
EECS 583 – Class 19

Research Topic 2

Exploiting Parallelism in

Streaming Applications

University of Michigan

November 28, 2011

- 1 -

Announcements & Reading Material

 Exams – not graded yet, will be passed back next Monday

 Final projects

» Each group will sign up for a 30 min presentation/demo slot

» Presentation days: Dec 13-16, 19

 Today’s class reading

» “Exploiting coarse-grained task, data, and pipeline parallelism in

stream programs,” M. Gordon, W. Thies, and S. Amarasinghe,

Proc. of the 12th Intl. Conference on Architectural Support for

Programming Languages and Operating Systems, Oct. 2006.

 Next class reading

» “Orchestrating the Execution of Stream Programs on Multicore

Platforms,” M. Kudlur and S. Mahlke, Proc. ACM SIGPLAN

2008 Conference on Programming Languages Design and

Implementation, Jun. 2008, pp. 114-124.

- 2 -

Discussion Items

 What explicitly parallel programming models

have you used?

» What was good, what was bad about them?

 What are the advantages of stream programming?

 What are the limitations of stream programming?

 Are static rates sufficient? What changes with

dynamic rates?

 Is stream programming the right approach?

» Why isn’t it more popular?

» What is the better option?

- 3 -

Homework 2 Contest: Rules

 Correctness

» Only eligible if your optimizer works on all

correctness testcases

 Timing

» Raw execution time: Average across 3 runs

» Run on Core 2 Quad system (no other users)

 Winners (need to come to class to see)

» Per performance benchmark

» Overall winner (Geometric mean of speedups

across performance benchmarks)

 Note: Overall winner had to work on all performance

benchmarks to be eligible

- 4 -

Congratz to Those Who Passed

All the Correctness Testcases!!
 aabooth

 athuls

 basir

 benselb

 chardson

 dadick

 ddevec

 dpopoff

 durgesh

 egnorka

 hsinhao

 jasonjk

 jdkasten

 jiehou

 jlafonta

 joemp

 joshlzh

 kuper

 mspivak

 mviscomi

 nehaag

 ricardoj

 sanae

 shrupad

 wlthoma

- 5 -

Winners

 Gotta come to class to see the winners!

StreamIt: A Language for
Streaming Applications

[Thies 02]

Streaming Application Domain

• Based on streams of data

• Increasingly prevalent and important
– Embedded systems

• Cell phones, handheld computers, DSP’s

– Desktop applications
• Streaming media – Real-time encryption

• Software radio - Graphics packages

– High-performance servers
• Software routers

• Cell phone base stations

• HDTV editing consoles

Synchronous Dataflow (SDF)

• Application is a graph of nodes

• Nodes send/receive items over channels

• Nodes have static I/O rates
Can construct a static schedule

The StreamIt Language

• Also a synchronous dataflow language
– With a few extra features

• Goals:
– High performance

– Improved programmer productivity

• Language Contributions:
– Structured model of streams

– Messaging system for control

– Automatic program morphing

ENABLES
Compiler
Analysis &
Optimization

Representing Streams

• Conventional wisdom: streams are graphs
– Graphs have no simple textual representation

– Graphs are difficult to analyze and optimize

Representing Streams

• Conventional wisdom: streams are graphs
– Graphs have no simple textual representation

– Graphs are difficult to analyze and optimize

• Insight: stream programs have structure

unstructured structured

• Hierarchical structures:
– Pipeline

– SplitJoin

– Feedback Loop

• Basic programmable unit: Filter

Structured Streams

• Hierarchical structures:
– Pipeline

– SplitJoin

– Feedback Loop

• Basic programmable unit: Filter

• Splits / Joins are compiler-defined

Structured Streams

Representing Filters

• Autonomous unit of computation
– No access to global resources

– Communicates through FIFO channels
- pop() - peek(index) - push(value)

– Peek / pop / push rates must be constant

• Looks like a Java class, with
– An initialization function

– A steady-state “work” function

– Message handler functions

float->float filter LowPassFilter (float N) {
float[N] weights;

init {
weights = calcWeights(N);

}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}

Filter Example: LowPassFilter

N

Filter Example: LowPassFilter
float->float filter LowPassFilter (float N) {

float[N] weights;

init {
weights = calcWeights(N);

}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}

N

Filter Example: LowPassFilter
float->float filter LowPassFilter (float N) {

float[N] weights;

init {
weights = calcWeights(N);

