
EECS 583 – Class 15

Register Allocation

University of Michigan

November 2, 2011

- 1 -

Announcements + Reading Material

 Midterm exam: Monday, Nov 14?

» Could also do Wednes Nov 9 (next week!) or Wednes Nov 16 (2

wks from now)

» Class vote

 Today’s class reading

» “Register Allocation and Spilling Via Graph Coloring,” G.

Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler

Construction, 1982.

 Next class reading – More at the end of class

» “Revisiting the Sequential Programming Model for Multi-Core,”

M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I.

August, Proc 40th IEEE/ACM International Symposium on

Microarchitecture, December 2007.

- 2 -

Homework Problem – Answers in Red

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

 b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

How many resources of each type are

required to achieve an II=1 schedule?

For II=1, each operation needs a dedicated resource,

so: 3 ALU, 2 MEM, 1 BR

If the resources are non-pipelined,

how many resources of each type are

required to achieve II=1

Instead of 1 ALU to do the multiplies, 3 are needed,

and instead of 1 MEM to do the loads, 2 are needed.

Hence: 5 ALU, 3 MEM, 1 BR

Assuming pipelined resources, generate

the II=1 modulo schedule.

See next few slides

- 3 -

HW continued

1

2

3

4

5

7

1,1

3,0

2,0

1,1

1,1

1,1

1,1

RecMII = 1

RESMII = 1

MII = MAX(1,1) = 1 1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Dependence graph (same as example in class)

0,0

0,0

DSA converted code below (same

as example in class)

Assume II=1 so resources are: 3 ALU, 2 MEM, 1 BR

Priorities

1: H = 5

2: H = 3

3: H = 0

4: H = 4

5: H = 0

7: H = 0

- 4 -

HW continued

resources: 3 alu, 2 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

alu0 alu1 m2 br

MRT
0 X

0 7

Rolled

Schedule

Unrolled

Schedule

0

1

2

3

4

5

6

m1 alu2

Scheduling steps:

 Schedule brlc at time II-1

 Schedule op1 at time 0

 Schedule op4 at time 0

 Schedule op2 at time 2

 Schedule op3 at time 5

 Schedule op5 at time 5

 Schedule op7 at time 5

1

1

X X X X X

4 2 3 5

4

2

3 5 7

stage 1

stage 2

stage 3

stage 4

stage 5

stage 6

- 5 -

HW continued

r3[-1] = load(r1[0]) if p1[0]; r4[-1] = r3[-1] * 26 if p1[2]; store (r2[0], r4[-1]) if p1[5]; r1[-1] = r1[0] + 4 if p1[0]; r2[-1] = r2[0] + 4 if p1[5]; brf Loop

Loop:

LC = 99

The final loop consists of a single MultiOp containing 6 operations,

each predicated on the appropriate staging predicate. Note register allocation

still needs to be performed.

- 6 -

Register Allocation: Problem Definition

 Through optimization, assume an infinite number of
virtual registers

» Now, must allocate these infinite virtual registers to a limited
supply of hardware registers

» Want most frequently accessed variables in registers

 Speed, registers much faster than memory

 Direct access as an operand

» Any VR that cannot be mapped into a physical register is said to
be spilled

 Questions to answer

» What is the minimum number of registers needed to avoid
spilling?

» Given n registers, is spilling necessary

» Find an assignment of virtual registers to physical registers

» If there are not enough physical registers, which virtual registers
get spilled?

- 7 -

Live Range

 Value = definition of a register

 Live range = Set of operations

» 1 more or values connected by common uses

» A single VR may have several live ranges

» Very similar to the web being constructed for HW3

 Live ranges are constructed by taking the intersection of

reaching defs and liveness

» Initially, a live range consists of a single definition and all ops in

a function in which that definition is live

- 8 -

Example – Constructing Live Ranges

1: x =

2: x = 3:

4: = x

5: x =

6: x =

7: = x

8: = x

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}

LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Each definition is the

seed of a live range.

