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Announcements + Reading Material 

 Midterm exam: Mon Nov 14 in class (Next Monday) 

» I will post 2 practice exams by tonight! 

» We‟ll talk more about the exam next class 

 1st paper review due today! 

» Copy file to andrew.eecs.umich.edu:/y/submit 

» Put uniquename_classXX.txt 

 Today‟s class reading 

» “Revisiting the Sequential Programming Model for Multi-Core,” M. J. 

Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, Proc 

40th IEEE/ACM International Symposium on Microarchitecture, 

December 2007.  

 Next class reading 

» “Automatic Thread Extraction with Decoupled Software Pipelining,” G. 

Ottoni, R. Rangan, A. Stoler, and D. I. August, Proceedings of the 38th 

IEEE/ACM International Symposium on Microarchitecture, Nov. 2005. 
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Class Problem from Last Time – Answer  

1: y =  

2: x = y  

3: = x  

6: y = 

7: z =  

8: x = 

9: = y    

10: = z  

4: y = 

5: = y  

10 90 

1 

1 99 

do a 2-coloring 

 compute cost matrix 

 draw interference graph 

 color graph 
LR1(x) = {2,3,4,5,6,7,8,9} 

LR2(y) = {1,2} 

LR3(y) = {4,5,6,7,8,9} 

LR4(z) = {3,4,5,6,7,8,9,10} 

2 

1 

4 

3 

Interference graph 

 1 2 3 4 

cost 201 2 210 91 

nbors 3 1 2 2 

c/n 67 2 105 45.5 
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Class Problem Answer (continued) 

2 

1 

4 

3 

1. Remove all nodes degree < 2, 

remove node 2 

1 

4 

3 

2. Cannot remove any nodes, so choose 

node 4 to spill 

stack 

2 

1 

3 

3. Remove all nodes degree < 2, 

remove 1 and 3 

stack 

4 (spill) 

2 

stack 

1 

3 

4 (spill) 

2 

4. Assign colors: 1 = red, 3 = blue, 4 = spill, 

2 = blue 
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Moore‟s Law 

 

Source: Intel/Wikipedia 
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Single-Threaded Performance Not Improving 
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What about Parallel Programming? –or-  

What is Good About the Sequential Model? 

 Sequential is easier 

» People think about programs sequentially 

» Simpler to write a sequential program 

 Deterministic execution 

» Reproducing errors for debugging 

» Testing for correctness 

 No concurrency bugs 

» Deadlock, livelock, atomicity violations 

» Locks are not composable 

 Performance extraction 

» Sequential programs are portable 

 Are parallel programs?  Ask GPU developers  

» Performance debugging of sequential programs straight-forward 



- 7 - 

Compilers are the Answer? - Proebsting‟s Law 

 “Compiler Advances Double Computing Power Every 18 Years” 
 
 

 Run your favorite set of benchmarks with your favorite state-of-the-art optimizing 
compiler. Run the benchmarks both with and without optimizations enabled. The 
ratio of of those numbers represents the entirety of the contribution of compiler 
optimizations to speeding up those benchmarks. Let's assume that this ratio is about 
4X for typical real-world applications, and let's further assume that compiler 
optimization work has been going on for about 36 years. Therefore, compiler 
optimization advances double computing power every 18 years. QED. 
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Conclusion – Compilers not about performance! 
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“That isn't to say we are parallelizing 
arbitrary C code, that's a fool's errand!” – 

Richard Lethin, Reservoir Labs 

“Compiler can’t determine a tree from a 
graph…” – Burton Smith, MSR 

“Compilers can’t determine dependences 
without type information.  Even then…” – 

Burton Smith 

“Decades of automatic parallelization work has 
been a failure…” – James Larus, MSR 

“All that icky pointer chasing code...”  

– Tim Mattson, Intel 

What Do the Experts Say? 



A Step Back in Time: Old Skool 

Parallelization 

Are We Doomed? 
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Parallelizing Loops In Scientific Applications 

 

for(i=1; i<=N; i++) // C 

  a[i] = a[i] + 1;  // X 

Scientific Codes (FORTRAN-like) 
Independent  

Multithreading  

(IMT) 

 

Example: DOALL  

parallelization 

0 

1 

2 

3 

4 

5 

C:1 

X:1 

C:2 

X:2 

C:4 

X:4 

C:3 

X:3 

C:5 

X:5 

C:6 

X:6 

Core 1 Core 2 
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What Information is Needed to Parallelize? 

 Dependences within iterations are fine 

 Identify the presence of cross-iteration data-
dependences 

» Traditional analysis is inadequate for parallelization. 
For instance, it does not distinguish between different 
executions of the same statement in a loop. 

 Array dependence analysis enables optimization 
for parallelism in programs involving arrays. 

