EECS 583 – Class 19 Research Topic 2 Exploiting Parallelism in Streaming Applications

University of Michigan

November 28, 2011

Announcements & Reading Material

- Exams not graded yet, will be passed back next Monday
- Final projects
 - » Each group will sign up for a 30 min presentation/demo slot
 - » Presentation days: Dec 13-16, 19
- Today's class reading
 - » "Exploiting coarse-grained task, data, and pipeline parallelism in stream programs," M. Gordon, W. Thies, and S. Amarasinghe, *Proc. of the 12th Intl. Conference on Architectural Support for Programming Languages and Operating Systems*, Oct. 2006.
- Next class reading
 - » "Orchestrating the Execution of Stream Programs on Multicore Platforms," M. Kudlur and S. Mahlke, Proc. ACM SIGPLAN 2008 Conference on Programming Languages Design and Implementation, Jun. 2008, pp. 114-124.

- What explicitly parallel programming models have you used?
 - » What was good, what was bad about them?
- What are the advantages of stream programming?
- What are the limitations of stream programming?
- Are static rates sufficient? What changes with dynamic rates?
- Is stream programming the right approach?
 - » Why isn't it more popular?
 - » What is the better option?

Homework 2 Contest: Rules

Correctness

- » Only eligible if your optimizer works on all correctness testcases
- Timing
 - » Raw execution time: Average across 3 runs
 - » Run on Core 2 Quad system (no other users)
- Winners (need to come to class to see)
 - » Per performance benchmark
 - Overall winner (Geometric mean of speedups across performance benchmarks)
 - Note: Overall winner had to work on all performance benchmarks to be eligible

Congratz to Those Who Passed All the Correctness Testcases!!

✤ jasonjk

✤ jiehou

✤ jlafonta

✤ joemp

✤ joshlzh

* kuper

mspivak

• mviscomi

nehaag

✤ jdkasten

- aabooth
- athuls
- ♦ basir
- benselb
- chardson
- dadick
- ddevec
- dpopoff
- durgesh
- ✤ egnorka

- ✤ sanae
- shrupad
- wlthoma

Gotta come to class to see the winners!

StreamIt: A Language for Streaming Applications [Thies 02]

Streaming Application Domain

- Based on streams of data
- Increasingly prevalent and important
 - Embedded systems
 - Cell phones, handheld computers, DSP's
 - Desktop applications
 - Streaming media F
 - Software radio

- Real-time encryption
- Graphics packages
- High-performance servers
 - Software routers
 - Cell phone base stations
 - HDTV editing consoles

Synchronous Dataflow (SDF)

- Application is a graph of nodes
- Nodes send/receive items over channels
- Nodes have static I/O rates

Can construct a static schedule

The StreamIt Language

- Also a synchronous dataflow language
 - With a few extra features
- Goals:
 - High performance
 - Improved programmer productivity
- Language Contributions:
 - Structured model of streams
 - Messaging system for control
 - Automatic program morphing

ENABLES Compiler Analysis & Optimization

Representing Streams

- Conventional wisdom: streams are graphs
 - Graphs have no simple textual representation
 - Graphs are difficult to analyze and optimize

Representing Streams

- Conventional wisdom: streams are graphs
 - Graphs have no simple textual representation
 - Graphs are difficult to analyze and optimize
- Insight: stream programs have structure

unstructured

structured

Structured Streams

- Hierarchical structures:
 - Pipeline
 SplitJoin
 Feedback Loop
- Basic programmable unit: Filter

Structured Streams

- Hierarchical structures:
 - Pipeline
 SplitJoin
 Feedback Loop
- Basic programmable unit: Filter
- Splits / Joins are compiler-defined