Ops are added to the LR

where both the defn reaches

and the variable is live

- 9 -

Merging Live Ranges

 If 2 live ranges for the same VR overlap, they must be

merged to ensure correctness

» LRs replaced by a new LR that is the union of the LRs

» Multiple defs reaching a common use

» Conservatively, all LRs for the same VR could be merged

 Makes LRs larger than need be, but done for simplicity

 We will not assume this

r1 = r1 =

= r1

- 10 -

Example – Merging Live Ranges

1: x =

2: x = 3:

4: = x

5: x =

6: x =

7: = x

8: = x

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}
LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Merge LR1 and LR2,

LR3 and LR4

LR5 = {1,2,3,4}

LR6 = {5,6,7,8}

- 11 -

Class Problem

1: y =

2: x = y

3: = x

6: y =

7: z =

8: x =

9: = y

10: = z

4: y =

5: = y

Compute the LRs

a) for each def

b) merge overlapping

- 12 -

Interference

 Two live ranges interfere if they share one or more ops in

common

» Thus, they cannot occupy the same physical register

» Or a live value would be lost

 Interference graph

» Undirected graph where

 Nodes are live ranges

 There is an edge between 2 nodes if the live ranges interfere

» What’s not represented by this graph

 Extent of interference between the LRs

 Where in the program is the interference

- 13 -

Example – Interference Graph

1: a = load()

2: b = load()

3: c = load()

4: d = b + c

5: e = d - 3

6: f = a * b

7: e = f + c

8: g = a + e

9: store(g)

a

g

c

f

d

b

e

lr(a) = {1,2,3,4,5,6,7,8}

lr(b) = {2,3,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

lr(d) = {4,5}

lr(e) = {5,7,8}

lr(f) = {6,7}

lr{g} = {8,9}

- 14 -

Graph Coloring

 A graph is n-colorable if every node in the graph can be

colored with one of the n colors such that 2 adjacent

nodes do not have the same color

» Model register allocation as graph coloring

» Use the fewest colors (physical registers)

» Spilling is necessary if the graph is not n-colorable where n is the

number of physical registers

 Optimal graph coloring is NP-complete for n > 2

» Use heuristics proposed by compiler developers

 “Register Allocation Via Coloring”, G. Chaitin et al, 1981

 “Improvement to Graph Coloring Register Allocation”, P. Briggs et

al, 1989

» Observation – a node with degree < n in the interference can

always be successfully colored given its neighbors colors

- 15 -

Coloring Algorithm

 1. While any node, x, has < n neighbors

» Remove x and its edges from the graph

» Push x onto a stack

 2. If the remaining graph is non-empty

» Compute cost of spilling each node (live range)

 For each reference to the register in the live range

 Cost += (execution frequency * spill cost)

» Let NB(x) = number of neighbors of x

» Remove node x that has the smallest cost(x) / NB(x)

 Push x onto a stack (mark as spilled)

» Go back to step 1

 While stack is non-empty

» Pop x from the stack

» If x’s neighbors are assigned fewer than R colors, then assign x
any unsigned color, else leave x uncolored

- 16 -

Example – Finding Number of Needed Colors

A

B

E

D

C

How many colors are needed to color this graph?

Try n=1, no, cannot remove any nodes

Try n=2, no again, cannot remove any nodes

Try n=3,

 Remove B

 Then can remove A, C

 Then can remove D, E

 Thus it is 3-colorable

- 17 -

Example – Do a 3-Coloring

a

g

c

f

d

b

e

 a b c d e f g

cost 225 200 175 150 200 50 200

neighbors 6 4 5 4 3 4 2

cost/n 37.5 50 35 37.5 66.7 12.5 100

lr(a) = {1,2,3,4,5,6,7,8}

 refs(a) = {1,6,8}

lr(b) = {2,3,4,6}

 refs(b) = {2,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

 refs(c) = {3,4,7}

lr(d) = {4,5}

 refs(d) = {4,5}

lr(e) = {5,7,8}

 refs(e) = {5,7,8}

lr(f) = {6,7}

 refs(f) = {6,7}

lr{g} = {8,9}

 refs(g) = {8,9}

Profile freqs

1,2 = 100

3,4,5 = 75

6,7 = 25

8,9 = 100

Assume each

spill requires

1 operation

- 18 -

Example – Do a 3-Coloring (2)

a

g

c

f

d

b

e

Remove all nodes < 3 neighbors

So, g can be removed

a

c

f

d

b

e

Stack

g

- 19 -

Example – Do a 3-Coloring (3)

Now must spill a node

Choose one with the smallest

cost/NB  f is chosen

a

c d

b

e

Stack

f (spilled)

g

a

c

f

d

b

e

- 20 -

Example – Do a 3-Coloring (4)

a

c d

b

Stack

e

f (spilled)

g

a

c d

b

e

Remove all nodes < 3 neighbors

So, e can be removed

- 21 -

Example – Do a 3-Coloring (5)

a

d

b

Stack

c (spilled)

e

f (spilled)

g

Now must spill another node

Choose one with the smallest

cost/NB  c is chosen

a

c d

b

- 22 -

Example – Do a 3-Coloring (6)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

