
EECS 583 – Class 14

Modulo Scheduling Reloaded

University of Michigan

October 31, 2011

- 1 -

Announcements + Reading Material

 Project proposal – Due Friday Nov 4

» 1 email from each group: names, paragraph summarizing what

you plan to do

 Today’s class reading

» "Code Generation Schema for Modulo Scheduled Loops", B.

Rau, M. Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992.

 Next reading – Last class before research stuff!

» “Register Allocation and Spilling Via Graph Coloring,” G.

Chaitin, Proc. 1982 SIGPLAN Symposium on Compiler

Construction, 1982.

- 2 -

A

B A

C B A

D C B A

 D C B A

 …

 D C B A

 D C B

 D C

 D

Review: A Software Pipeline

A

B

C

D

Loop body

with 4 ops

Prologue -

fill the

pipe

Epilogue -

drain the

pipe

Kernel –

steady

state

time

Steady state: 4 iterations executed

simultaneously, 1 operation from each

iteration. Every cycle, an iteration starts

and finishes when the pipe is full.

- 3 -

Loop Prolog and Epilog

Prolog

Epilog

Kernel

Only the kernel involves executing full width of operations

Prolog and epilog execute a subset (ramp-up and ramp-down)

II = 3

- 4 -

A0

A1 B0

A2 B1 C0

A B C D

 Bn Cn-1 Dn-2

 Cn Dn-1

 Dn

Separate Code for Prolog and Epilog

A

B

C

D

Loop body

with 4 ops

Prolog -

fill the

pipe

Kernel

Epilog -

drain the

pipe

Generate special code before the loop (preheader) to fill the pipe

and special code after the loop to drain the pipe.

Peel off II-1 iterations for the prolog. Complete II-1 iterations

in epilog

- 5 -

Removing Prolog/Epilog

Prolog

Epilog

Kernel

II = 3

Disable using

predicated execution

Execute loop kernel on every iteration, but for prolog and epilog

selectively disable the appropriate operations to fill/drain the pipeline

- 6 -

Kernel-only Code Using Rotating Predicates
A0

A1 B0

A2 B1 C0

A B C D

 Bn Cn-1 Dn-2

 Cn Dn-1

 Dn

P[0] P[1] P[2] P[3]

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

…

0 1 1 1

0 0 1 1

0 0 0 1

A if P[0] B if P[1] C if P[2] D if P[3]

A - - -

A B - -

A B C -

A B C D

…

- B C D

- - C D

- - - D

P referred to as the staging predicate

- 7 -

Modulo Scheduling Architectural Support

 Loop requiring N iterations

» Will take N + (S – 1) where S is the number of stages

 2 special registers created

» LC: loop counter (holds N)

» ESC: epilog stage counter (holds S)

 Software pipeline branch operations

» Initialize LC = N, ESC = S in loop preheader

» All rotating predicates are cleared

» BRF.B.B.F

 While LC > 0, decrement LC and RRB, P[0] = 1, branch to top of
loop

 This occurs for prolog and kernel

 If LC = 0, then while ESC > 0, decrement RRB and write a 0 into
P[0], and branch to the top of the loop

 This occurs for the epilog

- 8 -

Execution History With LC/ESC

LC ESC P[0] P[1] P[2] P[3]

3 3 1 0 0 0 A

2 3 1 1 0 0 A B

1 3 1 1 1 0 A B C

0 3 1 1 1 1 A B C D

0 2 0 1 1 1 - B C D

0 1 0 0 1 1 - - C D

0 0 0 0 0 1 - - - D

A if P[0]; B if P[1]; C if P[2]; D if P[3]; P[0] = BRF.B.B.F;

LC = 3, ESC = 3 /* Remember 0 relative!! */

Clear all rotating predicates

P[0] = 1

4 iterations, 4 stages, II = 1, Note 4 + 4 –1 iterations of kernel executed

- 9 -

Review: Modulo Scheduling Process

 Use list scheduling but we need a few twists

» II is predetermined – starts at MII, then is incremented

» Cyclic dependences complicate matters

 Estart/Priority/etc.

 Consumer scheduled before producer is considered

 There is a window where something can be scheduled!

» Guarantee the repeating pattern

 2 constraints enforced on the schedule

» Each iteration begin exactly II cycles after the previous one

» Each time an operation is scheduled in 1 iteration, it is tentatively

scheduled in subsequent iterations at intervals of II

 MRT used for this

- 10 -

Review: ResMII Example

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

ALU: used by 2, 4, 5, 6

 4 ops / 2 units = 2

Mem: used by 1, 3

 2 ops / 1 unit = 2

Br: used by 7

 1 op / 1 unit = 1

ResMII = MAX(2,2,1) = 2

Concept: If there were no dependences between the operations, what

is the the shortest possible schedule?

