
EECS 583 – Class 2

Control Flow Analysis

University of Michigan

September 12, 2011

- 1 -

Announcements & Reading Material

 Daya’s office hours held in 1695 CSE not 1620 CSE!

» Tue/Thu/Fri: 3-5pm

 See reading list on course webpage

» Will add to it each week

 Topic 1 – Control flow analysis and optimization

» Today’s class

 Ch 9.4, 10.4 from Red Dragon book (Aho, Sethi, Ullman)

» Next class

 ―Trace Selection for Compiling Large C Applications to Microcode‖,

Chang and Hwu, MICRO-21, 1988.

 ―The Superblock: An Effective Technique for VLIW and Superscalar

Compilation‖, Hwu et al., Journal of Supercomputing, 1993

- 2 -

Homework 1

 Available on course website

» http://www.eecs.umich.edu/~mahlke/courses/583f11/homeworks.html

 ~2 weeks to do – so get started soon!

» Due week from Friday (Sept 23)

 3 4-core Linux machines available for class use

» Andrew, hugo, and wilma

» Need EECS account to access – See me if you do not have one

 Part 1 – Download and build llvm

» See http://www.llvm.org

 Part 2 - Collect some opcode, branch, and memory

statistics

» Must figure out how to profile an application

» And extract profile info

- 3 -

Homework 1 - Notes

 llvm-gcc already installed on hurricane machines

» /y/583f11/llvm-gcc-install

» Add /y/583f11/llvm-gcc-install/bin to your path so you can use

the llvm-gcc executable

 If you want to use hurricane machines

» Create a directory for yourself on 1 of the machines

 cd /y/students

 mkdir uniquename

 chmod 700 uniquename

 cd uniquename

 Don’t accidently put your llvm files in the /y/students directory!!

» Then just download and build llvm backend

 If you use your other machines

» Then need to build both llvm-gcc and backend

- 4 -

From Last Time: BB and CFG

 Basic block – a sequence of

consecutive operations in which

flow of control enters at the

beginning and leaves at the end

without halt or possibility of

branching except at the end

 Control Flow Graph – Directed

graph, G = (V,E) where each

vertex V is a basic block and

there is an edge E, v1 (BB1)

v2 (BB2) if BB2 can immediately

follow BB1 in some execution

sequence

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

x = y+1;

if (c)

 x++;

else

 x--;;

y = z + 1;

if (a)

 y++;

else

 y—;

z++;

- 5 -

From Last Time: Dominator (DOM)

 Defn: Dominator – Given a CFG(V, E, Entry, Exit), a

node x dominates a node y, if every path from the Entry

block to y contains x

 3 properties of dominators

» Each BB dominates itself

» If x dominates y, and y dominates z, then x dominates z

» If x dominates z and y dominates z, then either x dominates y or

y dominates x

 Intuition

» Given some BB, which blocks are guaranteed to have executed

prior to executing the BB

- 6 -

Dominator Analysis

 Compute dom(BBi) = set of
BBs that dominate BBi

 Initialization

» Dom(entry) = entry

» Dom(everything else) = all
nodes

 Iterative computation

» while change, do

 change = false

 for each BB (except the entry
BB)

 tmp(BB) = BB + {intersect of
Dom of all predecessor BB’s}

 if (tmp(BB) != dom(BB))

dom(BB) = tmp(BB)

change = true

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 7 -

Immediate Dominator

 Defn: Immediate

dominator (idom)– Each

node n has a unique

immediate dominator m

that is the last dominator

of n on any path from the

initial node to n

» Closest node that

dominates

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 8 -

Dominator Tree

BB1

BB2 BB3 BB4

BB6 BB5 BB7

BB DOM

1 1

2 1,2

3 1,3

4 1,4

BB DOM

5 1,4,5

6 1,4,6

7 1,4,7

Dom tree

First BB is the root node, each node

dominates all of its descendants

BB1

BB2

BB4

BB3

BB5 BB6

BB7

- 9 -

Class Problem

BB1

BB2

BB4

BB3

BB6

BB7

BB8

Entry

Exit

Draw the dominator

tree for the following CFG

BB5

- 10 -

Post Dominator (PDOM)

 Reverse of dominator

 Defn: Post Dominator –
Given a CFG(V, E, Entry,
Exit), a node x post
dominates a node y, if
every path from y to the
Exit contains x

 Intuition

» Given some BB, which
blocks are guaranteed to
have executed after
executing the BB

 pdom(BBi) = set of BBs
that post dominate BBi

 Initialization

» Pdom(exit) = exit

» Pdom(everything else) = all
nodes

 Iterative computation

» while change, do

 change = false

 for each BB (except the exit
BB)

 tmp(BB) = BB + {intersect
of pdom of all successor
BB’s}

 if (tmp(BB) != pdom(BB))

 pdom(BB) = tmp(BB)

 change = true

- 11 -

Post Dominator Examples

BB1

BB2

BB4

BB3

Entry

Exit

BB2

BB3

BB5 BB4

Entry

Exit

BB6

BB1

BB7

- 12 -

Immediate Post Dominator

 Defn: Immediate post

dominator (ipdom) –

Each node n has a unique

immediate post

dominator m that is the

first post dominator of n

on any path from n to the

Exit

» Closest node that post

dominates

» First breadth-first

successor that post

dominates a node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 13 -

Why Do We Care About Dominators?

