
EECS 583 – Class 13

Software Pipelining

University of Michigan

October 24, 2011

- 1 -

Announcements + Reading Material

 No class on Wednesday (reserved for project proposals)

 Each group needs to signup for a 15 min slot this week

» Signup sheet on my door (4633 CSE)

» Slots on Tues, Wednes, Thurs and Fri

» Informal class project proposal discussion

 Homework 2 deadline

» Today at midnight, or tomorrow midnight if you have not used your late

day

» Daya will have office hours today 3-5pm if you are stuck

 Today’s class reading

» “Iterative Modulo Scheduling: An Algorithm for Software Pipelining

Loops”, B. Rau, MICRO-27, 1994, pp. 63-74.

 Wed class reading

» "Code Generation Schema for Modulo Scheduled Loops", B. Rau, M.

Schlansker, and P. Tirumalai, MICRO-25, Dec. 1992.

- 2 -

Class Problem from Last Time

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Starting with the graph assuming restricted

speculation, what edges can be removed if

general speculation support is provided?

2. With more renaming, what dependences could

be removed?

2

3

8

4

1

7

6

5

Edges not drawn:

2 4, 2 7, 4 7

There is no edge from

3 to 5 if you assume 32-bit

load/store instructions since

r1 and r7 are 4 different..

Answer 1:

2 5, 4 5 since r2 is not

live out; 4 8, 7 8 since r4 is

not live out, but 2 8 must

remain;

Answer 2:

2 8

- 3 -

Class Problem from Last Time

1: r1 = r7 + 4

2: branch p1 Exit1

3: store (r1, -1)

4: branch p2 Exit2

5: r2 = load(r7)

6: r3 = r2 – 4

7: branch p3 Exit3

8: r4 = r3 / r8

{r4}

{r1}

{r4, r8}

{r2}

1. Move ops 5, 6, 8 as far up in the SB

as possible assuming sentinel speculation

support

2. Insert the necessary checks and

recovery code (assume ld, st, and div

can cause exceptions)

5(S): r2 = load(r7)

6(S): r3 = r2 – 4

1: r1 = r7 + 4

2: branch p1 Exit1

8(S): r4 = r3 / r8

3: store (r1, -1)

4: branch p2 Exit2

9: check_ex(r3)

7: branch p3 Exit3

10: check_ex(r4)

{r4}

{r1}

{r4, r8}

{r2}

8’’: r4 = r3 / r8

12: jump back2

back2:

back1:

5’: r2 = load(r7)

6’: r3 = r2 – 4

8’(S): r4 = r3 / r8

12: jump back1

- 4 -

Review: Overlap Iterations Using Pipelining

1 2 3 n Iteration

time

1

2

3

n

With hardware pipelining, while one instruction is

in fetch, another is in decode, another in execute.

Same thing here, multiple iterations are processed

simultaneously, with each instruction in a separate

stage. 1 iteration still takes the same time, but time

to complete n iterations is reduced!

- 5 -

A

B A

C B A

D C B A

 D C B A

 …

 D C B A

 D C B

 D C

 D

Review: A Software Pipeline

A

B

C

D

Loop body

with 4 ops

Prologue -

fill the

pipe

Epilogue -

drain the

pipe

Kernel –

steady

state

time

Steady state: 4 iterations executed

simultaneously, 1 operation from each

iteration. Every cycle, an iteration starts

and finishes when the pipe is full.

- 6 -

Creating Software Pipelines

 Lots of software pipelining techniques out there

 Modulo scheduling

» Most widely adopted

» Practical to implement, yields good results

 Conceptual strategy

» Unroll the loop completely

» Then, schedule the code completely with 2 constraints

 All iteration bodies have identical schedules

 Each iteration is scheduled to start some fixed number of cycles later than

the previous iteration

» Initiation Interval (II) = fixed delay between the start of successive

iterations

» Given the 2 constraints, the unrolled schedule is repetitive (kernel)

except the portion at the beginning (prologue) and end (epilogue)

 Kernel can be re-rolled to yield a new loop

- 7 -

Creating Software Pipelines (2)

 Create a schedule for 1 iteration of the loop such that

when the same schedule is repeated at intervals of II

cycles

» No intra-iteration dependence is violated

» No inter-iteration dependence is violated

» No resource conflict arises between operation in same or distinct

iterations

 We will start out assuming Itanium-style hardware

support, then remove it later

» Rotating registers

» Predicates

» Software pipeline loop branch

- 8 -

Terminology

Iter 1

Iter 2

Iter 3

II

time

Initiation Interval (II) = fixed delay

between the start of successive iterations

Each iteration can be divided

into stages consisting of II cycles

each

Number of stages in 1 iteration

is termed the stage count (SC)