}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}

Filter Example: LowPassFilter

N

float->float filter LowPassFilter (float N) {
float[N] weights;

init {
weights = calcWeights(N);

}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}

Filter Example: LowPassFilter

N

float->float filter LowPassFilter (float N) {
float[N] weights;

init {
weights = calcWeights(N);

}

work push 1 pop 1 peek N {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}

pipeline FMRadio {

add DataSource();

add LowPassFilter();

add FMDemodulator();

add Equalizer(8);

add Speaker();

}

Pipeline Example: FM Radio

FMDemodulator

LowPassFilter

DataSource

Equalizer

Speaker

pipeline FMRadio {

add DataSource();

add LowPassFilter();

add FMDemodulator();

add Equalizer(8);

add Speaker();

}

Pipeline Example: FM Radio

FMDemodulator

LowPassFilter

DataSource

Equalizer

Speaker

duplicate

SplitJoin Example: Equalizer

BPF BPF BPF

Adder

roundrobin (1)

pipeline Equalizer (int N) {

add splitjoin {

split duplicate;

float freq = 10000;

for (int i = 0; i < N; i ++, freq*=2) {

add BandPassFilter(freq, 2*freq);

}

split roundrobin;

}

add Adder(N);

}

}

Why Structured Streams?

• Compare to structured control flow

• Tradeoff:
PRO: - more robust - more analyzable

CON: - “restricted” style of programming

GOTO statements If / else / for statements

Structure Helps Programmers

• Modules are hierarchical and composable
– Each structure is single-input, single-output

• Encapsulates common idioms

• Good textual representation
– Enables parameterizable graphs

N-Element Merge Sort (3-level)

Sort Sort Sort Sort Sort Sort Sort Sort

MergeMerge Merge Merge

Merge Merge

Merge

N/2 N/2

N/4 N/4 N/4 N/4

N/8 N/8 N/8 N/8 N/8 N/8 N/8 N/8

N

N-Element Merge Sort (K-level)

pipeline MergeSort (int N, int K) {
if (K==1) {

add Sort(N);
} else {

add splitjoin {
split roundrobin;
add MergeSort(N/2, K-1);
add MergeSort(N/2, K-1);
joiner roundrobin;

}
}
add Merge(N);

}
}

Basics of Stream Compilation
[Gordon 06]

…
push=2

Rate Matching

• All data pop/push rates are constant

• Can find a Steady-State Invocation Count
– # of items in the buffers are the same before and the

after executing the sequence

– There exist a unique minimum execution rate

• Execution = { }

pop=3
push=1

pop=2
…

A B C

…
push=2

…
push=2

Rate Matching

• All data pop/push rates are constant

• Can find a Steady-State Invocation Count
– # of items in the buffers are the same before and the

after executing the sequence

– There exist a unique minimum execution rate

• Execution = { A }

pop=3
push=1

pop=2
…

A B C

…
push=2

…
push=2

• All data pop/push rates are constant

• Can find a Steady-State Invocation Count
– # of items in the buffers are the same before and the

after executing the sequence

– There exist a unique minimum execution rate

• Execution = { A, A }

Rate Matching

pop=3
push=1

pop=2
…

A B C

…
push=2

Rate Matching

• All data pop/push rates are constant

• Can find a Steady-State Invocation Count
– # of items in the buffers are the same before and the

after executing the sequence

– There exist a unique minimum execution rate

• Execution = { A, A, B }

pop=3
push=1

pop=2
…

pop=3
push=1

A B C

…
push=2

…
push=2

• All data pop/push rates are constant

• Can find a Steady-State Invocation Count
– # of items in the buffers are the same before and the

after executing the sequence

– There exist a unique minimum execution rate

• Execution = { A, A, B, A }

Rate Matching

pop=3
push=1

pop=2
…

A B C

…
push=2

Rate Matching
• All data pop/push rates are constant

• Can find a Steady-State Invocation Count
– # of items in the buffers are the same before and the after

executing the sequence

– There exist a unique minimum execution rate

• Execution = { A, A, B, A, B }

pop=3
push=1

pop=2
…

pop=3
push=1

A B C

…
push=2

• All data pop/push rates are constant

• Can find a Steady-State Invocation Count
– # of items in the buffers are the same before and the

after executing the sequence

– There exist a unique minimum execution rate

• Execution = { A, A, B, A, B, C } -> 3A, 2B, C

Rate Matching

pop=3
push=1

pop=2
…

pop=2
…

A B C

Types of Parallelism
Task Parallelism

– Parallelism explicit in algorithm

– Between filters without
producer/consumer relationship

Data Parallelism

– Peel iterations of filter, place within
scatter/gather pair (fission)