 Loop detection – next subject

 Dominator

» Guaranteed to execute before

» Redundant computation – an

op is redundant if it is

computed in a dominating BB

» Most global optimizations use

dominance info

 Post dominator

» Guaranteed to execute after

» Make a guess (ie 2 pointers

do not point to the same locn)

» Check they really do not

point to one another in the

post dominating BB

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 14 -

Natural Loops

 Cycle suitable for optimization

» Discuss optimizations later

 2 properties

» Single entry point called the header

 Header dominates all blocks in the loop

» Must be one way to iterate the loop (ie at least 1 path

back to the header from within the loop) called a

backedge

 Backedge detection

» Edge, x y where the target (y) dominates the source

(x)

- 15 -

Backedge Example

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

- 16 -

Loop Detection

 Identify all backedges using Dom info

 Each backedge (x y) defines a loop

» Loop header is the backedge target (y)

» Loop BB – basic blocks that comprise the loop

 All predecessor blocks of x for which control can reach x
without going through y are in the loop

 Merge loops with the same header

» I.e., a loop with 2 continues

» LoopBackedge = LoopBackedge1 + LoopBackedge2

» LoopBB = LoopBB1 + LoopBB2

 Important property

» Header dominates all LoopBB

- 17 -

Loop Detection Example

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

- 18 -

Important Parts of a Loop

 Header, LoopBB

 Backedges, BackedgeBB

 Exitedges, ExitBB

» For each LoopBB, examine each outgoing edge

» If the edge is to a BB not in LoopBB, then its an exit

 Preheader (Preloop)

» New block before the header (falls through to header)

» Whenever you invoke the loop, preheader executed

» Whenever you iterate the loop, preheader NOT executed

» All edges entering header

 Backedges – no change

 All others, retarget to preheader

 Postheader (Postloop) - analogous

- 19 -

Find the Preheaders for each Loop

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

??

- 20 -

Characteristics of a Loop

 Nesting (generally within a procedure scope)

» Inner loop – Loop with no loops contained within it

» Outer loop – Loop contained within no other loops

» Nesting depth

 depth(outer loop) = 1

 depth = depth(parent or containing loop) + 1

 Trip count (average trip count)

» How many times (on average) does the loop iterate

» for (I=0; I<100; I++) trip count = 100

» Ave trip count = weight(header) / weight(preheader)

- 21 -

Trip Count Calculation Example

BB2

BB3

BB4

BB5

Entry

Exit

BB6

BB1

20

600

360

2100

140

360

480

20

1000

1340

1100

Calculate the trip

counts for all the loops

in the graph

- 22 -

Reducible Flow Graphs

 A flow graph is reducible if and only if we can partition

the edges into 2 disjoint groups often called forward and

back edges with the following properties

» The forward edges form an acyclic graph in which every node

can be reached from the Entry

» The back edges consist only of edges whose destinations

dominate their sources

 More simply – Take a CFG, remove all the backedges

(x y where y dominates x), you should have a

connected, acyclic graph bb1

bb2 bb3

Non-reducible!

- 23 -

Regions

 Region: A collection of operations that are treated as a
single unit by the compiler

» Examples

 Basic block

 Procedure

 Body of a loop

» Properties

 Connected subgraph of operations

 Control flow is the key parameter that defines regions

 Hierarchically organized

 Problem

» Basic blocks are too small (3-5 operations)

 Hard to extract sufficient parallelism

» Procedure control flow too complex for many compiler xforms

 Plus only parts of a procedure are important (90/10 rule)

- 24 -

Regions (2)

 Want

» Intermediate sized regions with simple control flow

» Bigger basic blocks would be ideal !!

» Separate important code from less important

» Optimize frequently executed code at the expense of

the rest

 Solution

» Define new region types that consist of multiple BBs

» Profile information used in the identification

» Sequential control flow (sorta)

» Pretend the regions are basic blocks

- 25 -

Region Type 1 - Trace

 Trace - Linear collection of
basic blocks that tend to
execute in sequence

» ―Likely control flow path‖

» Acyclic (outer backedge ok)

 Side entrance – branch into the
middle of a trace

 Side exit – branch out of the
middle of a trace

 Compilation strategy

» Compile assuming path
occurs 100% of the time

» Patch up side entrances and
exits afterwards

 Motivated by scheduling (i.e.,
trace scheduling)

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

- 26 -

Linearizing a Trace

BB2

BB4

BB6

BB5

BB1

BB3

80
20 (side exit)

10 (side exit)

90

10 (entry count)

90 (entry/

exit count)

10 (exit count)

80
20 (side entrance)

10 (side entrance)

- 27 -

Intelligent Trace Layout for Icache Performance

BB2

BB4

BB6

BB5

BB1

BB3

trace1

trace 2

trace 3

The rest

Intraprocedural code placement

Procedure positioning

Procedure splitting

Procedure view Trace view

