demo or real code examples are good

 Report

» 5 pg double spaced including figures – same content as

presentation

» Due either when you do you demo or Dec 19 at 6pm

- 3 -

Midterm Results

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Mean: 97.9 StdDev: 13.9 High: 128 Low: 50

If you did poorly, all is not lost. This is a grad class, the project is by far most important!!

Answer key on the course webpage, pick up graded exams from Daya

- 4 -

Why GPUs?

4

0

250

500

750

1000

1250

1500

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

T
h

eo
re

ti
ca

l
G

F
L

O
P

S
/s

NVIDIA

GPU

INTEL CPU

GeForce GTX 480

GeForce GTX 280

GeForce 8800 GTX

GeForce 7800 GTX

GeForce 6800 Ultra

GeForce FX 5800

- 5 -

Efficiency of GPUs

5

High

Memory

Bandwidth

GTX 285 : 159 GB/Sec

i7 : 32 GB/Sec

High Flop

Rate
i7 :102 GFLOPS

GTX 285 :1062 GFLOPS High DP

Flop Rate

i7 : 51 GFLOPS

GTX 285 : 88.5 GFLOPS

GTX 480 : 168 GFLOPS

High Flop

Per Watt

GTX 285 : 5.2 GFLOP/W

i7 : 0.78 GFLOP/W

High Flop

Per Dollar

GTX 285 : 3.54 GFLOP/$

i7 : 0.36 GFLOP/$

- 6 -

GPU Architecture

6

Shared

Regs

0 1

2 3

4 5

6 7

Interconnection Network

Global Memory (Device Memory)
PCIe

Bridge

CPU Host

Memory

Shared

Regs

0 1

2 3

4 5

6 7

Shared

Regs

0 1

2 3

4 5

6 7

Shared

Regs

0 1

2 3

4 5

6 7

SM 0 SM 1 SM 2 SM 29

- 7 -

CUDA

 “Compute Unified Device Architecture”

 General purpose programming model

» User kicks off batches of threads on the GPU

 Advantages of CUDA

» Interface designed for compute - graphics free API

» Orchestration of on chip cores

» Explicit GPU memory management

» Full support for Integer and bitwise operations

7

- 8 -

Programming Model

8

Host

Kernel 1

Kernel 2

Grid 1

Grid 2

Device
T

im
e

- 9 -

Grid 1

GPU Scheduling

9

SM 0

Shared

Regs

0 1

2 3

4 5

6 7

SM 1

Shared

Regs

0 1

2 3

4 5

6 7

SM 2

Shared

Regs

0 1

2 3

4 5

6 7

SM 3

Shared

Regs

0 1

2 3

4 5

6 7

SM 30

Shared

Regs

0 1

2 3

4 5

6 7

- 10 -

Warp Generation

Block 0

Block 1

Block 3

Shared

Registers

0 1

2

4 5

3

6 7

SM0

10

Block 2

ThreadId

0 31 32 63 Warp 0 Warp 1

- 11 -

Memory Hierarchy

11

Per Block

Shared Memory

__shared__ int SharedVar

Block 0

Per-thread

Register

int LocalVarArray[10]

Per-thread

Local Memory

int RegisterVar

Thread 0

Grid 0

Per app

Global Memory

Host

__global__ int GlobalVar

__constant__ int ConstVar

Texture<float,1,ReadMode> TextureVar

Per app

Texture Memory

Per app

Constant Memory

D
ev

ic
e

- 12 -

Discussion Points

 Who has written CUDA, how have you optimized it,

how long did it take?

» Did you do tune using a better algorithm than trial and error?

 Is there any hope to build a GPU compiler that can

automatically do what CUDA programmers do?

» How would you do it?

» What’s the input language? C, C++, Java, StreamIt?

 Are GPUs a compiler writers best friend or worst

enemy?

 What about non-scientific codes, can they be mapped

to GPUs?

» How can GPUs be made more “general”?