– parallelize filters with state

Pipeline Parallelism

– Between producers and consumers

– Stateful filters can be parallelized

Scatter

Gather

Task

Types of Parallelism
Task Parallelism

– Parallelism explicit in algorithm

– Between filters without
producer/consumer relationship

Data Parallelism

– Between iterations of a stateless filter

– Place within scatter/gather pair (fission)

– Can’t parallelize filters with state

Pipeline Parallelism

– Between producers and consumers

– Stateful filters can be parallelized

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

Data Parallel

Types of Parallelism

Traditionally:

Task Parallelism

– Thread (fork/join) parallelism

Data Parallelism

– Data parallel loop (forall)

Pipeline Parallelism

– Usually exploited in hardware

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

Problem Statement

Given:

– Stream graph with compute and communication
estimate for each filter

– Computation and communication resources of
the target machine

Find:

– Schedule of execution for the filters that best
utilizes the available parallelism to fit the
machine resources

3-Phase Solution

1. Coarsen: Fuse stateless sections of the graph
2. Data Parallelize: parallelize stateless filters
3. Software Pipeline: parallelize stateful filters

Compile to a 16 core architecture
– 11.2x mean throughput speedup over single core

Coarsen
Granularity

Data
Parallelize

Software
Pipeline

Baseline 1: Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

• Inherent task parallelism between
two processing pipelines

• Task Parallel Model:

– Only parallelize explicit task
parallelism

– Fork/join parallelism

• Execute this on a 2 core machine
~2x speedup over single core

• What about 4, 16, 1024, … cores?

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sor
t

Cha
nn

elV
oc

od
er

DCT

DES

FFT

Filte
rba

nk

FMRad
io

Ser
pe

nt

TDE
MPEG2D

ec
od

er

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Evaluation: Task Parallelism
Raw Microprocessor

16 inorder, single-issue cores with D$ and I$
16 memory banks, each bank with DMA

Cycle accurate simulator

Parallelism: Not matched to target!
Synchronization: Not matched to target!

Baseline 2: Fine-Grained Data Parallelism

Adder

Splitter

Joiner

• Each of the filters in the
example are stateless

• Fine-grained Data Parallel
Model:
– Fiss each stateless filter N

ways (N is number of cores)

– Remove scatter/gather if
possible

• We can introduce data
parallelism
– Example: 4 cores

• Each fission group occupies
entire machineBandStopBandStopBandStopAdder

Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

Evaluation: Fine-Grained Data Parallelism

0

1

2

3
4

5

6

7

8

9
10

11

12

13

14

15
16

17

18

19

Bito
nic

Sort
Cha

nne
lVoc

od
er

DCT

DES

FFT

Filte
rban

k

FMRad
io

Serp
en

t

TDE
MPEG2Deco

der

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task
Fine-Grained Data

Good Parallelism!
Too Much Synchronization!

Phase 1: Coarsen the Stream Graph
Splitter

Joiner

Expand

BandStop

Process

BandPass

Compress

Expand

BandStop

Process

BandPass

Compress

• Before data-parallelism is
exploited

• Fuse stateless pipelines as
much as possible without
introducing state
– Don’t fuse stateless with

stateful

– Don’t fuse a peeking filter with
anything upstream

Peek Peek

PeekPeek

Adder

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Adder

• Before data-parallelism is
exploited

• Fuse stateless pipelines as
much as possible without
introducing state
– Don’t fuse stateless with

stateful

– Don’t fuse a peeking filter with
anything upstream

• Benefits:
– Reduces global communication

and synchronization

– Exposes inter-node
optimization opportunities

Phase 1: Coarsen the Stream Graph

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Fiss 4 ways, to occupy entire chip

Data Parallelize for 4 cores

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Task parallelism!
Each fused filter does equal work
Fiss each filter 2 times to occupy entire chip

Data Parallelize for 4 cores

BandStop BandStop

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

Splitter

Joiner

BandStop

Splitter

Joiner

BandStop

Splitter

Joiner

Task parallelism, each filter does equal work
Fiss each filter 2 times to occupy entire chip

• Task-conscious data
parallelization
– Preserve task parallelism

• Benefits:
– Reduces global communication

and synchronization

Data Parallelize for 4 cores

Evaluation: Coarse-Grained Data
Parallelism

0
1
2

3
4
5
6
7

8
9

10
11

12
13
14
15
16

17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic

Mean

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e

C
or

e
St

re
am

It

Task
Fine-Grained Data
Coarse-Grained Task + Data

Good Parallelism!
Low Synchronization!

