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Announcements + Reading Material 

 Midterm exam: Monday, Nov 14? 

» Could also do Wednes Nov 9 (next week!) or Wednes Nov 16 (2 

wks from now) 

» Class vote 

 Today’s class reading 

» “Register Allocation and Spilling Via Graph Coloring,” G. 

Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler 

Construction, 1982. 

 Next class reading – More at the end of class 

» “Revisiting the Sequential Programming Model for Multi-Core,” 

M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. 

August, Proc 40th IEEE/ACM International Symposium on 

Microarchitecture, December 2007.  
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Homework Problem – Answers in Red 

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1 

for (j=0; j<100; j++) 

    b[j] = a[j] * 26 

1: r3 = load(r1) 

2: r4 = r3 * 26 

3: store (r2, r4) 

4: r1 = r1 + 4 

5: r2 = r2 + 4 

7: brlc Loop 

Loop: 

LC = 99 

How many resources of each type are 

required to achieve an II=1 schedule? 

For II=1, each operation needs a dedicated resource, 

so: 3 ALU, 2 MEM, 1 BR 

 

If the resources are non-pipelined, 

how many resources of each type are 

required to achieve II=1 

Instead of 1 ALU to do the multiplies, 3 are needed, 

and instead of 1 MEM to do the loads, 2 are needed. 

Hence: 5 ALU, 3 MEM, 1 BR 

 

Assuming pipelined resources, generate 

the II=1 modulo schedule. 

See next few slides 
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HW continued 

1 

2 

3 

4 

5 

7 

1,1 

3,0 

2,0 

1,1 

1,1 

1,1 

1,1 

 

RecMII = 1 

RESMII = 1 

MII = MAX(1,1) = 1 1: r3[-1] = load(r1[0]) 

2: r4[-1] = r3[-1] * 26 

3: store (r2[0], r4[-1]) 

4: r1[-1] = r1[0] + 4 

5: r2[-1] = r2[0] + 4 

remap r1, r2, r3, r4 

7: brlc Loop 

Loop: 

LC = 99 

Dependence graph (same as example in class) 

0,0 

0,0 

DSA converted code below (same 

as example in class) 

Assume II=1 so resources are: 3 ALU, 2 MEM, 1 BR 

Priorities 

1: H = 5 

2: H = 3 

3: H = 0 

4: H = 4 

5: H = 0 

7: H = 0 
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HW continued  

resources: 3 alu, 2 mem, 1 br 

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1 

1: r3[-1] = load(r1[0]) 

2: r4[-1] = r3[-1] * 26 

3: store (r2[0], r4[-1]) 

4: r1[-1] = r1[0] + 4 

5: r2[-1] = r2[0] + 4 

remap r1, r2, r3, r4 

7: brlc Loop 

Loop: 

LC = 99 

alu0 alu1 m2 br 

MRT 
0 X 

0 7 

Rolled 

Schedule 

Unrolled 

Schedule 

0 

1 

2 

3 

4 

5 

6 

m1 alu2 

Scheduling steps: 

 Schedule brlc at time II-1 

 Schedule op1 at time 0 

 Schedule op4 at time 0 

 Schedule op2 at time 2 

 Schedule op3 at time 5 

 Schedule op5 at time 5 

 Schedule op7 at time 5 

1 

1 

X X X X X 

4 2 3 5 

4 

2 

3 5 7 

stage 1 

stage 2 

stage 3 

stage 4 

stage 5 

stage 6 
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HW continued  

r3[-1] = load(r1[0]) if p1[0]; r4[-1] = r3[-1] * 26 if p1[2]; store (r2[0], r4[-1]) if p1[5]; r1[-1] = r1[0] + 4 if p1[0]; r2[-1] = r2[0] + 4 if p1[5]; brf Loop 

Loop: 

LC = 99 

The final loop consists of a single MultiOp containing 6 operations, 

each predicated on the appropriate staging predicate.  Note register allocation 

still needs to be performed. 
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Register Allocation: Problem Definition 

 Through optimization, assume an infinite number of 
virtual registers 

» Now, must allocate these infinite virtual registers to a limited 
supply of hardware registers 

» Want most frequently accessed variables in registers 

 Speed, registers much faster than memory 

 Direct access as an operand 

» Any VR that cannot be mapped into a physical register is said to 
be spilled 

 Questions to answer 

» What is the minimum number of registers needed to avoid 
spilling? 