Takes SC-1 cycles to fill/drain the pipe

- 9 -

Resource Usage Legality

 Need to guarantee that

» No resource is used at 2 points in time that are separated by an

interval which is a multiple of II

» I.E., within a single iteration, the same resource is never used

more than 1x at the same time modulo II

» Known as modulo constraint, where the name modulo scheduling

comes from

» Modulo reservation table solves this problem

 To schedule an op at time T needing resource R

 The entry for R at T mod II must be free

 Mark busy at T mod II if schedule

 0

1

2

II = 3

alu1 alu2 mem bus0 bus1 br

- 10 -

Dependences in a Loop

 Need worry about 2 kinds

» Intra-iteration

» Inter-iteration

 Delay

» Minimum time interval between

the start of operations

» Operation read/write times

 Distance

» Number of iterations separating

the 2 operations involved

» Distance of 0 means intra-

iteration

 Recurrence manifests itself as a

circuit in the dependence graph

1

2

4

3

<1,1>

<1,0> <1,2>

<1,2>

<1,0>

<delay, distance>

Edges annotated with tuple

- 11 -

Dynamic Single Assignment (DSA) Form

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

Impossible to overlap iterations because each iteration writes to the same

register. So, we’ll have to remove the anti and output dependences.

Virtual rotating registers

 * Each register is an infinite push down array (Expanded virtual reg or EVR)

 * Write to top element, but can reference any element

 * Remap operation slides everything down r[n] changes to r[n+1]

A program is in DSA form if the same virtual register (EVR element) is never

assigned to more than 1x on any dynamic execution path

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

6: p1[-1] = cmpp (r1[-1] < r9)

remap r1, r2, r3, r4, p1

7: brct p1[-1] Loop

DSA

conversion

- 12 -

Physical Realization of EVRs

 EVR may contain an unlimited number values

» But, only a finite contiguous set of elements of an EVR are ever

live at any point in time

» These must be given physical registers

 Conventional register file

» Remaps are essentially copies, so each EVR is realized by a set

of physical registers and copies are inserted

 Rotating registers

» Direct support for EVRs

» No copies needed

» File “rotated” after each loop iteration is completed

- 13 -

Loop Dependence Example

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

6: p1[-1] = cmpp (r1[-1] < r9)

remap r1, r2, r3, r4, p1

7: brct p1[-1] Loop

1

2

3

4

5

6

7

In DSA form, there are no

inter-iteration anti or output

dependences!

1,0

1,0

0,0 3,0

2,0

1,1

1,1

1,1

1,1

0,0

<delay, distance>

- 14 -

Class Problem

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] – r1[2]

3: store (r3[-1], r2[0])

4: r2[-1] = r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)

remap r1, r2, r3

6: brct p1[-1] Loop

Draw the dependence graph

showing both intra and inter

iteration dependences

Latencies: ld = 2, st = 1, add = 1, cmpp = 1, br = 1

- 15 -

Minimum Initiation Interval (MII)

 Remember, II = number of cycles between the start of

successive iterations

 Modulo scheduling requires a candidate II be selected

before scheduling is attempted

» Try candidate II, see if it works

» If not, increase by 1, try again repeating until successful

 MII is a lower bound on the II

» MII = Max(ResMII, RecMII)

» ResMII = resource constrained MII

 Resource usage requirements of 1 iteration

» RecMII = recurrence constrained MII

 Latency of the circuits in the dependence graph

- 16 -

ResMII

Simple resource model

A processor has a set of resources R. For each resource r in R

there is count(r) specifying the number of identical copies

Concept: If there were no dependences between the operations, what

is the the shortest possible schedule?

ResMII = MAX (uses(r) / count(r))
for all r in R

uses(r) = number of times the resource is used in 1 iteration

In reality its more complex than this because operations can have

multiple alternatives (different choices for resources it could be

assigned to), but we will ignore this for now

- 17 -

ResMII Example

resources: 4 issue, 2 alu, 1 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

ALU: used by 2, 4, 5, 6

 4 ops / 2 units = 2

Mem: used by 1, 3

 2 ops / 1 unit = 2

Br: used by 7

 1 op / 1 unit = 1

ResMII = MAX(2,2,1) = 2

- 18 -

RecMII

Approach: Enumerate all irredundant elementary circuits in the

dependence graph

RecMII = MAX (delay(c) / distance(c))
for all c in C

delay(c) = total latency in dependence cycle c (sum of delays)

distance(c) = total iteration distance of cycle c (sum of distances)

2

1

1,0
3,1

cycle

k 1

k+1 2

k+2

k+3

k+4 1

k+5 2

1

3 4 cycles,

RecMII = 4

delay(c) = 1 + 3 = 4

distance(c) = 0 + 1 = 1

RecMII = 4/1 = 4

- 19 -

RecMII Example

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

6: p1 = cmpp (r1 < r9)

7: brct p1 Loop

1

2

3

4

5

6

7

1,0

1,0

0,0 3,0

2,0

1,1

1,1

1,1

1,1

0,0

<delay, distance>

4 4: 1 / 1 = 1

5 5: 1 / 1 = 1

4 1 4: 1 / 1 = 1

5 3 5: 1 / 1 = 1

RecMII = MAX(1,1,1,1) = 1

Then,

MII = MAX(ResMII, RecMII)

MII = MAX(2,1) = 2

- 20 -

Class Problem

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] – r1[2]

3: store (r3[-1], r2[0])

4: r2[-1] = r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)

remap r1, r2, r3

6: brct p1[-1] Loop

Calculate RecMII, ResMII, and MII

Latencies: ld = 2, st = 1, add = 1, cmpp = 1, br = 1

Resources: 1 ALU, 1 MEM, 1 BR

- 21 -

Modulo Scheduling Process

 Use list scheduling but we need a few twists

» II is predetermined – starts at MII, then is incremented

» Cyclic dependences complicate matters

 Estart/Priority/etc.

