EECS 583 — Class 16
Research Topic 1

Automatic Parallelization

University of Michigan

November 7, 2011

Announcements + Reading Material

< Midterm exam: Mon Nov 14 in class (Next Monday)
» | will post 2 practice exams by tonight!
» We’ll talk more about the exam next class

< 15t paper review due today!
» Copy file to andrew.eecs.umich.edu:/y/submit
» Put uniguename_classXX.txt

« Today’s class reading

» “Revisiting the Sequential Programming Model for Multi-Core,” M. J.
Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, Proc
40th IEEE/ACM International Symposium on Microarchitecture,

December 2007.
< Next class reading

» “Automatic Thread Extraction with Decoupled Software Pipelining,” G.
Ottoni, R. Rangan, A. Stoler, and D. I. August, Proceedings of the 38th
IEEE/ACM International Symposium on Microarchitecture, Nov. 2005.

CCC 9* compilers creating custom processors -1-

Class Problem from Last Time — Answer

do a 2-coloring

l.y= compute cost matrix
2: X =Y draw interference graph
1 color graph
LR1(x) ={2,3,4,5,6,7,8,9}

- LR2(y) = {1,2} (2)
=X LR3(y) = {4,5,6,7,8,9}

10 > o0 LR4(z) = {3,4,5,6,7,8,9,10} 0

= 6:y= \ e

y 7:2= @/

\ / Interference graph

8:x=
0: = y 1 2 3 4
99 . cost 201 2 210 91
d nbors 3 1 2 2
10:=2 c/n 67 2 105 45.5

CCC 9* compilers creating custom processors -2

Class Problem Answer (continued)

(2

1. Remove all nodes degree < 2,
remove node 2

2. Cannot remove any nodes, so choose
node 4 to spill

G)\ zt?§§i||)
©,

3. Remove all nodes degree < 2,
remove 1 and 3

stack

1

3

4 (spill)
2

4. Assign colors: 1 =red, 3 = blue, 4 = spill,
2 = blue

Cc'c' 9* compilers creating custom processors

Transistor Count

Moore’s Law

10, 000, 000,000 ¢

1,000, 000,000
i « Core 2 Quad

-+ Core 2 Duo

100, 000,000 E

- ﬂ,,-‘fs;entium 4

10, 000, 000 . Pexﬁﬁﬁﬁtﬁlm 11

',-"-*'Pentium
1,000,000 | - 4806
100, 000 }
10,000 ¢
1,000 : . ! . .
1970 1980 1990 2000 2010
Year

Source: Intel/Wikipedia

Single-Threaded Performance Not Improving

- CPU2000

SPEC CPU Integer Performance (logarithmic scale)

1992 1O 19494 1995 1996 1997 1998 194949 2000 2001 2002 2003 200 2005 006G 2007 H0s 2009 20140
Year

What about Parallel Programming? —or-
What is Good About the Sequential Model?

< Sequential Is easier
» People think about programs sequentially
» Simpler to write a sequential program

< Deterministic execution
» Reproducing errors for debugging
» Testing for correctness

< NO concurrency bugs
» Deadlock, livelock, atomicity violations
» Locks are not composable

< Performance extraction

» Sequential programs are portable
 Are parallel programs? Ask GPU developers ©

» Performance debugging of sequential programs straight-forward

-6 -

Compilers are the Answer? - Proebsting’s Law

% “Comj 100000000
10000000 ‘-
< Run y(1000000 loptimizing
compi/| S 100000 bled. The
E)atti?mc? § 10099 gtrinopiileazbout
Y 2 1000 |
(i
optimi 10
1 -m

OO PSS S
SAESEECEEC SRR RN

Years

A
i

Conclusion — Compilers not about performance!

What Do the Experts Say?

“That isn't to say we are parallelizing
arbitrary C code, that's a fool's errand!” —
Richard Lethin, Reservoir Labs

“Compilers can’t determine dependences
without type information. Even then...” —
Burton Smith

“All that icky pointer chasing code...”
— Tim Mattson, Intel

-8-

Are We Doomed?