» Given n registers, is spilling necessary 

» Find an assignment of virtual registers to physical registers 

» If there are not enough physical registers, which virtual registers 
get spilled? 
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Live Range 

 Value = definition of a register 

 Live range = Set of operations 

» 1 more or values connected by common uses 

» A single VR may have several live ranges 

» Very similar to the web being constructed for HW3 

 Live ranges are constructed by taking the intersection of 

reaching defs and liveness 

» Initially, a live range consists of a single definition and all ops in 

a function in which that definition is live 
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Example – Constructing Live Ranges 

1: x =  

2: x =  3:   

4: = x  

5: x =  

6: x =  

7: = x   

8: = x  

{x}, {5,6} 

{x}, {6} 

{}, {5} 

{x}, {5} 

{}, {1,2} 

{}, {1} 

{x}, {2} 

{x}, {1} 

{x}, {1} 

{}, {5,6} 

{liveness}, {rdefs} 

LR1 for def 1 = {1,3,4} 

LR2 for def 2 = {2,4} 

LR3 for def 5 = {5,7,8} 

LR4 for def 6 = {6,7,8} 

Each definition is the 

seed of a live range. 

Ops are added to the LR 

where both the defn reaches 

and the variable is live 
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Merging Live Ranges 

 If 2 live ranges for the same VR overlap, they must be 

merged to ensure correctness 

» LRs replaced by a new LR that is the union of the LRs 

» Multiple defs reaching a common use 

» Conservatively, all LRs for the same VR could be merged 

 Makes LRs larger than need be, but done for simplicity 

 We will not assume this 

r1 =  r1 =  

= r1  
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Example – Merging Live Ranges 

1: x =  

2: x =  3:   

4: = x  

5: x =  

6: x =  

7: = x   

8: = x  

{x}, {5,6} 

{x}, {6} 

{}, {5} 

{x}, {5} 

{}, {1,2} 

{}, {1} 

{x}, {2} 

{x}, {1} 

{x}, {1} 

{}, {5,6} 

{liveness}, {rdefs} 
LR1 for def 1 = {1,3,4} 

LR2 for def 2 = {2,4} 

LR3 for def 5 = {5,7,8} 

LR4 for def 6 = {6,7,8} 

Merge LR1 and LR2, 

LR3 and LR4 

 

LR5 = {1,2,3,4} 

LR6 = {5,6,7,8} 
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Class Problem 

1: y =  

2: x = y  

3: = x  

6: y = 

7: z =  

8: x = 

9: = y    

10: = z  

4: y = 

5: = y  

Compute the LRs 

a) for each def 

b) merge overlapping 
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Interference 

 Two live ranges interfere if they share one or more ops in 

common 

» Thus, they cannot occupy the same physical register 

» Or a live value would be lost 

 Interference graph 

» Undirected graph where 

 Nodes are live ranges 

 There is an edge between 2 nodes if the live ranges interfere 

» What’s not represented by this graph 

 Extent of interference between the LRs 

 Where in the program is the interference 
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Example – Interference Graph 

1: a = load() 

2: b = load() 

3: c = load() 

4: d = b + c 

5: e = d - 3 

6: f = a * b 

7: e = f + c 

8: g = a + e 

9: store(g) 

a 

g 

c 

f 

d 

b 

e 

lr(a) = {1,2,3,4,5,6,7,8} 

lr(b) = {2,3,4,6} 

lr(c) = {1,2,3,4,5,6,7,8,9} 

lr(d) = {4,5} 

lr(e) = {5,7,8} 

lr(f) = {6,7} 

lr{g} = {8,9} 
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Graph Coloring 

 A graph is n-colorable if every node in the graph can be 

colored with one of the n colors such that 2 adjacent 

nodes do not have the same color 

» Model register allocation as graph coloring 

» Use the fewest colors (physical registers) 

» Spilling is necessary if the graph is not n-colorable where n is the 

number of physical registers 

 Optimal graph coloring is NP-complete for n > 2 

» Use heuristics proposed by compiler developers 

 “Register Allocation Via Coloring”, G. Chaitin et al, 1981 

 “Improvement to Graph Coloring Register Allocation”, P. Briggs et 

al, 1989 

» Observation – a node with degree < n in the interference can 

always be successfully colored given its neighbors colors 
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Coloring Algorithm 

