EECS 583 — Class 2
Control Flow Analysis

University of Michigan

September 12, 2011

Announcements & Reading Material

< Daya’s office hours held in 1695 CSE not 1620 CSE!
» Tue/Thu/Fri: 3-5pm

< See reading list on course webpage
» Will add to it each week

< Topic 1 — Control flow analysis and optimization
» Today’s class
* Ch 9.4, 10.4 from Red Dragon book (Aho, Sethi, Ullman)

» Next class

* “Trace Selection for Compiling Large C Applications to Microcode”,
Chang and Hwu, MICRO-21, 1988.

e “The Superblock: An Effective Technique for VLIW and Superscalar
Compilation”, Hwu et al., Journal of Supercomputing, 1993

Homework 1

< Available on course website
» http://www.eecs.umich.edu/~mahlke/courses/583f11/homeworks.html

. ~2 weeks to do — so get started soon!
» Due week from Friday (Sept 23)

- 3 4-core Linux machines available for class use

» Andrew, hugo, and wilma

» Need EECS account to access — See me if you do not have one
< Part 1 — Download and build llvm

» See http://www.llvm.org
< Part 2 - Collect some opcode, branch, and memory
statistics

» Must figure out how to profile an application
» And extract profile info

&

D)

D)

&

D)

D)

Homework 1 - Notes

< llvm-gcc already installed on hurricane machines
» [y/583f11/llvm-gcc-install
» Add /y/583f11/llvm-gcc-install/bin to your path so you can use
the llvm-gcc executable
< |f you want to use hurricane machines

» Create a directory for yourself on 1 of the machines

 cd /y/students

e mkdir uniguename

e chmod 700 uniguename

e cd unigquename

* Don’t accidently put your llvm files in the /y/students directory!!

» Then just download and build llvm backend

< |f you use your other machines
» Then need to build both llvm-gcc and backend

-3-

From Last Time: BB and CFG

Basic block — a sequence of @
consecutive operations in which |
flow of control enters at the X =y+1; BB1
beginning and leaves at the end if (c
without halt or possibility of (XJ)r . e
branching except at the end ’ BB2 BB3
else ~_ _—
Control Flow Graph — Directed X5 BB4
graph, G = (V,E) where each y=z+1, ‘ PN
vertex V is a basic block and If (a) -~ -
there is an edge E, v1 (BB1) =2 V++;
v2 (BB2) if BB2 can immediately else S~
follow BB1 in some execution _ BB7
sequence Y=

From Last Time: Dominator (DOM)

< Defn: Dominator — Given a CFG(V, E, Entry, Exit), a
node x dominates a node y, if every path from the Entry
block to y contains x

< 3 properties of dominators
» Each BB dominates itself
» If x dominates y, and y dominates z, then x dominates z

» If x dominates z and y dominates z, then either x dominates y or
y dominates x

< Intuition

» Given some BB, which blocks are guaranteed to have executed
prior to executing the BB

Dominator Analysis

<« Compute dom(BBi) = set of
BBs that dominate BBI

< Initialization
» Dom(entry) = entry

» Dom(everything else) = all
nodes

< |terative computation

» while change, do
* change = false
» for each BB (except the entry
BB)

o tmp(BB) = BB + {intersect of
Dom of all predecessor BB’s}

o if (tmp(BB) '=dom(BB))
dom(BB) = tmp(BB)
change = true

Immediate Dominator

\/
0’0

Defn: Immediate

dominator (idom)— Each

node n has a unique
Immediate dominator m
that is the last dominator
of n on any path from the
Initial node to n

» Closest node that
dominates

Dominator Tree

First BB is the root node, each node
dominates all of its descendants

BB5 BB6

BB7

BB DOM BB DOM
1 1 5 1,45
2 1,2 6 1,4,6
3 1,3 7 1,4,7
4 1,4

BB1

LS

BB2

BB3 BB4

BB5 BB6 BBY

Dom tree

Class Problem

Draw the dominator
tree for the following CFG

.
BB2 BB3
BB4 BB5 BB6
=
BB7
BBS

Post Dominator (PDOM)

<+ Reverse of dominator
<+ Defn: Post Dominator —

Given a CFG(V, E, Entry,

Exit), a node X post
dominates a node v, if
every path from y to the
EXit contains X

< Intuition
» Given some BB, which
blocks are guaranteed to
have executed after
executing the BB

<« pdom(BBI) = set of BBs
that post dominate BBI

< Initialization
» Pdom(exit) = exit

» Pdom(everything else) = all
nodes

« |terative computation

» while change, do
* change = false
» for each BB (except the exit
BB)
¢ tmp(BB) = BB + {intersect
of pdom of all successor
BB’s}
o if (tmp(BB) != pdom(BB))
pdom(BB) = tmp(BB)
change = true

-10 -

Post Dominator Examples

@ BB1

BB1 BB2

BBZ/\BBB | BB?’/\

BB4 BB4

BB5

N4

BB/

-11 -

Immediate Post Dominator

<+ Defn: Immediate post (Entry)
dominator (ipdom) — I
Each node n has a unique BB1
immediate post N
dominator m that is the BB2 BB3
first post dominator of n ~_
on any path from n to the BB4
Exit PN
» Closest node that post BB5 BB6
dominates
S~

» First breadth-first
successor that post

dominates a node

-12 -

Why Do We Care About Dominators?