Representing Filters

- Autonomous unit of computation
 - No access to global resources
 - Communicates through FIFO channels
 - pop() peek(index) push(value)
 - Peek / pop / push rates must be constant
- Looks like a Java class, with
 - An initialization function
 - A steady-state "work" function
 - Message handler functions

```
float->float filter LowPassFilter (float N) {
    float[N] weights;
```

```
init {
    weights = calcWeights(N);
}
```

```
work push 1 pop 1 peek N {
    float result = 0;
    for (int i=0; i<weights.length; i++) {
        result += weights[i] * peek(i);
    }
    push(result);
    pop();</pre>
```



```
float->float filter LowPassFilter (float N) {
    float[N] weights;
```

```
init {
    weights = calcWeights(N);
}
```

```
work push 1 pop 1 peek N {
    float result = 0;
    for (int i=0; i<weights.length; i++) {
        result += weights[i] * peek(i);
    }
    push(result);
    pop();</pre>
```



```
float->float filter LowPassFilter (float N) {
    float[N] weights;
```

```
init {
    weights = calcWeights(N);
}
```

```
work push 1 pop 1 peek N {
    float result = 0;
    for (int i=0; i<weights.length; i++) {
        result += weights[i] * peek(i);
    }
    push(result);
    pop();</pre>
```



```
float->float filter LowPassFilter (float N) {
    float[N] weights;
```

```
init {
    weights = calcWeights(N);
}
```

```
work push 1 pop 1 peek N {
    float result = 0;
    for (int i=0; i<weights.length; i++) {
        result += weights[i] * peek(i);
    }
    push(result);
    pop();
}</pre>
```


float->float filter LowPassFilter (float N) {
 float[N] weights;

```
init {
    weights = calcWeights(N);
}
```

```
work push 1 pop 1 peek N {
    float result = 0;
    for (int i=0; i<weights.length; i++) {
        result += weights[i] * peek(i);
    }
    push(result);
    pop();
}</pre>
```


Pipeline Example: FM Radio

pipeline FMRadio {
 add DataSource();
 add LowPassFilter();
 add FMDemodulator();
 add Equalizer(8);
 add Speaker();

Pipeline Example: FM Radio

pipeline FMRadio {
 add DataSource();
 add LowPassFilter();
 add FMDemodulator();
 add Equalizer(8);
 add Speaker();

SplitJoin Example: Equalizer

```
pipeline Equalizer (int N) {
 add splitjoin {
   split duplicate;
   float freq = 10000;
   for (int i = 0; i < N; i ++, freq*=2) {
     add BandPassFilter(freq, 2*freq);
   split roundrobin;
  add Adder(N);
```


Why Structured Streams?

Compare to structured control flow

GOTO statements

If / else / for statements

• Tradeoff:

PRO: - more robust - more analyzableCON: - "restricted" style of programming

Structure Helps Programmers

- Modules are hierarchical and composable
 - Each structure is single-input, single-output

- Encapsulates common idioms
- Good textual representation
 - Enables parameterizable graphs

N-Element Merge Sort (3-level)

N-Element Merge Sort (K-level)

```
pipeline MergeSort (int N, int K) {
   if (K==1) {
       add Sort(N);
   } else {
       add splitjoin {
           split roundrobin;
           add MergeSort(N/2, K-1);
           add MergeSort(N/2, K-1);
           joiner roundrobin;
       }
   }
   add Merge(N);
```

Basics of Stream Compilation [Gordon 06]

- All data pop/push rates are constant
- Can find a Steady-State Invocation Count
 - # of items in the buffers are the same before and the after executing the sequence
 - There exist a unique minimum execution rate

- All data pop/push rates are constant
- Can find a Steady-State Invocation Count
 - # of items in the buffers are the same before and the after executing the sequence
 - There exist a unique minimum execution rate

- All data pop/push rates are constant
- Can find a Steady-State Invocation Count
 - # of items in the buffers are the same before and the after executing the sequence
 - There exist a unique minimum execution rate
- Execution = { A, A }

- All data pop/push rates are constant
- Can find a Steady-State Invocation Count
 - # of items in the buffers are the same before and the after executing the sequence
 - There exist a unique minimum execution rate
- Execution = { A, A, B }

- All data pop/push rates are constant
- Can find a Steady-State Invocation Count
 - # of items in the buffers are the same before and the after executing the sequence
 - There exist a unique minimum execution rate
- Execution = { A, A, B, A }