 1. While any node, x, has < n neighbors 

» Remove x and its edges from the graph 

» Push x onto a stack 

 2. If the remaining graph is non-empty 

» Compute cost of spilling each node (live range) 

 For each reference to the register in the live range 

 Cost +=  (execution frequency * spill cost) 

» Let NB(x) = number of neighbors of x 

» Remove node x that has the smallest cost(x) / NB(x) 

 Push x onto a stack (mark as spilled) 

» Go back to step 1 

 While stack is non-empty 

» Pop x from the stack 

» If x’s neighbors are assigned fewer than R colors, then assign x 
any unsigned color, else leave x uncolored 
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Example – Finding Number of Needed Colors 

A 

B 

E 

D 

C 

How many colors are needed to color this graph? 

Try n=1, no, cannot remove any nodes 

 

Try n=2, no again, cannot remove any nodes 

 

Try n=3, 

 Remove B 

 Then can remove A, C 

 Then can remove D, E 

 Thus it is 3-colorable 
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Example – Do a 3-Coloring 

a 

g 

c 

f 

d 

b 

e 

  a b c d e f g 

cost  225 200 175 150 200 50 200 

neighbors  6 4 5 4 3 4 2 

cost/n  37.5 50 35 37.5 66.7 12.5 100 

lr(a) = {1,2,3,4,5,6,7,8} 

 refs(a) = {1,6,8} 

lr(b) = {2,3,4,6} 

 refs(b) = {2,4,6} 

lr(c) = {1,2,3,4,5,6,7,8,9} 

 refs(c) = {3,4,7} 

lr(d) = {4,5} 

 refs(d) = {4,5} 

lr(e) = {5,7,8} 

 refs(e) = {5,7,8} 

lr(f) = {6,7} 

 refs(f) = {6,7} 

lr{g} = {8,9} 

 refs(g) = {8,9} 

Profile freqs 

1,2 = 100 

3,4,5 = 75 

6,7 = 25 

8,9 = 100 

 

Assume each 

spill requires 

1 operation 
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Example – Do a 3-Coloring (2) 

a 

g 

c 

f 

d 

b 

e 

Remove all nodes < 3 neighbors 

 

So, g can be removed 

a 

c 

f 

d 

b 

e 

Stack 

g 
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Example – Do a 3-Coloring (3) 

Now must spill a node 

 

Choose one with the smallest 

cost/NB  f is chosen  

a 

c d 

b 

e 

Stack 

f (spilled) 

g 

a 

c 

f 

d 

b 

e 
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Example – Do a 3-Coloring (4) 

a 

c d 

b 

Stack 

e 

f (spilled) 

g 

a 

c d 

b 

e 

Remove all nodes < 3 neighbors 

 

So, e can be removed 
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Example – Do a 3-Coloring (5) 

a 

d 

b 

Stack 

c (spilled) 

e 

f (spilled) 

g 

Now must spill another node 

 

Choose one with the smallest 

cost/NB  c is chosen  

a 

c d 

b 
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Example – Do a 3-Coloring (6) 

Stack 

d 

b 

a 

c (spilled) 

e 

f (spilled) 

g 

Remove all nodes < 3 neighbors 

 

So, a, b, d can be removed 

a 

d 

b 

Null 
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Example – Do a 3-Coloring (7) 

Stack 

d 

b 

a 

c (spilled) 

e 

f (spilled) 

g 

a 

g 

c 

f 

d 

b 

e 

Have 3 colors: red, green, blue, pop off the stack assigning colors 

only consider conflicts with non-spilled nodes already popped off stack 

 

d  red 

b  green (cannot choose red) 

a  blue (cannot choose red or green) 

c  no color (spilled) 

e  green (cannot choose red or blue) 

f  no color (spilled) 

g  red (cannot choose blue) 
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Example – Do a 3-Coloring (8) 

1: blue = load() 

2: green = load() 

3: spill1 = load() 

4: red = green + spill1 

5: green = red - 3 

6: spill2 = blue * green 

7: green = spill2 + spill1 

8: red = blue + green 

9: store(red) 

d  red 

b  green 

a  blue 

c  no color  

e  green 

f  no color 

g  red 

Notes: no spills in the blocks 

executed 100 times.  Most spills 

in the block executed 25 times. 

