
EECS 583 – Class 16

Research Topic 1

Automatic Parallelization

University of Michigan

November 7, 2011

- 1 -

Announcements + Reading Material

 Midterm exam: Mon Nov 14 in class (Next Monday)

» I will post 2 practice exams by tonight!

» We‟ll talk more about the exam next class

 1st paper review due today!

» Copy file to andrew.eecs.umich.edu:/y/submit

» Put uniquename_classXX.txt

 Today‟s class reading

» “Revisiting the Sequential Programming Model for Multi-Core,” M. J.

Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, Proc

40th IEEE/ACM International Symposium on Microarchitecture,

December 2007.

 Next class reading

» “Automatic Thread Extraction with Decoupled Software Pipelining,” G.

Ottoni, R. Rangan, A. Stoler, and D. I. August, Proceedings of the 38th

IEEE/ACM International Symposium on Microarchitecture, Nov. 2005.

- 2 -

Class Problem from Last Time – Answer

1: y =

2: x = y

3: = x

6: y =

7: z =

8: x =

9: = y

10: = z

4: y =

5: = y

10 90

1

1 99

do a 2-coloring

 compute cost matrix

 draw interference graph

 color graph
LR1(x) = {2,3,4,5,6,7,8,9}

LR2(y) = {1,2}

LR3(y) = {4,5,6,7,8,9}

LR4(z) = {3,4,5,6,7,8,9,10}

2

1

4

3

Interference graph

 1 2 3 4

cost 201 2 210 91

nbors 3 1 2 2

c/n 67 2 105 45.5

- 3 -

Class Problem Answer (continued)

2

1

4

3

1. Remove all nodes degree < 2,

remove node 2

1

4

3

2. Cannot remove any nodes, so choose

node 4 to spill

stack

2

1

3

3. Remove all nodes degree < 2,

remove 1 and 3

stack

4 (spill)

2

stack

1

3

4 (spill)

2

4. Assign colors: 1 = red, 3 = blue, 4 = spill,

2 = blue

- 4 -

Moore‟s Law

Source: Intel/Wikipedia

- 5 -

Single-Threaded Performance Not Improving

- 6 -

What about Parallel Programming? –or-

What is Good About the Sequential Model?

 Sequential is easier

» People think about programs sequentially

» Simpler to write a sequential program

 Deterministic execution

» Reproducing errors for debugging

» Testing for correctness

 No concurrency bugs

» Deadlock, livelock, atomicity violations

» Locks are not composable

 Performance extraction

» Sequential programs are portable

 Are parallel programs? Ask GPU developers 

» Performance debugging of sequential programs straight-forward

- 7 -

Compilers are the Answer? - Proebsting‟s Law

 “Compiler Advances Double Computing Power Every 18 Years”

 Run your favorite set of benchmarks with your favorite state-of-the-art optimizing
compiler. Run the benchmarks both with and without optimizations enabled. The
ratio of of those numbers represents the entirety of the contribution of compiler
optimizations to speeding up those benchmarks. Let's assume that this ratio is about
4X for typical real-world applications, and let's further assume that compiler
optimization work has been going on for about 36 years. Therefore, compiler
optimization advances double computing power every 18 years. QED.

 1

10

100

1000

10000

100000

1000000

10000000

100000000

19
71

19
75

19
79

19
83

19
87

19
91

19
95

19
99

20
03

Years

S
p

e
e

d
u

p

Conclusion – Compilers not about performance!

- 8 -

“That isn't to say we are parallelizing
arbitrary C code, that's a fool's errand!” –

Richard Lethin, Reservoir Labs

“Compiler can’t determine a tree from a
graph…” – Burton Smith, MSR

“Compilers can’t determine dependences
without type information. Even then…” –

Burton Smith

“Decades of automatic parallelization work has
been a failure…” – James Larus, MSR

“All that icky pointer chasing code...”

– Tim Mattson, Intel

What Do the Experts Say?

A Step Back in Time: Old Skool

Parallelization

Are We Doomed?