A Step Back in Time: Old Skool
Parallelization

Parallelizing Loops In Scientific Applications

Scientific Codes (FORTRAN-like)

for (i=1l; i<=N; i++) // C
a[i] = a[i] + 1; // X

CCC 9* compilers creating custom processors

Independent
Multithreading
(IMT)

Example: DOALL2

parallelization

-10 -

0 -

1 -

Corel Core?2

What Information is Needed to Parallelize?

< Dependences within iterations are fine

< ldentify the presence of cross-iteration data-
dependences

» Traditional analysis is inadequate for parallelization.
For instance, it does not distinguish between different
executions of the same statement in a loop.

< Array dependence analysis enables optimization
for parallelism in programs involving arrays.

» Determine pairs of iterations where there Is a data
dependence

» Want to know all dependences, not just yes/no

for (i=1l; i<=N; i++) // C for (i=1l; i<=N; i++) // C
al[i] = a[i] + 1; // X al[i] = a[i-1] + 1; // X

CCC 9* compilers creating custom processors -11 -

Affine/Linear Functions

= f(1, 1, 1, 1s affine, If it can be expressed as a sum of a
constant, plus constant multiples of the variables. I.e.

f=c,+> cx

< Array subscript expressions are usually affine functions
Involving loop induction variables.

< Examples:

»

»

»

»

»

CCC 9* compilers creating custom processors

d
d
d
d
d

1]

[1+)-1]

[1%]]

[2%i+1, 1%]

D[] +1]

affine

affine

non-linear, not affine

linear/non-linear, not affine

non linear (indexed subscript), not affine

Iteration Space

< Iteration space 1s the set of iterations, whose ID’s are
given by the values held by the loop index variables.

for (i=2;i<=100; i=i+3)
Z[i] = 0;
IS=1{2,5,8,11, ..., 98} —the set contains the value of
the loop index i at each iteration of the loop.
< The Iteration space can be normalized. Prior loop is:
for (i"=0; i"<= 32; i"++)
Z[2 +3*1"] =0;

In general, I" = (i — lowerBound) / I,

CCC 9* compilers creating custom processors -13 -

Iteration Space (continued)

< How about nested loops?
for(1=3;1<=7; 1++)
for(j=6,j>=2;j=]-2)
Z[, 1 =Z[i, j+2] + 1

The iteration space Is given ny the set of vectors:

{[3[P[P 2], f4 f4 4], {}4,2], [5,6], [5,4], [5.2], [6,6],

Question: Rewrite the loop using normalized iteration vectors?
< Normalized form
for (I=0;1<=4; i++4)
for =0;j<=2;j++)
Z[3+1,6-)*2]=Z[3+1,6-)*2+2] +1

CCC 9* compilers creating custom processors -14 -

Dependence Graph

< 3 dependence types

» Flow dependence (true dependence)

e A variable assigned in one statement is used subsequently in another
statement.

» Anti-dependence

e A variable is used in one statement and reassigned in a subsequently
executed statement.

» QOutput dependence

e A variable is assigned in one statement and subsequently reassigned in
another statement.

>

» Graph can be drawn to show data dependence between statements
within a loop. e
S, for (i = 2; i<=5; ++i){ \/
S, X[i] = YIi] + Z][i]
S Ali] = X[i-1] +1
¥ |
=2 — 1=3 — I=4 —i=5 \J
S,; X[2] X[3] X[4] X[5]

Sa X[X[2] ™ X[3] ™ X[4]
-15 -

Iteration Space Dependence Graph

for (i=3;i<=7; i++) % Iteration space
for(j=6;j>=2;j=j-2) dependence
Z[i,] = ZIi, j+2] + 1 graph
(normalized)

o (@——He—re— T

l

o (@— O — @

- (@—e®—>®
“ (@O ®
(@@ — @

.