- All data pop/push rates are constant
- Can find a Steady-State Invocation Count
 - # of items in the buffers are the same before and the after executing the sequence
 - There exist a unique minimum execution rate
- Execution = { A, A, B, A, B }

- All data pop/push rates are constant
- Can find a Steady-State Invocation Count
 - # of items in the buffers are the same before and the after executing the sequence
 - There exist a unique minimum execution rate
- Execution = { A, A, B, A, B, C } -> 3A, 2B, C

Types of Parallelism

Task Parallelism

- Parallelism explicit in algorithm
- Between filters *without* producer/consumer relationship

Types of Parallelism

Task Parallelism

- Parallelism explicit in algorithm
- Between filters *without* producer/consumer relationship

Data Parallelism

- Between iterations of a *stateless* filter
- Place within scatter/gather pair (fission)
- Can't parallelize filters with state

Pipeline Parallelism

- Between producers and consumers
- Stateful filters can be parallelized

Types of Parallelism

Traditionally:

Task Parallelism

- Thread (fork/join) parallelism

Data Parallelism

- Data parallel loop (forall)

Pipeline Parallelism

- Usually exploited in hardware

Given:

- Stream graph with compute and communication estimate for each filter
- Computation and communication resources of the target machine

Find:

 Schedule of execution for the filters that best utilizes the available parallelism to fit the machine resources

3-Phase Solution

- 1. Coarsen: Fuse stateless sections of the graph
- 2. Data Parallelize: parallelize stateless filters
- 3. Software Pipeline: parallelize stateful filters

Compile to a 16 core architecture

- 11.2x mean throughput speedup over single core

Baseline 1: Task Parallelism

- Inherent task parallelism between two processing pipelines
- Task Parallel Model:
 - Only parallelize explicit task parallelism
 - Fork/join parallelism
- Execute this on a 2 core machine ~2x speedup over single core
- What about 4, 16, 1024, ... cores?

Evaluation: Task Parallelism

Baseline 2: Fine-Grained Data Parallelism

- Each of the filters in the example are stateless
- Fine-grained Data Parallel Model:
 - *Fiss* each stateless filter *N* ways (*N* is number of cores)
 - Remove scatter/gather if possible
- We can introduce data parallelism
 - Example: 4 cores
- Each fission group occupies entire machine

Evaluation: Fine-Grained Data Parallelism

	19 - 18 -		Good Parallelism!
mlt	17 - 16 -	Fine-Grained Data	
Strea	15 -		
Core	14 - 13 -		
ed to Single C	12 -		
	11 - 10 -		
	9 -		
maliz	8 - 7 -		
Nor	6 - 5		
Jhput	5 - 4 -		
Iroug	3 - 2 -		
È	- 1 - 0 -		
	Bito	onicsoft pes pci pes et	Filebant FNRadio Selpent TDE TDE Vocodet Radat Radat Realing R

Phase 1: Coarsen the Stream Graph

- Before data-parallelism is exploited
- Fuse stateless pipelines as much as possible without introducing state
 - Don't fuse stateless with stateful
 - Don't fuse a peeking filter with anything upstream

Phase 1: Coarsen the Stream Graph

- Before data-parallelism is exploited
- Fuse stateless pipelines as much as possible without introducing state
 - Don't fuse stateless with stateful
 - Don't fuse a peeking filter with anything upstream
- Benefits:
 - Reduces global communication and synchronization
 - Exposes inter-node optimization opportunities

Phase 2: Data Parallelize

Data Parallelize for 4 cores

Phase 2: Data Parallelize

Phase 2: Data Parallelize

Data Parallelize for 4 cores

- Task-conscious data parallelization
 - Preserve task parallelism
- Benefits:
 - Reduces global communication and synchronization

Task parallelism, each filter does equal work Fiss each filter 2 times to occupy entire chip

Evaluation: Coarse-Grained Data Parallelism

Simplified Vocoder

Data Parallelize

Target a 4 core machine

Data + Task Parallel Execution

We Can Do Better!

Target 4 core machine

Phase 3: Coarse-Grained Software Pipelining

 \bullet

Greedy Partitioning

Target 4 core machine

Evaluation: Coarse-Grained Task + Data + Software Pipelining