» Determine pairs of iterations where there is a data 
dependence 

» Want to know all dependences, not just yes/no 

 

 

 

for(i=1; i<=N; i++) // C 

  a[i] = a[i] + 1;  // X 

 

for(i=1; i<=N; i++) // C 

  a[i] = a[i-1] + 1;  // X 
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Affine/Linear Functions 

 f( i1, i2, …, in)  is affine, if it can be expressed as a sum of a 
constant, plus constant multiples of the variables. i.e.  

                                   n 

   f = c0 + ∑ cixi  
                   i = 1 

 Array subscript expressions are usually affine functions 
involving loop induction variables. 

 Examples: 
» a[ i ]   affine 

» a[ i+j -1 ]    affine 

» a[ i*j ]     non-linear, not affine 

» a[ 2*i+1, i*j ]   linear/non-linear, not affine 

» a[ b[i] + 1 ]    non linear (indexed subscript), not affine 
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Iteration Space 

 Iteration space is the set of iterations, whose ID‟s are 

given by the values held by the loop index variables. 

     for (i = 2; i <= 100;  i= i+3) 

    Z[i] = 0; 

 IS = {2, 5, 8, 11, … , 98} – the set contains the value of 

the loop index i at each iteration of the loop. 

 The iteration space can be normalized.  Prior loop is: 

     for (in = 0; in
 <= 32; in

 ++) 

    Z[2 + 3* in] = 0; 

 

In general, in = (i – lowerBound) / istep 
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Iteration Space (continued) 
 How about nested loops? 
     for (i = 3; i <= 7;  i++) 
        for (j = 6; j >= 2; j = j – 2 ) 
       Z[i, j] = Z[i, j+2] + 1 
 
The iteration space is given by the set of vectors: 
{[3,6], [3,4], [3,2], [4,6], [4,4], [4,2], [5,6], [5,4], [5,2], [6,6], 

[6,4], [6,2], [7,6], [7,4], [7,2]} 
 
Question: Rewrite the loop using normalized iteration vectors? 

 Normalized form 

     for (i = 0; i <= 4;  i++) 

        for (j = 0; j <= 2; j++ ) 

       Z[3 + i, 6 - j*2] = Z[3 + i, 6 - j*2+2] + 1 
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Dependence Graph 

 3 dependence types 

» Flow dependence (true dependence) 

 A variable assigned in one statement is used subsequently in another 
statement. 

» Anti-dependence 

 A variable is used in one statement and reassigned in a subsequently 
executed statement. 

» Output dependence 

 A variable is assigned in one statement and subsequently reassigned in 
another statement. 

 

 Graph can be drawn to show data dependence between statements 
within a loop. 

 S1:  for (i = 2; i<= 5; ++i){ 

      S2:          X[i] = Y[i] + Z[i] 

      S3:                A[i] = X[i-1] + 1 

   } 

    i=2       i=3     i=4        i=5 

S2:   X[2]     X[3]      X[4]     X[5] 

S3:   X[1]     X[2]      X[3]     X[4] 
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Iteration Space Dependence Graph 

 for (i = 3; i <= 7;  i++) 

        for (j = 6; j >= 2; j = j – 2 ) 

       Z[i, j] = Z[i, j+2] + 1 

 

 Iteration space 

dependence 

graph 

(normalized) 
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Array Dependence Analysis 

 Consider two static accesses A in a d-deep loop nest 

and A‟ in a d’-deep loop nest respectively defined as  

  A= <F, f, B, b> and A‟ = <F‟, f‟, B‟, b‟> 

 A and A‟ are data dependent if 

» Bi ≥ 0 ; B‟i‟ ≥  0 and  

» Fi + f  = F‟i‟ + f‟   

» (and i ≠ i‟ for dependencies between instances of the same 

static access) 
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Array Dependence Analysis (continued) 

for (i = 1; i < 10; i++) { 

    X[i] = X[i-1] 

} 

To find all the data dependences, we check if 

1. X[i-1]  and X[i] refer to the same location; 

2. different instances of X[i] refer to the same location. 

» For 1, we solve for i and i‟ in 

 1 ≤ i ≤ 10, 1 ≤ i‟ ≤ 10 and i – 1 = i‟ 

» For 2, we solve for i and i‟ in 

 1 ≤ i ≤ 10, 1 ≤ i‟ ≤ 10, i = i‟ and i ≠ i‟ (between different dynamic accesses) 

There is a dependence since there exist integer solutions to 1. e.g. (i=2, i‟=1), 

(i=3,i‟=2). 9 solutions exist. 