Remove all nodes < 3 neighbors

So, a, b, d can be removed

a

d

b

Null

- 23 -

Example – Do a 3-Coloring (7)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

a

g

c

f

d

b

e

Have 3 colors: red, green, blue, pop off the stack assigning colors

only consider conflicts with non-spilled nodes already popped off stack

d  red

b  green (cannot choose red)

a  blue (cannot choose red or green)

c  no color (spilled)

e  green (cannot choose red or blue)

f  no color (spilled)

g  red (cannot choose blue)

- 24 -

Example – Do a 3-Coloring (8)

1: blue = load()

2: green = load()

3: spill1 = load()

4: red = green + spill1

5: green = red - 3

6: spill2 = blue * green

7: green = spill2 + spill1

8: red = blue + green

9: store(red)

d  red

b  green

a  blue

c  no color

e  green

f  no color

g  red

Notes: no spills in the blocks

executed 100 times. Most spills

in the block executed 25 times.

Longest lifetime (c) also spilled

- 25 -

Homework Problem

1: y =

2: x = y

3: = x

6: y =

7: z =

8: x =

9: = y

10: = z

4: y =

5: = y

10 90

1

1 99

do a 2-coloring

 compute cost matrix

 draw interference graph

 color graph

- 26 -

It’s not that easy – Iterative Coloring

1: blue = load()

2: green = load()

3: spill1 = load()

4: red = green + spill1

5: green = red - 3

6: spill2 = blue * green

7: green = spill2 + spill1

8: red = blue + green

9: store(red)

You can’t spill without

creating more live ranges

- Need regs for the stack

ptr, value spilled, [offset]

Can’t color before taking

this into account

- 27 -

Iterative Coloring (1)

1: a = load()

2: b = load()

3: c = load()

10: store(c, sp)

11: i = load(sp)

4: d = b + i

5: e = d - 3

6: f = a * b

12: store(f, sp + 4)

13: j = load(sp + 4)

14: k = load(sp)

7: e = k + j

8: g = a + e

9: store(g) 1. After spilling, assign variables to

a stack location, insert loads/stores

0: c =

15: store(c, sp)

- 28 -

Iterative Coloring (2)

1: a = load()

2: b = load()

3: c = load()

10: store(c, sp)

11: i = load(sp)

4: d = b + i

5: e = d - 3

6: f = a * b

12: store(f, sp + 4)

13: j = load(sp + 4)

14: k = load(sp)

7: e = k + j

8: g = a + e

9: store(g) 2. Update live ranges

- Don’t need to recompute!

0: c =

15: store(c, sp)
lr(a) = {1,2,3,4,5,6,7,8,10,11,12,13,14}

 refs(a) = {1,6,8}

lr(b) = {2,3,4,6,10,11}

lr(c) = {3,10} (This was big)

lr(d) = …

lr(e) = …

lr(f) = …

lr(g) = …

lr(i) = {4,11}

lr(j) = {7,13,14}

lr(k) = {7,14}

lr(sp) = …

- 29 -

Iterative Coloring (3)

3. Update interference graph

- Nuke edges between spilled LRs

a

g

c

f

d

b

e

i

j

k

- 30 -

Iterative Coloring (4)

a

g

c

f

d

b

e

i
j

k

3. Add edges for new/spilled LRs
- Stack ptr (almost) always interferes with everything so ISAs

usually just reserve a reg for it.

4. Recolor and repeat until no new spill is generated

Time to Switch Gears – Research Topics!

- 32 -

Topics We Will Cover

 1. Automatic Parallelization

 2. Optimizing Streaming Applications for

Multicore/GPUs

 3. Automatic SIMDization

 4. TBD

- 33 -

Paper Reviews

 1 per class for the rest of the semester

 Paper review purpose

» Read the paper before class – up to this point reading has not been a point

of emphasis, now it is!

» Put together a list of non-trivial observations – think about it!

» Have something interesting to say in class

 Review content – 2 parts

» 1. 3-4 line summary of paper

» 2. Your thoughts/observations – it can be any of the following:

 An interesting observation on some aspect of the paper

 Raise one or more questions that a cursory reader would not think of

 Identify a weakness of the approach and explain why

 Propose an extension to the idea that fills some hole in the work

 Pick a difficult part of the paper, decipher it, and explain it in your own words

- 34 -

Paper Reviews – continued

 Review format

» Plain text only - .txt file

» ½ page is sufficient

 Reviews are due by the start of each lecture

» Copy file to andrew.eecs.umich.edu:/y/submit

» Put uniquename_classXX.txt

 First reading – due Monday Nov 7 (pdf on the website)

» “Revisiting the Sequential Programming Model for Multi-Core,”

M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I.

August, Proc 40th IEEE/ACM International Symposium on

Microarchitecture, December 2007.

