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Announcements & Reading Material 

 This class reading 

» “Program optimization space pruning for a multithreaded GPU,” 

S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S. Ueng, J. 

Straton, and W. Hwu, Proc. Intl. Sym. on Code Generation and 

Optimization, Mar. 2008. 

 Project demos 

» Dec 13-16, 19 (19th is full) 

» Send me email with date and a few timeslots if your group does 

not have a slot 

» Almost all have signed up already 
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Project Demos 

 Demo format 

» Each group gets 30 mins 

 Strict deadlines because many back to back groups 

 Don’t be late! 

» Plan for 20 mins of presentation (no more!), 10 mins questions 

 Some slides are helpful, try to have all group members say 

something 

 Talk about what you did (basic idea, previous work), how you did it 

(approach + implementation), and results 

 Demo or real code examples are good 

 Report 

» 5 pg double spaced including figures – same content as 

presentation 

» Due either when you do you demo or Dec 19 at 6pm 
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Midterm Results 
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Mean: 97.9 StdDev: 13.9 High: 128 Low: 50 

If you did poorly, all is not lost.  This is a grad class, the project is by far most important!! 

Answer key on the course webpage, pick up graded exams from Daya 
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Why GPUs? 
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NVIDIA

GPU

INTEL CPU

GeForce GTX 480 

GeForce GTX 280 

GeForce 8800 GTX  

GeForce 7800 GTX  

GeForce 6800 Ultra 

GeForce FX 5800 
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Efficiency of GPUs 
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Memory 
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GTX 285 : 159 GB/Sec 

i7 : 32 GB/Sec 

High Flop 

Rate 
i7 :102 GFLOPS  

GTX 285 :1062 GFLOPS  High DP 

Flop Rate 

i7 : 51 GFLOPS 
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High Flop 
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GTX 285 : 5.2 GFLOP/W 

i7 : 0.78 GFLOP/W 

High Flop 

Per Dollar 

GTX 285 : 3.54  GFLOP/$ 

i7 : 0.36  GFLOP/$ 
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GPU Architecture 
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CUDA 

 “Compute Unified Device Architecture” 

 

 General purpose programming model 

» User kicks off batches of threads on the GPU 

 

 Advantages of CUDA 

» Interface designed for compute - graphics free API 
 

» Orchestration of on chip cores 
 

» Explicit GPU memory management 
 

» Full support for Integer and bitwise operations 
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Programming Model 
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Grid 1 

GPU Scheduling 
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Warp Generation 
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Memory Hierarchy 
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Discussion Points 

 Who has written CUDA, how have you optimized it, 

how long did it take? 

» Did you do tune using a better algorithm than trial and error? 

 Is there any hope to build a GPU compiler that can 

automatically do what CUDA programmers do? 

» How would you do it? 

» What’s the input language?  C, C++, Java, StreamIt? 

 Are GPUs a compiler writers best friend or worst 

enemy? 

 What about non-scientific codes, can they be mapped 

to GPUs? 

» How can GPUs be made more “general”? 

 