- 10 -

Parallelizing Loops In Scientific Applications

for(i=1; i<=N; i++) // C

 a[i] = a[i] + 1; // X

Scientific Codes (FORTRAN-like)
Independent

Multithreading

(IMT)

Example: DOALL

parallelization

0

1

2

3

4

5

C:1

X:1

C:2

X:2

C:4

X:4

C:3

X:3

C:5

X:5

C:6

X:6

Core 1 Core 2

- 11 -

What Information is Needed to Parallelize?

 Dependences within iterations are fine

 Identify the presence of cross-iteration data-
dependences

» Traditional analysis is inadequate for parallelization.
For instance, it does not distinguish between different
executions of the same statement in a loop.

 Array dependence analysis enables optimization
for parallelism in programs involving arrays.

» Determine pairs of iterations where there is a data
dependence

» Want to know all dependences, not just yes/no

for(i=1; i<=N; i++) // C

 a[i] = a[i] + 1; // X

for(i=1; i<=N; i++) // C

 a[i] = a[i-1] + 1; // X

- 12 -

Affine/Linear Functions

 f(i1, i2, …, in) is affine, if it can be expressed as a sum of a
constant, plus constant multiples of the variables. i.e.

 n

 f = c0 + ∑ cixi
 i = 1

 Array subscript expressions are usually affine functions
involving loop induction variables.

 Examples:
» a[i] affine

» a[i+j -1] affine

» a[i*j] non-linear, not affine

» a[2*i+1, i*j] linear/non-linear, not affine

» a[b[i] + 1] non linear (indexed subscript), not affine

- 13 -

Iteration Space

 Iteration space is the set of iterations, whose ID‟s are

given by the values held by the loop index variables.

 for (i = 2; i <= 100; i= i+3)

 Z[i] = 0;

 IS = {2, 5, 8, 11, … , 98} – the set contains the value of

the loop index i at each iteration of the loop.

 The iteration space can be normalized. Prior loop is:

 for (in = 0; in
 <= 32; in

 ++)

 Z[2 + 3* in] = 0;

In general, in = (i – lowerBound) / istep

- 14 -

Iteration Space (continued)
 How about nested loops?
 for (i = 3; i <= 7; i++)
 for (j = 6; j >= 2; j = j – 2)
 Z[i, j] = Z[i, j+2] + 1

The iteration space is given by the set of vectors:
{[3,6], [3,4], [3,2], [4,6], [4,4], [4,2], [5,6], [5,4], [5,2], [6,6],

[6,4], [6,2], [7,6], [7,4], [7,2]}

Question: Rewrite the loop using normalized iteration vectors?

 Normalized form

 for (i = 0; i <= 4; i++)

 for (j = 0; j <= 2; j++)

 Z[3 + i, 6 - j*2] = Z[3 + i, 6 - j*2+2] + 1

- 15 -

Dependence Graph

 3 dependence types

» Flow dependence (true dependence)

 A variable assigned in one statement is used subsequently in another
statement.

» Anti-dependence

 A variable is used in one statement and reassigned in a subsequently
executed statement.

» Output dependence

 A variable is assigned in one statement and subsequently reassigned in
another statement.

 Graph can be drawn to show data dependence between statements
within a loop.

 S1: for (i = 2; i<= 5; ++i){

 S2: X[i] = Y[i] + Z[i]

 S3: A[i] = X[i-1] + 1

 }

 i=2 i=3 i=4 i=5

S2: X[2] X[3] X[4] X[5]

S3: X[1] X[2] X[3] X[4]

- 16 -

Iteration Space Dependence Graph

 for (i = 3; i <= 7; i++)

 for (j = 6; j >= 2; j = j – 2)

 Z[i, j] = Z[i, j+2] + 1

 Iteration space

dependence

graph

(normalized)

- 17 -

Array Dependence Analysis

 Consider two static accesses A in a d-deep loop nest

and A‟ in a d’-deep loop nest respectively defined as

 A= <F, f, B, b> and A‟ = <F‟, f‟, B‟, b‟>

 A and A‟ are data dependent if

» Bi ≥ 0 ; B‟i‟ ≥ 0 and

» Fi + f = F‟i‟ + f‟

» (and i ≠ i‟ for dependencies between instances of the same

static access)

- 18 -

Array Dependence Analysis (continued)

for (i = 1; i < 10; i++) {

 X[i] = X[i-1]

}

To find all the data dependences, we check if

1. X[i-1] and X[i] refer to the same location;

2. different instances of X[i] refer to the same location.