< Loop detection — next subject
_ Entr
< Dominator @

» Guaranteed to execute before Blt%l
» Redundant computation — an

op is redundant if it is N

computed in a dominating BB BB2 BB3

» Most global optimizations use \/

dominance info
< Post dominator s

» Guaranteed to execute after /\

» Make a guess (ie 2 pointers BB5 BB6

do not point to the same locn) \ /

» Check they really do not BB7

point to one another in the

post dominating BB

-13-

Natural Loops

< Cycle suitable for optimization
» Discuss optimizations later
< 2 properties

» Single entry point called the header
e Header dominates all blocks in the loop

» Must be one way to iterate the loop (ie at least 1 path
back to the header from within the loop) called a
backedge

< Backedge detection

» Edge, x> y where the target (y) dominates the source

(X)

-14 -

Backedge Example
BB1

LLoop Detection

L)

*

Identify all backedges using Dom info

Each backedge (x = y) defines a loop
» Loop header is the backedge target (y)

» Loop BB — basic blocks that comprise the loop

 All predecessor blocks of x for which control can reach x
without going through y are in the loop

Merge loops with the same header

» l.e., aloop with 2 continues

» LoopBackedge = LoopBackedgel + LoopBackedge?2
» LoopBB = LoopBB1 + LoopBB2

Important property

» Header dominates all LoopBB

L)

L)

*%

L)

*%

L)

*%

-16 -

Loop Detection Example

BB1

Important Parts of a Loop

D)

0.0

Header, LoopBB
Backedges, BackedgeBB

Exitedges, ExitBB

» For each LoopBB, examine each outgoing edge
» |If the edge is to a BB not in LoopBB, then its an exit

» Preheader (Preloop)

» New block before the header (falls through to header)

» Whenever you invoke the loop, preheader executed

» Whenever you iterate the loop, preheader NOT executed

» All edges entering header
* Backedges — no change
 All others, retarget to preheader

Postheader (Postloop) - analogous

D)

*

D)

0’0

\/
*

\/
*

-18 -

Find the Preheaders for each Loop

BB1

= -
BB4
|

-19 -

Characteristics of a Loop

< Nesting (generally within a procedure scope)
» Inner loop — Loop with no loops contained within it
» Outer loop — Loop contained within no other loops

» Nesting depth
 depth(outer loop) =1
 depth = depth(parent or containing loop) + 1

< Trip count (average trip count)

» How many times (on average) does the loop iterate
» for (1=0; 1<100; I++) - trip count = 100
» Ave trip count = weight(header) / weight(preheader)

-20 -

Trip Count Calculation Example

Calculate the trip
counts for all the loops
in the graph

] 20
A 4

480

BB1

BB2

1°6¢

600

\2100 1000

1340

140

Reducible Flow Graphs

< A flow graph is reducible if and only if we can partition
the edges into 2 disjoint groups often called forward and
back edges with the following properties

» The forward edges form an acyclic graph in which every node
can be reached from the Entry

» The back edges consist only of edges whose destinations
dominate their sources
< More simply — Take a CFG, remove all the backedges
(x-> y where y dominates x), you should have a
connected, acyclic graph bbl

A P

bb2 bb3

Non-reducible!

-22.

Regions

< Region: A collection of operations that are treated as a
single unit by the compiler

» Examples
* Basic block
* Procedure
* Body of a loop

» Properties
e Connected subgraph of operations
e Control flow is the key parameter that defines regions
* Hierarchically organized

< Problem
» Basic blocks are too small (3-5 operations)
» Hard to extract sufficient parallelism

» Procedure control flow too complex for many compiler xforms
* Plus only parts of a procedure are important (90/10 rule)

-23-

Regions (2)

<+ Want
» Intermediate sized regions with simple control flow
» Bigger basic blocks would be ideal !!
» Separate important code from less important
» Optimize frequently executed code at the expense of
the rest
< Solution
» Define new region types that consist of multiple BBs
» Profile information used in the identification
» Sequential control flow (sorta)
» Pretend the regions are basic blocks

=24 -

Region Type 1 - Trace

Trace - Linear collection of
basic blocks that tend to
execute in sequence

» “Likely control flow path”

» Acyclic (outer backedge ok)
Side entrance — branch into the
middle of a trace

Side exit — branch out of the
middle of a trace
Compilation strategy

» Compile assuming path
occurs 100% of the time

» Patch up side entrances and
exits afterwards

Motivated by scheduling (i.e.,
trace scheduling)

-25 -

90

90

10

Linearizing a Trace

J 10 (entry count)
' | BBL | !
80 | 20 (side exit)
90 (entry/ BB2 i BB3
exit count) ' 80 /
: * ! 20 (side entrance)
' | BB4 |
| 10 (side exit)
' 90 BB5
i ! 10 (side entrance)
. | BB6 |

10 (exit count)

-26 -

Intelligent Trace Layout for Icache Performance

Trace view

Intraprocedural code placement i |
Procedure positioning tracel
Procedure splitting ' '
' trace 2
' trace 3

The rest

Procedure view

-27 -