There is no dependences among different instances of X[i] because 2 has no 

solutions! 
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Array Dependence Analysis - Summary 

 Array data dependence basically requires finding integer 

solutions to a system (often refers to as dependence 

system) consisting of equalities and inequalities. 

 Equalities are derived from array accesses. 

 Inequalities from the loop bounds. 

 It is an integer linear programming problem. 

 ILP is an NP-Complete problem. 

 Several Heuristics have been developed. 

» Omega – U. Maryland 
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Loop Parallelization Using Affine Analysis Is 

Proven Technology 

 DOALL Loop 

» No loop carried dependences for a particular nest 

» Loop interchange to move parallel loops to outer scopes 

 Other forms of parallelization possible 

» DOAcross, DOpipe 

 Optimizing for the memory hierarchy 

» Tiling, skewing, etc. 

 Real compilers available – KAP, Portland Group, 
gcc 

 For better information, see 

» http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=g
et&target=graphite_lambda_tutorial.pdf  

http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=get&target=graphite_lambda_tutorial.pdf
http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=get&target=graphite_lambda_tutorial.pdf


Back to the Present – Parallelizing C 

and C++ Programs 
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Loop Level Parallelization 

i = 0-39 

i = 10-19 

i = 30-39 

i = 0-9 

i = 20-29 

Thread 1 Thread 0 

Loop Chunk 

Bad news: limited number of parallel 

loops in general purpose applications 

–1.3x speedup for SpecINT2000 on 4 cores 



- 23 - 

DOALL Loop Coverage  
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What‟s the Problem? 

for (i=0; i<100; i++) { 

 

     . . . = *p; 

 

 

    *q = . . . 

 

 

} 

1. Memory dependence analysis 

Memory dependence profiling 

and speculative parallelization 
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Provable DOALL

Still not good enough! 
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What‟s the Next Problem? 

2. Data dependences 

while (ptr != NULL) { 

 

    . . .  

   

    ptr = ptr->next; 

 

   sum = sum + foo; 

} 

Compiler transformations 
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sum2 += x sum1 += x 

We Know How to Break Some of These 

Dependences – Recall ILP Optimizations 

sum+=x 

sum = sum1 + sum2 

Thread 1 Thread 0 

Apply accumulator variable expansion! 
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Data Dependences Inhibit Parallelization 

 Accumulator, induction, and min/max expansion 

only capture a small set of dependences 

 2 options 

» 1) Break more dependences – New transformations 

» 2) Parallelize in the presence of branches – more than 

DOALL parallelization  

 We will talk about both 

 For today, consider data dependences as a solved 

problem 
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char *memory; 

 

void * alloc(int size); 

void * alloc(int size) { 

  void * ptr = memory; 

  memory = memory + size; 

  return ptr; 

} 

Core 1 Core 2 

T
im

e
 

Core 3 

Low Level Reality 

alloc1 

alloc2 

alloc3 

alloc4 

alloc5 

alloc6 

What‟s the Next Problem? 

3. C/C++ too restrictive 
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char *memory; 

 

void * alloc(int size); 

void * alloc(int size) { 

  void * ptr = memory; 

  memory = memory + size; 

  return ptr; 

} 

Core 1 Core 2 

T
im

e
 

Core 3 

Low Level Reality 

alloc1 

alloc2 

alloc3 

alloc4 

alloc5 

alloc6 

Loops cannot be parallelized even if 

computation is independent 
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Commutative Extension 

 Interchangeable call sites 

» Programmer doesn‟t care about the order that a 

particular function is called 

» Multiple different orders are all defined as correct 

» Impossible to express in C 

 Prime example is memory allocation routine 

» Programmer does not care which address is returned 

on each call, just that the proper space is provided 

  Enables compiler to break dependences that flow 

from 1 invocation to next forcing sequential 

behavior 
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char *memory; 

 

 

void * alloc(int size); 

@Commutative 

void * alloc(int size) { 

  void * ptr = memory; 

  memory = memory + size; 

  return ptr; 

} 

Core 1 Core 2 

T
im

e
 

Core 3 

Low Level Reality 

alloc1 

alloc2 

alloc3 

alloc4 

alloc5 

alloc6 
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char *memory; 

 

 

void * alloc(int size); 

@Commutative 

void * alloc(int size) { 

  void * ptr = memory; 

  memory = memory + size; 

  return ptr; 

} 

Implementation dependences should 
not cause serialization. 

Core 1 Core 2 

T
im

e
 

Core 3 

Low Level Reality 

alloc1 

alloc2 

alloc3 

alloc4 

alloc5 

alloc6 
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What is the Next Problem? 