» For 1, we solve for i and i‟ in

 1 ≤ i ≤ 10, 1 ≤ i‟ ≤ 10 and i – 1 = i‟

» For 2, we solve for i and i‟ in

 1 ≤ i ≤ 10, 1 ≤ i‟ ≤ 10, i = i‟ and i ≠ i‟ (between different dynamic accesses)

There is a dependence since there exist integer solutions to 1. e.g. (i=2, i‟=1),

(i=3,i‟=2). 9 solutions exist.

There is no dependences among different instances of X[i] because 2 has no

solutions!

- 19 -

Array Dependence Analysis - Summary

 Array data dependence basically requires finding integer

solutions to a system (often refers to as dependence

system) consisting of equalities and inequalities.

 Equalities are derived from array accesses.

 Inequalities from the loop bounds.

 It is an integer linear programming problem.

 ILP is an NP-Complete problem.

 Several Heuristics have been developed.

» Omega – U. Maryland

- 20 -

Loop Parallelization Using Affine Analysis Is

Proven Technology

 DOALL Loop

» No loop carried dependences for a particular nest

» Loop interchange to move parallel loops to outer scopes

 Other forms of parallelization possible

» DOAcross, DOpipe

 Optimizing for the memory hierarchy

» Tiling, skewing, etc.

 Real compilers available – KAP, Portland Group,
gcc

 For better information, see

» http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=g
et&target=graphite_lambda_tutorial.pdf

http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=get&target=graphite_lambda_tutorial.pdf
http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=get&target=graphite_lambda_tutorial.pdf

Back to the Present – Parallelizing C

and C++ Programs

- 22 -

Loop Level Parallelization

i = 0-39

i = 10-19

i = 30-39

i = 0-9

i = 20-29

Thread 1 Thread 0

Loop Chunk

Bad news: limited number of parallel

loops in general purpose applications

–1.3x speedup for SpecINT2000 on 4 cores

- 23 -

DOALL Loop Coverage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

05
2.

al
vi

nn
05

6.
ea

r
17

1.
sw

im
17

2.
m

gr
id

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
00

8.
es

pr
es

so
02

3.
eq

nt
ot

t
02

6.
co

m
pr

es
s

07
2.

sc
09

9.
go

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

19
7.

pa
rs

er
25

5.
vo

rt
ex

25
6.

bz
ip

2
30

0.
tw

ol
f

cj
pe

g
dj

pe
g

ep
ic

g7
21

de
co

de
g7

21
en

co
de

gs
m

de
co

de
gs

m
en

co
de

m
pe

g2
de

c
m

pe
g2

en
c

pe
gw

itd
ec

pe
gw

ite
nc

ra
w

ca
ud

io
ra

w
da

ud
io

un
ep

ic
gr

ep le
x

w
c

ya
cc

av
er

ag
e

SPEC FP SPEC INT Mediabench Utilities

Fr
ac

tio
n

of
 s

eq
ue

nt
ia

l e
xe

cu
tio

n

- 24 -

What‟s the Problem?

for (i=0; i<100; i++) {

 . . . = *p;

 *q = . . .