Simplified Vocoder

RectPolar

Splitter

Joiner

AdaptDFT AdaptDFT

Splitter

Splitter

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

Joiner

Joiner

PolarRect

66

20

1

2

1

1

1

20

2

1

1

Data Parallel

Data Parallel

Target a 4 core machine

Data Parallel, but too little work!

Data Parallelize

RectPolarRectPolarRectPolar

Splitter

Joiner

AdaptDFT AdaptDFT

Splitter

Splitter

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

Joiner

RectPolar

Splitter

Joiner

RectPolarRectPolarRectPolarPolarRect

Splitter

Joiner

Joiner

20

2

1

1

1

20

66

2

1

1

1

5

5

Target a 4 core machine

Data + Task Parallel Execution

Time

Cores

21

Target 4 core machine

Splitter

Joiner

Splitter

Splitter

Joiner

Splitter

Joiner

RectPolar
Splitter

Joiner

Joiner

66

2

1

1

1

2

1

1

1

5

5

We Can Do Better!

Time

Cores

Target 4 core machine

Splitter

Joiner

Splitter

Splitter

Joiner

Splitter

Joiner

RectPolar
Splitter

Joiner

Joiner

66

2

1

1

1

2

1

1

1

5

5

16

Phase 3: Coarse-Grained Software
Pipelining

RectPolar

RectPolar

RectPolar

RectPolar

Prologue

New
Steady

State

• New steady-state is free of
dependencies

• Schedule new steady-state
using a greedy partitioning

Greedy Partitioning

Target 4 core machine

Time 16

CoresTo Schedule:

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic

Mean
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task Fine-Grained Data
Coarse-Grained Task + Data Coarse-Grained Task + Data + Software Pipeline

Evaluation: Coarse-Grained
Task + Data + Software Pipelining

Best Parallelism!
Lowest Synchronization!

	EECS 583 – Class 20�Research Topic 2�Exploiting Parallelism in Streaming Applications
	Announcements
	Reading Material
	Discussion Items
	583L20b.pdf
	EECS 583 – Class 19�Research Topic 2: Compiling Streaming Applications for Multicore
	Streaming Reading List
	Streaming Reading List (cont.)
	StreamIt: A Language for Streaming Applications�[Thies 02]
	Streaming Application Domain
	Synchronous Dataflow (SDF)
	The StreamIt Language
	Representing Streams
	Representing Streams
	Structured Streams
	Structured Streams
	Representing Filters
	Filter Example: LowPassFilter
	Filter Example: LowPassFilter
	Filter Example: LowPassFilter
	Filter Example: LowPassFilter
	Filter Example: LowPassFilter
	Pipeline Example: FM Radio
	Pipeline Example: FM Radio
	SplitJoin Example: Equalizer
	Why Structured Streams?
	Structure Helps Programmers
	N-Element Merge Sort (3-level)
	N-Element Merge Sort (K-level)
	Basics of Stream Compilation�[Gordon 06]
	Rate Matching
	Rate Matching
	Rate Matching
	Rate Matching
	Rate Matching
	Rate Matching
	Rate Matching
	Types of Parallelism
	Types of Parallelism
	Types of Parallelism
	Problem Statement
	3-Phase Solution
	Baseline 1: Task Parallelism
	Evaluation: Task Parallelism
	Baseline 2: Fine-Grained Data Parallelism
	Evaluation: Fine-Grained Data Parallelism
	Phase 1: Coarsen the Stream Graph
	Phase 1: Coarsen the Stream Graph
	Phase 2: Data Parallelize
	Phase 2: Data Parallelize
	Phase 2: Data Parallelize
	Evaluation: Coarse-Grained Data Parallelism
	Simplified Vocoder
	Data Parallelize
	Data + Task Parallel Execution
	We Can Do Better!
	Phase 3: Coarse-Grained Software Pipelining
	Greedy Partitioning
	Evaluation: Coarse-Grained �Task + Data + Software Pipelining