 4. C does not allow any prescribed non-

determinism 

» Thus sequential semantics must be assumed even 

though they not necessary 

» Restricts parallelism (useless dependences) 

 Non-deterministic branch  programmer does 

not care about individual outcomes 

» They attach a probability to control how statistically 

often the branch should take 

» Allow compiler to tradeoff „quality‟ (e.g., 

compression rates) for performance 

 When to create a new dictionary in a compression scheme 
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280 
chars 

3000 
chars 

70 
chars 

520 
chars 

Sequential Program 

100 
chars 

100 
chars 

80 
chars 100 

chars 

20 

Parallel Program 

dict = create_dict(); 

while((char = read(1))) { 

  profitable =  

 compress(char, dict) 

 

  if (!profitable) { 

    dict = restart(dict); 

  } 

} 

finish_dict(dict); 

 

#define CUTOFF 100 

dict = create_dict(); 

count = 0; 

while((char = read(1))) { 

  profitable =  

 compress(char, dict) 

 

  if (!profitable) 

    dict=restart(dict); 

  if (count == CUTOFF){ 

    dict=restart(dict); 

    count=0; 

  } 

   

  count++; 

} 

finish_dict(dict); 

 

!profit 

!profit 

!profit 

!profit 

cutoff cutoff cutoff cutoff 

!profit 
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1500 
chars 

2500 
chars 

800 
chars 

1200 
chars 

1700 
chars 

2-Core Parallel Program 

64-Core Parallel Program 

1000 
chars 

1300 
chars 

dict = create_dict(); 

while((char = read(1))) { 

  profitable =  

 compress(char, dict) 

 

  @YBRANCH(probability=.01)  

  if (!profitable) { 

    dict = restart(dict); 

  } 

} 

finish_dict(dict); 

 

Compilers are best situated to make 
the tradeoff between output quality 

and performance 
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Capturing Output/Performance Tradeoff: Y-

Branches in 164.gzip 
dict = create_dict(); 

while((char = read(1))) { 

  profitable =  

 compress(char, dict) 

 

  if (!profitable) { 

    dict = restart(dict); 

  } 

} 

finish_dict(dict); 

 

#define CUTOFF 100000 

dict = create_dict(); 

count = 0; 

while((char = read(1))) { 

  profitable =  

 compress(char, dict) 

 

  if (!profitable) 

    dict=restart(dict); 

  if (count == CUTOFF){ 

    dict=restart(dict); 

    count=0; 

  } 

   

  count++; 

} 

finish_dict(dict); 

 

dict = create_dict(); 

while((char = read(1))) { 

  profitable =  

 compress(char, dict) 

 

  @YBRANCH(probability=.00001)  

  if (!profitable) { 

    dict = restart(dict); 

  } 

} 

finish_dict(dict); 
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unsigned char *block; 

int last_written; 

 

compressStream(in, out) { 

  while (True) { 

    loadAndRLEsource(in); 

    if (!last) break; 

 

    doReversibleTransform(); 

 

    sendMTFValues(out); 

  } 

}  

doReversibleTransform() { 

  ... 

  sortIt(); 

  ... 

} 

sortIt() { 

  ... 

  printf(...); 

  ... 

} 

256.bzip2 

Parallelization techniques must look inside function calls 
to expose operations that cause synchronization. 
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char *memory; 

 

void * xalloc(int size) { 

  void * ptr = memory; 

  memory = memory + size; 

  return ptr; 

} 

High-Level View:  

Parsing a sentence is 
independent of any other 
sentence. 

Low-Level Reality:  

Implementation 
dependences inside 
functions called by parse 
lead to large sequential 
regions. 

batch_process() { 

  while(True) { 

    sentence = read(); 

    if (!sentence) break; 

 

    parse(sentence); 

 

    print(sentence); 

  } 

} 

197.parser 
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164.gzip 26 x x x 

175.vpr 1 x x x 

176.gcc 18 x x x x 

181.mcf 0 x 

186.crafty 9 x x x x x 

197.parser 3 x x 

253.perlbmk 0 x x x 

254.gap 3 x x x 

255.vortex 0 x x x 

256.bzip2 0 x x 

300.twolf 1 x x x 

Modified only 60 LOC out of ~500,000 LOC 
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Lack of an Aggressive Compilation Framework 

What prevents the automatic extraction of parallelism? 

Sequential Programming Model 

Performance Potential 
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Discussion Points 

 Is implicit parallelism better than explicit? 

» Is implicitly parallel code easier to write? 

» What if the compiler cannot discover your parallelism? 

» Would you use a tool that parallelized your code? 

 What else is not expressable in C besides Y-branch and 

commutative? 

» Or, what are other hurdles to parallelization? 

» OpenMP already provides pragmas for parallel loops?  Why are 

these not more popular? 

 How do you write code that is more parallelizable? 

» What about linked data structures?, recursion?, pointers? 

» Should compilers speculate? 