CCC 9* compilers creating custom processors -16 -

=

Array Dependence Analysis

< Consider two static accesses A In a d-deep loop nest
and A’ in a d’-deep loop nest respectively defined as

A=<F f B,b>and A’ =<F’, ", B’, b’>
<+ A and A’ are data dependent 1f
» Bi>0;B’I’> 0and
» Fi+f =F1r+7f

» (and 1 # I’ for dependencies between instances of the same
static access)

CCC 9* compilers creating custom processors -17 -

Array Dependence Analysis (continued)

for (i=1;i<10;i++) {
X[i] = X[i-1]
}

To find all the data dependences, we check If
1. X[i-1] and X[i] refer to the same location;
2. different instances of X[i] refer to the same location.
» For 1, we solve for1and i’ in
1<1<10,1<r<10andi—-1=71
» For 2, we solve for1and 1’ in
1<1<10,1<1<10,1=1" and1#1 (between different dynamic accesses)

There 1s a dependence since there exist integer solutions to 1. e.g. (1=2, 1’=1),
(1=3,1’=2). 9 solutions exist.

There is no dependences among different instances of X[i] because 2 has no
solutions!

CCC 9* compilers creating custom processors -18 -

Array Dependence Analysis - Summary

Array data dependence basically requires finding integer
solutions to a system (often refers to as dependence
system) consisting of equalities and inequalities.

Equalities are derived from array accesses.
Inequalities from the loop bounds.

It Is an integer linear programming problem.
ILP Is an NP-Complete problem.

Several Heuristics have been developed.
» Omega — U. Maryland

CCC 9* compilers creating custom processors -19 -

Loop Parallelization Using Affine Analysis Is
Proven Technology

<« DOALL Loop
» No loop carried dependences for a particular nest
» Loop interchange to move parallel loops to outer scopes
< Other forms of parallelization possible
» DOAcross, DOpipe
< Optimizing for the memory hierarchy
» Tiling, skewing, etc.
< Real compilers available — KAP, Portland Group,
gcc
< For better information, see

» http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=q
et&target=qgraphite lambda tutorial.pdf

CCC 9* compilers creating custom processors -20 -

http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=get&target=graphite_lambda_tutorial.pdf
http://gcc.gnu.org/wiki/Graphite?action=AttachFile&do=get&target=graphite_lambda_tutorial.pdf

Back to the Present — Parallelizing C
and C++ Programs

Loop Level Parallelization

Bad news: limited number of parallel
loops in general purpose applications

—1.3x speedup for SpecINT2000 on 4 cores

CCC 9* compilers creating custom processors -22 -

— abelone

= 29eA
M
_ X9|
dalb

Utilities

_ aldaun
olpnepmel
olpneIme)
ouanmbad
29p1Imbad
ouazhadw
99pzbadu
ETRITENS)
9p029pwsh
apoauaTe.b
9p02ap1e/h
olda

badlp

badlo

n HUH

o

Mediabench

Jlomy'00¢g

g zdizq'96¢
XaUOA'GGZ
Jasred' /6T
JOW'T8T
Jdng)T

diz6 97
badlizeT
I'0ET
$SaIdwod'6ZT
WISY38W 7¢T
== 00660

3s°2/0
Ssa1dwo2'920
nojuba gz
0SS21ds9°800

=11

f=1

-23 -

SPEC INT

dwwe'ggT

axenba €8T
LSaW’/ /1
||

pubw-g/T
WIMS'T/T
lea’9q(

UuIAfe'ZS0

00 N © To) < ™ N

SPEC FP

DOALL Loop Coverage

o
o

O O O o O o o©o
u0IN2axa [enuanbas Jo uooe.d

-
o

CCC 9* compilers creating custom processors

What’s the Problem?

1. Memory dependence analysis

for (1=0; 1<100; 1++) {

‘ Memory dependence profiling
and speculative parallelization

CCC 9* compilers creating custom processors -24 -

O Profiled DOALL
B Provable DOALL

—— S

2oek

X3

daub
d1daun
olpnepme.
olpneome.
ouaumbad

Utilities

ouazbadw
Jopgzbadw
apoousawsb
apodapuwshb
apoouatzsb
9podapTeLb

o1da

badlp

badb

JJIOMY 00€
zdizq 95
losied /6T
PW 8T
1da'g/T
dizb* 971

-25 -

badlirzeT

II'0ET
ssaldwod 67
WISY88W]
06'660
3s'¢/0
ssa1dwod g9y
1ojubs czo
0ssa.1dsa°'gQ
dwwe'ggr

[|

|
———— 2°pumbad

]

]

|
|

]

[

—]

Still not good enough!

enbarggrt

He'6/LT

eSOW//T

pubwrz/t

SPEC

WIMS'T/LT

129°950

UUIAIR ZS0

DOALL Coverage — Provable and Profiled

CCC 9* compilers creating custom processors

What’s the Next Problem?