Longest lifetime (c) also spilled 
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Homework Problem 

1: y =  

2: x = y  

3: = x  

6: y = 

7: z =  

8: x = 

9: = y    

10: = z  

4: y = 

5: = y  

10 90 

1 

1 99 

do a 2-coloring 

 compute cost matrix 

 draw interference graph 

 color graph 
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It’s not that easy – Iterative Coloring 

1: blue = load() 

2: green = load() 

3: spill1 = load() 

4: red = green + spill1 

5: green = red - 3 

6: spill2 = blue * green 

7: green = spill2 + spill1 

8: red = blue + green 

9: store(red) 

You can’t spill without 

creating more live ranges 

-  Need regs for the stack 

ptr, value spilled, [offset] 

 

Can’t color before taking 

this into account 
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Iterative Coloring (1) 

1: a = load() 

2: b = load() 

3: c = load() 

10: store(c, sp) 

11: i = load(sp) 

4: d = b + i 

5: e = d - 3 

6: f = a * b 

12: store(f, sp + 4) 

13: j = load(sp + 4) 

14: k = load(sp) 

7: e = k + j 

8: g = a  + e 

9: store(g) 1. After spilling, assign variables to 

a stack location, insert loads/stores 

0: c =  

15: store(c, sp) 



- 28 - 

Iterative Coloring (2) 

1: a = load() 

2: b = load() 

3: c = load() 

10: store(c, sp) 

11: i = load(sp) 

4: d = b + i 

5: e = d - 3 

6: f = a * b 

12: store(f, sp + 4) 

13: j = load(sp + 4) 

14: k = load(sp) 

7: e = k + j 

8: g = a  + e 

9: store(g) 2. Update live ranges 

-  Don’t need to recompute! 

0: c =  

15: store(c, sp) 
lr(a) = {1,2,3,4,5,6,7,8,10,11,12,13,14} 

 refs(a) = {1,6,8} 

lr(b) = {2,3,4,6,10,11} 

lr(c) = {3,10}     (This was big) 

lr(d) = … 

lr(e) = … 

lr(f) = … 

lr(g) = … 

lr(i) = {4,11} 

lr(j) = {7,13,14} 

lr(k) = {7,14} 

lr(sp) = … 
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Iterative Coloring (3) 

3. Update interference graph 

- Nuke edges between spilled LRs 

a 

g 

c 

f 

d 

b 

e 

i 

j 

k 
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Iterative Coloring (4) 

a 

g 

c 

f 

d 

b 

e 

i 
j 

k 

3. Add edges for new/spilled LRs 
- Stack ptr (almost) always interferes with everything so ISAs 

usually just reserve a reg for it.  

4.    Recolor and repeat until no new spill is generated 



Time to Switch Gears – Research Topics! 
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Topics We Will Cover 

 1. Automatic Parallelization 

 2. Optimizing Streaming Applications for 

Multicore/GPUs 

 3. Automatic SIMDization 

 4. TBD 
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Paper Reviews 

 1 per class for the rest of the semester 

 Paper review purpose 

» Read the paper before class – up to this point reading has not been a point 

of emphasis, now it is! 

» Put together a list of non-trivial observations – think about it! 

» Have something interesting to say in class 

 Review content – 2 parts 

» 1. 3-4 line summary of paper 

» 2. Your thoughts/observations – it can be any of the following: 

 An interesting observation on some aspect of the paper 

 Raise one or more questions that a cursory reader would not think of 

 Identify a weakness of the approach and explain why 

 Propose an extension to the idea that fills some hole in the work 

 Pick a difficult part of the paper, decipher it, and explain it in your own words 
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Paper Reviews – continued  

 Review format 

» Plain text only - .txt file 

» ½ page is sufficient 

 Reviews are due by the start of each lecture 

» Copy file to andrew.eecs.umich.edu:/y/submit 

» Put uniquename_classXX.txt 

 First reading – due Monday Nov 7 (pdf on the website) 

» “Revisiting the Sequential Programming Model for Multi-Core,” 

M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. 

August, Proc 40th IEEE/ACM International Symposium on 

Microarchitecture, December 2007.  