}

1. Memory dependence analysis

Memory dependence profiling

and speculative parallelization

- 25 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
5
2
.a

lv
in

n

0
5
6
.e

a
r

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

0
0
8
.e

s
p
re

s
s
o

0
2
3
.e

q
n
to

tt

0
2
6
.c

o
m

p
re

s
s

0
7
2
.s

c

0
9
9
.g

o

1
2
4
.m

8
8
k
s
im

1
2
9
.c

o
m

p
re

s
s

1
3
0
.l
i

1
3
2
.i
jp

e
g

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

1
9
7
.p

a
rs

e
r

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

c
jp

e
g

d
jp

e
g

e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
e
g
w

it
d
e
c

p
e
g
w

it
e
n
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

u
n
e
p
ic

g
re

p

le
x

y
a
c
c

a
v
e
ra

g
e

SPEC FP SPEC INT Mediabench Utilities

F
r
a
c
ti

o
n

 o
f

s
e
q
u

e
n

ti
a
l
e
x
e
c
u

ti
o
n Provable DOALL

DOALL Coverage – Provable and Profiled

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
5
2
.a

lv
in

n

0
5
6
.e

a
r

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

0
0
8
.e

s
p
re

s
s
o

0
2
3
.e

q
n
to

tt

0
2
6
.c

o
m

p
re

s
s

0
7
2
.s

c

0
9
9
.g

o

1
2
4
.m

8
8
k
s
im

1
2
9
.c

o
m

p
re

s
s

1
3
0
.l
i

1
3
2
.i
jp

e
g

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

1
9
7
.p

a
rs

e
r

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

c
jp

e
g

d
jp

e
g

e
p
ic

g
7
2
1
d
e
c
o
d
e

g
7
2
1
e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

p
e
g
w

it
d
e
c

p
e
g
w

it
e
n
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

u
n
e
p
ic

g
re

p

le
x

y
a
c
c

a
v
e
ra

g
e

SPEC FP SPEC INT Mediabench Utilities

F
r
a
c
ti

o
n

 o
f

s
e
q
u

e
n

ti
a
l
e
x
e
c
u

ti
o
n

Profiled DOALL

Provable DOALL

Still not good enough!

- 26 -

What‟s the Next Problem?

2. Data dependences

while (ptr != NULL) {

 . . .

 ptr = ptr->next;

 sum = sum + foo;

}

Compiler transformations

- 27 -

sum2 += x sum1 += x

We Know How to Break Some of These

Dependences – Recall ILP Optimizations

sum+=x

sum = sum1 + sum2

Thread 1 Thread 0

Apply accumulator variable expansion!

- 28 -

Data Dependences Inhibit Parallelization

 Accumulator, induction, and min/max expansion

only capture a small set of dependences

 2 options

» 1) Break more dependences – New transformations

» 2) Parallelize in the presence of branches – more than

DOALL parallelization

 We will talk about both

 For today, consider data dependences as a solved

problem

- 29 -

char *memory;

void * alloc(int size);

void * alloc(int size) {

 void * ptr = memory;

 memory = memory + size;

 return ptr;

}

Core 1 Core 2

T
im

e

Core 3

Low Level Reality

alloc1

alloc2

alloc3

alloc4

alloc5

alloc6

What‟s the Next Problem?

3. C/C++ too restrictive

- 30 -

char *memory;

void * alloc(int size);

void * alloc(int size) {

 void * ptr = memory;

 memory = memory + size;

 return ptr;

}

Core 1 Core 2

T
im

e

Core 3

Low Level Reality

alloc1

alloc2

alloc3

alloc4

alloc5

alloc6

Loops cannot be parallelized even if

computation is independent

- 31 -

Commutative Extension

 Interchangeable call sites

» Programmer doesn‟t care about the order that a

particular function is called

» Multiple different orders are all defined as correct

» Impossible to express in C

 Prime example is memory allocation routine

» Programmer does not care which address is returned

on each call, just that the proper space is provided

 Enables compiler to break dependences that flow

from 1 invocation to next forcing sequential

behavior

- 32 -

char *memory;

void * alloc(int size);

@Commutative

void * alloc(int size) {

 void * ptr = memory;

 memory = memory + size;

 return ptr;

}

Core 1 Core 2

T
im

e

Core 3

Low Level Reality

alloc1

alloc2

alloc3

alloc4

alloc5

alloc6

- 33 -

char *memory;

void * alloc(int size);

@Commutative

void * alloc(int size) {

 void * ptr = memory;

 memory = memory + size;

 return ptr;

}

Implementation dependences should
not cause serialization.

Core 1 Core 2

T
im

e

Core 3

Low Level Reality

alloc1

alloc2

alloc3

alloc4

alloc5

alloc6

- 34 -

What is the Next Problem?