2. Data dependences

while (ptr 1= NULL) {

sum = sum + foo;

‘ Compiler transformations

CCC' 9* compilers creating custom processors -26 -

We Know How to Break Some of These
Dependences — Recall ILP Optimizations

Apply accumulator variable expansion!

sum+=Xx >

sum = suml + sum?2

CCC 9* compilers creating custom processors -27 -

Data Dependences Inhibit Parallelization

< Accumulator, induction, and min/max expansion
only capture a small set of dependences

< 2 options
» 1) Break more dependences — New transformations

» 2) Parallelize in the presence of branches — more than
DOALL parallelization

< We will talk about both

< For today, consider data dependences as a solved
problem

CCC 9* compilers creating custom processors -28 -

Low Level Reality

What’s the Next Problem? core1| core2 | cores

SR
alloc,

3. C/C++ too restrictive

alloc,
(dkm3

char *memory;

void * alloc(int size); 2
=
. . , alloc,
volid * alloc(int size) { \ J\, \
vold * ptr = memory; alloc,
memory = memory + size;
return ptr;
}
allocg

-29-

Low Level Reality
Core 1 Core 2 Core 3

)
alloc,

char *memory;

vold * alloc(int size);

alloc,
(ﬂkm3

vold * alloc(int size) {
void * ptr = memory;
memory = memory + size; 2
return ptr; =
) ‘mkm®\'
()
alloc

5

LLoops cannot be parallelized even if
computation is independent allocg

-30 -

Commutative Extension

< Interchangeable call sites

» Programmer doesn’t care about the order that a
particular function is called

» Multiple different orders are all defined as correct
» Impossible to express in C

< Prime example i1s memory allocation routine

» Programmer does not care which address is returned
on each call, just that the proper space is provided

< Enables compiler to break dependences that flow
from 1 Iinvocation to next forcing sequential
behavior

CCC 9* compilers creating custom processors -31-

char *memory;

@Commutative
volid * alloc(int size);

void * alloc(int size) {
void * ptr = memory;
memory = memory + size;
return ptr;

-32-

Time

Low Level Reality

Core 1 Core 2 Core 3
)
alloc,
alloc,
\ J
()
alloc;
alloc
\ 4)

()
alloc,
alloc,
—

Low Level Reality
Core 1 Core 2 Core 3

'amms

@Commutative
volid * alloc(int size);

alloc,

aHoclk
char *memory; ' ‘alloc3\¥

(A

void * alloc (int size) { alloc,
vold * ptr = memory; allocg

memory = memory + size;
return ptr;

Time

Implementation dependences should
not cause serialization.

-33-

What Is the Next Problem?

< 4. C does not allow any prescribed non-
determinism

» Thus sequential semantics must be assumed even
though they not necessary

» Restricts parallelism (useless dependences)

< Non-deterministic branch = programmer does
not care about individual outcomes

» They attach a probability to control how statistically
often the branch should take

» Allow compiler to tradeoff ‘quality’ (e.g.,
compression rates) for performance
e When to create a new dictionary in a compression scheme

CCC 9* compilers creating custom processors -34 -

#define CUTOFF 100
dict = create dict();
gouh& (¥clar = read(1l))) {
whptefithbte==read(1l))) {
profidedeess (char, dict)
compress (char, dict)
1f (!profitable) {
ifdidprefresbaer (dict);
} dict=restart(dict);
} 1if (count == CUTOFF) {
finidhctzceddact)dict);
count=0;

}

count++;

}
finish dict(dict);

-35-

Sequential Program

(N\ [N\ [N\ [)

70
280 chars
chars

520

Iprofit | chars

— | 3000
Iprofit | chars

Iprofit

Iprofit

Parallel Program
(N\ [N [N\ [)

80

100 100 | [chars| | 100
chars chars | \) | chars

Iprofit

_ J J 20 _ J
cutoff cutoff cutoff cutoff

dict create dict(
while ((char read (
profitable
compress (char,

) ;
= 1))) A

dict)