- 11 -

Review: RecMII Example

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

1

2

3

4

5

6

7

1,0

1,0

0,0 3,0

2,0

1,1

1,1

1,1

1,1

0,0

<delay, distance>

4 4: 1 / 1 = 1

5 5: 1 / 1 = 1

4 1 4: 1 / 1 = 1

5 3 5: 1 / 1 = 1

RecMII = MAX(1,1,1,1) = 1

Then,

MII = MAX(ResMII, RecMII)

MII = MAX(2,1) = 2

Concept: If there were infinite resources,

what is the fewest number of cycles

between initiation of successive

iterations?

- 12 -

Review: Priority Function

Height-based priority worked well for acyclic scheduling, makes sense

that it will work for loops as well

Acyclic:

 Height(X) =

0, if X has no successors

MAX ((Height(Y) + Delay(X,Y)), otherwise
for all Y = succ(X)

Cyclic:

 HeightR(X) =

0, if X has no successors

MAX ((HeightR(Y) + EffDelay(X,Y)), otherwise
for all Y = succ(X)

EffDelay(X,Y) = Delay(X,Y) – II*Distance(X,Y)

- 13 -

Calculating Height

1

2

3

4

3,0

1,1

2,2

1. Insert pseudo edges from all nodes to branch with

latency = 0, distance = 0 (dotted edges)

2. Compute II, For this example assume II = 2

3. HeightR(4) = 0

4. HeightR(3) = 0

 H(4) + EffDelay(3,4) = 0 + 0 – 0*II = 0

 H(2) + EffDelay(3,2) = 2 + 2 – 2*II = 0

 MAX(0,0) = 0

5. HeightR(2) = 2

 H(3) + EffDelay(2,3) = 0 + 2 – 0 * II = 2

 H(4) + EffDelay(2,4) = 0 + 0 – 0 * II = 0

 MAX(2,0) = 0

6. HeightR(1) = 5

 H(2) + EffDelay(1,2) = 2 + 3 – 0 * II = 5

 H(4) + EffDelay(1,4) = 0 + 0 – 0 * II = 0

 MAX(5,0) = 5

2,0

0,0

0,0

0,0

- 14 -

The Scheduling Window

 E(Y) =
0, if X is not scheduled

MAX (0, SchedTime(X) + EffDelay(X,Y)),

 otherwise

With cyclic scheduling, not all the predecessors may be scheduled,

so a more flexible earliest schedule time is:

MAX

for all X = pred(Y)

Latest schedule time(Y) = L(Y) = E(Y) + II – 1

Every II cycles a new loop iteration will be initialized, thus every II

cycles the pattern will repeat. Thus, you only have to look in a

window of size II, if the operation cannot be scheduled there, then

it cannot be scheduled.

where EffDelay(X,Y) = Delay(X,Y) – II*Distance(X,Y)

- 15 -

Implementing Modulo Scheduling - Driver

 compute MII

 II = MII

 budget = BUDGET_RATIO * number of ops

 while (schedule is not found) do

» iterative_schedule(II, budget)

» II++

 Budget_ratio is a measure of the amount of backtracking that can be

performed before giving up and trying a higher II

- 16 -

Modulo Scheduling – Iterative Scheduler

 iterative_schedule(II, budget)

» compute op priorities

» while (there are unscheduled ops and budget > 0) do

 op = unscheduled op with the highest priority

 min = early time for op (E(Y))

 max = min + II – 1

 t = find_slot(op, min, max)

 schedule op at time t

 /* Backtracking phase – undo previous scheduling decisions */

 Unschedule all previously scheduled ops that conflict with op

 budget--

- 17 -

Modulo Scheduling – Find_slot

 find_slot(op, min, max)

» /* Successively try each time in the range */

» for (t = min to max) do

 if (op has no resource conflicts in MRT at t)

 return t

» /* Op cannot be scheduled in its specified range */

» /* So schedule this op and displace all conflicting ops */

» if (op has never been scheduled or min > previous scheduled time

 of op)

 return min

» else

 return MIN(1 + prev scheduled time of op, max)

- 18 -

Modulo Scheduling Example

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

 b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop: Loop:

LC = 99

Step1: Compute to loop into

form that uses LC

- 19 -

Example – Step 2

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step 2: DSA convert

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

- 20 -

Example – Step 3

1

2

3

4

5

7

1,1

3,0

2,0

1,1

1,1

1,1

1,1

RecMII = 1

RESMII = 2

MII = 2

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step3: Draw dependence graph

Calculate MII

0,0

0,0

- 21 -

Example – Step 4

1: H = 5

2: H = 3

3: H = 0

4: H = 0

5: H = 0

7: H = 0

1

2

3

4

5

7

1,1

0,0

3,0

2,0

1,1

1,1

1,1

1,1

Step 4 – Calculate priorities (MAX height

to pseudo stop node)

0,0

0,0

0,0

0,0

0,0

0,0

1: H = 5

2: H = 3

3: H = 0

4: H = 4

5: H = 0

7: H = 0

Iter1 Iter2

- 22 -

Example – Step 5

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Schedule brlc at time II - 1

alu0 alu1 mem br

MRT
0

1 X

0

1 7

Rolled

Schedule

Unrolled

Schedule

0

1

2

3

4

5

6

- 23 -

Example – Step 6

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step6: Schedule the highest priority op