 4. C does not allow any prescribed non-

determinism

» Thus sequential semantics must be assumed even

though they not necessary

» Restricts parallelism (useless dependences)

 Non-deterministic branch  programmer does

not care about individual outcomes

» They attach a probability to control how statistically

often the branch should take

» Allow compiler to tradeoff „quality‟ (e.g.,

compression rates) for performance

 When to create a new dictionary in a compression scheme

- 35 -

280
chars

3000
chars

70
chars

520
chars

Sequential Program

100
chars

100
chars

80
chars 100

chars

20

Parallel Program

dict = create_dict();

while((char = read(1))) {

 profitable =

 compress(char, dict)

 if (!profitable) {

 dict = restart(dict);

 }

}

finish_dict(dict);

#define CUTOFF 100

dict = create_dict();

count = 0;

while((char = read(1))) {

 profitable =

 compress(char, dict)

 if (!profitable)

 dict=restart(dict);

 if (count == CUTOFF){

 dict=restart(dict);

 count=0;

 }

 count++;

}

finish_dict(dict);

!profit

!profit

!profit

!profit

cutoff cutoff cutoff cutoff

!profit

- 36 -

1500
chars

2500
chars

800
chars

1200
chars

1700
chars

2-Core Parallel Program

64-Core Parallel Program

1000
chars

1300
chars

dict = create_dict();

while((char = read(1))) {

 profitable =

 compress(char, dict)

 @YBRANCH(probability=.01)

 if (!profitable) {

 dict = restart(dict);

 }

}

finish_dict(dict);

Compilers are best situated to make
the tradeoff between output quality

and performance

100
chars

100
chars

80
chars 100

chars

20

cutoff cutoff cutoff cutoff

!prof

cutoff cutoff cutoff cutoff

!prof

!prof
!prof

R
e

s
e

t
e

v
e

ry

2
5

0
0

 c
h

a
ra

c
te

rs

R
e

s
e

t
e

v
e

ry

1
0

0
 c

h
a

ra
c
te

rs

- 37 -

Capturing Output/Performance Tradeoff: Y-

Branches in 164.gzip
dict = create_dict();

while((char = read(1))) {

 profitable =

 compress(char, dict)

 if (!profitable) {

 dict = restart(dict);

 }

}

finish_dict(dict);

#define CUTOFF 100000

dict = create_dict();

count = 0;

while((char = read(1))) {

 profitable =

 compress(char, dict)

 if (!profitable)

 dict=restart(dict);

 if (count == CUTOFF){

 dict=restart(dict);

 count=0;

 }

 count++;

}

finish_dict(dict);

dict = create_dict();

while((char = read(1))) {

 profitable =

 compress(char, dict)

 @YBRANCH(probability=.00001)

 if (!profitable) {

 dict = restart(dict);

 }

}

finish_dict(dict);

- 38 -

unsigned char *block;

int last_written;

compressStream(in, out) {

 while (True) {

 loadAndRLEsource(in);

 if (!last) break;

 doReversibleTransform();

 sendMTFValues(out);

 }

}

doReversibleTransform() {

 ...

 sortIt();

 ...

}

sortIt() {

 ...

 printf(...);

 ...

}

256.bzip2

Parallelization techniques must look inside function calls
to expose operations that cause synchronization.

- 39 -

char *memory;

void * xalloc(int size) {

 void * ptr = memory;

 memory = memory + size;

 return ptr;

}

High-Level View:

Parsing a sentence is
independent of any other
sentence.

Low-Level Reality:

Implementation
dependences inside
functions called by parse
lead to large sequential
regions.

batch_process() {

 while(True) {

 sentence = read();

 if (!sentence) break;

 parse(sentence);

 print(sentence);

 }

}

197.parser

- 40 -

164.gzip 26 x x x

175.vpr 1 x x x

176.gcc 18 x x x x

181.mcf 0 x

186.crafty 9 x x x x x

197.parser 3 x x

253.perlbmk 0 x x x

254.gap 3 x x x

255.vortex 0 x x x

256.bzip2 0 x x

300.twolf 1 x x x

Modified only 60 LOC out of ~500,000 LOC

- 41 -

Lack of an Aggressive Compilation Framework

What prevents the automatic extraction of parallelism?

Sequential Programming Model

Performance Potential

- 42 -

Discussion Points

 Is implicit parallelism better than explicit?

» Is implicitly parallel code easier to write?

» What if the compiler cannot discover your parallelism?

» Would you use a tool that parallelized your code?

 What else is not expressable in C besides Y-branch and

commutative?

» Or, what are other hurdles to parallelization?

» OpenMP already provides pragmas for parallel loops? Why are

these not more popular?

 How do you write code that is more parallelizable?

» What about linked data structures?, recursion?, pointers?

» Should compilers speculate?