@YBRANCH (probability=.01)
1f (!profitable) {
dict restart (dict) ;

J
finish dict(dict);

Compilers are best situated to make
the tradeoff between output quality
and performance

-36 -

2-Core Parallel Program

4 N [N [N [N\
800 [] 1200
gﬁgﬁl chars | 1 chars
Tenf —
2500 Iprof
~—— | chars fL ’_!prof
Iprof
1700 1300
gﬁgﬁ; chars | | chars
L J . J . J L J

cutoff cutoff cutoff cutoff

64-Core Parallel Program

4 N [N [N [N
80
100 100 || chars |1 100
chars chars | \) | chars
Iprof
_ J J 20 _ J

cutoff cutoff cutoff cutoff

Reset every
2500 characters

Reset every
100 characters

Speedup vs. Single Threaded

Capturing Output/Performance Tradeoff: Y-

Branches in 164.9zip

dict = create dict();
while ((char = read(1l))) {
profitable =

compress (char, dict)
@YBRANCH{prebabjility=.00001)
1fditcprefreabde) (dict) ;
} dict = restart(dict);

bl

finish dict(dict);

finish dict(dict);

32

28 |
24 |
20 | xx*x
16 | X
12))
8 | x
4+ . X ’
¥ | |
4 8 16 32

<37 -

#define CUTOFF 100000

dict = create dict();

count = 0;

while ((char = read(1l))) {
profitable =

compress (char, dict)

1f (!profitable)
dict=restart (dict);

1if (count == CUTOFF) {
dict=restart (dict);
count=0;

count++;

}
finish dict(dict);

256.bzip2

unsigned char *block;
int last written;

Sc&{eversibleTransform () |
compressStream(in, out) { | €
&@dle (True) { I sortIt ()
I \loadAndRLEsource(in); | {..
I §f (!last) break; </
X
: dOReversibleTransform() ; jo\rtIt() {
| f!endMTFValues (out) ; | €
‘}/ I printf(...);
} v 7
V4

Parallelization techniques must look inside function calls
to expose operations that cause synchronization.

-38 -

197.parser

batch process () { char *memory;
®ile (True) {
I ?\int?nce = read(); vo'yd-df\xalloc(int size) {
I 1 (!'sentence) break; dvoid Wr = memory;
| I m ory = mory + size;
" %?rse(sentence); | r&turn ptr;
1\

1 frint (sentence) ;

\

}

High-Level View: Low-Level Reality:
Parsing a sentence is Implementation
iIndependent of any other dependences inside
sentence. functions called by parse

lead to large sequential
regions.

-39-

&
OOQ 2 %\Q N %QQ) §
S O 8 > D % &
S & P & N @ $
¢ 4 > SIS KN N >
S SN RS \g §
o ¥ & & & o S &
S & ¢ L F ¢ I <
164.9zip 26 | x X X
175.vpr 1 X X X
176.gcc 18 | x X X X
181.mcf 0 X
186.crafty 9 |X X X X X
197.parser 3 |X X
253.perlbmk 0 |X X X
254.gap 3 |X X X
255.vortex 0 |x X X
256.bzip2 0 |Xx X
300.twolf 1 Ix X X

Modified only 60 LOC out of ~500,000 LOC

Performance Potential
32

_ ® Existing
16
B Framework + Annotations
8
4
2]
|

Speedup vs. Single Threaded

Q $ 9 5 4 5 + 900N o
A @*& u@Q §F & &

What prevents the automatic extraction of parallelism?
< of . ot |
) . ol

-4] -

Discussion Points

< Is implicit parallelism better than explicit?
» Is implicitly parallel code easier to write?
» What If the compiler cannot discover your parallelism?
» Would you use a tool that parallelized your code?

< What else iIs not expressable in C besides Y-branch and
commutative?

» Or, what are other hurdles to parallelization?

» OpenMP already provides pragmas for parallel loops? Why are
these not more popular?

+ How do you write code that is more parallelizable?
» What about linked data structures?, recursion?, pointers?
» Should compilers speculate?
ccC & compilers creating custom processors 42 -