Op1: E = 0, L = 1

Place at time 0 (0 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1 0

1

2

3

4

5

6

- 24 -

Example – Step 7

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step7: Schedule the highest priority op

Op4: E = 0, L = 1

Place at time 0 (0 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

4

4

0

1

2

3

4

5

6

- 25 -

Example – Step 8

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step8: Schedule the highest priority op

Op2: E = 2, L = 3

Place at time 2 (2 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

4

4

2 2

X

0

1

2

3

4

5

6

- 26 -

Example – Step 9

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step9: Schedule the highest priority op

Op3: E = 5, L = 6

Place at time 5 (5 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

2 2

3

3

X

4

4

X

0

1

2

3

4

5

6

- 27 -

Example – Step 10

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step10: Schedule the highest priority op

Op5: E = 0, L = 1

Place at time 1 (1 % 2)

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

2 2

3

3

X

4

4

X

5

X

5

0

1

2

3

4

5

6

- 28 -

Example – Step 11

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Step11: calculate ESC, SC = max unrolled sched length / ii

unrolled sched time of branch = rolled sched time of br + (ii*esc)

SC = 6 / 2 = 3, ESC = SC – 1

time of br = 1 + 2*2 = 5

alu0 alu1 mem br

MRT
0

1 X

X

0

1 7

Rolled

Schedule

Unrolled

Schedule

1

1

X

2 2

3

3

X

4

4

X

5

X

5

7

0

1

2

3

4

5

6

- 29 -

Example – Step 12

1: r3[-1] = load(r1[0]) if p1[0]

2: r4[-1] = r3[-1] * 26 if p1[1]

4: r1[-1] = r1[0] + 4 if p1[0]

3: store (r2[0], r4[-1]) if p1[2]

5: r2[-1] = r2[0] + 4 if p1[0]

7: brlc Loop if p1[2]

Loop:

LC = 99

ESC = 2

p1[0] = 1

Finishing touches - Sort ops, initialize ESC, insert BRF and staging predicate,

initialize staging predicate outside loop

Unrolled

Schedule

1

2

3

4

5

7

Stage 1

Stage 2

Stage 3

Staging predicate, each

successive stage increment

the index of the staging predicate

by 1, stage 1 gets px[0]

0

1

2

3

4

5

6

- 30 -

Example – Dynamic Execution of the Code

1: r3[-1] = load(r1[0]) if p1[0]

2: r4[-1] = r3[-1] * 26 if p1[1]

4: r1[-1] = r1[0] + 4 if p1[0]

3: store (r2[0], r4[-1]) if p1[2]

5: r2[-1] = r2[0] + 4 if p1[0]

7: brlc Loop if p1[2]

Loop:

LC = 99

ESC = 2

p1[0] = 1

0: 1, 4

1: 5

2: 1,2,4

3: 5

4: 1,2,4

5: 3,5,7

6: 1,2,4

7: 3,5,7

…

98: 1,2,4

99: 3,5,7

100: 2

101: 3,7

102: -

103 3,7

time: ops executed

- 31 -

Homework Problem

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

 b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

How many resources of each type are

required to achieve an II=1 schedule?

If the resources are non-pipelined,

how many resources of each type are

required to achieve II=1

Assuming pipelined resources, generate

the II=1 modulo schedule.

- 32 -

What if We Don’t Have Hardware Support?

 No predicates

» Predicates enable kernel-only code by selectively

enabling/disabling operations to create prolog/epilog

» Now must create explicit prolog/epilog code segments

 No rotating registers

» Register names not automatically changed each iteration

» Must unroll the body of the software pipeline, explicitly

rename

 Consider each register lifetime i in the loop

 Kmin = min unroll factor = MAXi (ceiling((Endi – Starti) / II))

 Create Kmin static names to handle maximum register lifetime

» Apply modulo variable expansion

- 33 -

No Predicates

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

E D C B A

Kernel-only code with

rotating registers and

predicates, II = 1

Without predicates, must create explicit

prolog and epilogs, but no explicit renaming

is needed as rotating registers take care of this

D C B
C

D

B

C

B

C

D

kernel

prolog

epilog

- 34 -

No Predicates and No Rotating Registers

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

A4

B4

C4

D4

E4

A1

B1

C1

D1

E1

A2

B2

C2

D2

E2

A3

B3

C3

D3

E3

A4

B4

C4

D4

E4

Assume Kmin = 4 for this example

unrolled

kernel

prolog

epilog

D1 C2 B3

C1

D1

B2

C2

B1

C1

D1

E4 D1

E1

C2

D2

E2

B3

C3

D3

E3

E3 D4

E4

C1

D1

E1

B2

C2

D2

E2

E2 D3

E3

C4

D4

E4

B1

C1

D1

E1