 Consumer scheduled before producer is considered

 There is a window where something can be scheduled!

» Guarantee the repeating pattern

 2 constraints enforced on the schedule

» Each iteration begin exactly II cycles after the previous one

» Each time an operation is scheduled in 1 iteration, it is tentatively

scheduled in subsequent iterations at intervals of II

 MRT used for this

- 22 -

Priority Function

Height-based priority worked well for acyclic scheduling, makes sense

that it will work for loops as well

Acyclic:

 Height(X) =

0, if X has no successors

MAX ((Height(Y) + Delay(X,Y)), otherwise
for all Y = succ(X)

Cyclic:

 HeightR(X) =

0, if X has no successors

MAX ((HeightR(Y) + EffDelay(X,Y)), otherwise
for all Y = succ(X)

EffDelay(X,Y) = Delay(X,Y) – II*Distance(X,Y)

- 23 -

Calculating Height

1

2

3

4

3,0

1,1

2,2

1. Insert pseudo edges from all nodes to branch with

latency = 0, distance = 0 (dotted edges)

2. Compute II, For this example assume II = 2

3. HeightR(4) =

4. HeightR(3) =

5. HeightR(2) =

6. HeightR(1)

2,0

0,0

0,0

0,0

- 24 -

The Scheduling Window

 E(Y) =
0, if X is not scheduled

MAX (0, SchedTime(X) + EffDelay(X,Y)),

 otherwise

With cyclic scheduling, not all the predecessors may be scheduled,

so a more flexible earliest schedule time is:

MAX

for all X = pred(Y)

Latest schedule time(Y) = L(Y) = E(Y) + II – 1

Every II cycles a new loop iteration will be initialized, thus every II

cycles the pattern will repeat. Thus, you only have to look in a

window of size II, if the operation cannot be scheduled there, then

it cannot be scheduled.

where EffDelay(X,Y) = Delay(X,Y) – II*Distance(X,Y)

- 25 -

Loop Prolog and Epilog

Prolog

Epilog

Kernel

Only the kernel involves executing full width of operations

Prolog and epilog execute a subset (ramp-up and ramp-down)

II = 3

- 26 -

A0

A1 B0

A2 B1 C0

A B C D

 Bn Cn-1 Dn-2

 Cn Dn-1

 Dn

Separate Code for Prolog and Epilog

A

B

C

D

Loop body

with 4 ops

Prolog -

fill the

pipe

Kernel

Epilog -

drain the

pipe

Generate special code before the loop (preheader) to fill the pipe

and special code after the loop to drain the pipe.

Peel off II-1 iterations for the prolog. Complete II-1 iterations

in epilog

- 27 -

Removing Prolog/Epilog

Prolog

Epilog

Kernel

II = 3

Disable using

predicated execution

Execute loop kernel on every iteration, but for prolog and epilog

selectively disable the appropriate operations to fill/drain the pipeline

- 28 -

Kernel-only Code Using Rotating Predicates
A0

A1 B0

A2 B1 C0

A B C D

 Bn Cn-1 Dn-2

 Cn Dn-1

 Dn

P[0] P[1] P[2] P[3]

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

…

0 1 1 1

0 0 1 1

0 0 0 1

A if P[0] B if P[1] C if P[2] D if P[3]

A - - -

A B - -

A B C -

A B C D

…

- B C D

- - C D

- - - D

P referred to as the staging predicate

- 29 -

Modulo Scheduling Architectural Support

 Loop requiring N iterations

» Will take N + (S – 1) where S is the number of stages

 2 special registers created

» LC: loop counter (holds N)

» ESC: epilog stage counter (holds S)

 Software pipeline branch operations

» Initialize LC = N, ESC = S in loop preheader

» All rotating predicates are cleared

» BRF – software pipeline loopback branch

 While LC > 0, decrement LC and RRB, P[0] = 1, branch to top of
loop

 This occurs for prolog and kernel

 If LC = 0, then while ESC > 0, decrement RRB and write a 0 into
P[0], and branch to the top of the loop

 This occurs for the epilog

- 30 -

Execution History With LC/ESC

LC ESC P[0] P[1] P[2] P[3]

3 3 1 0 0 0 A

2 3 1 1 0 0 A B

1 3 1 1 1 0 A B C

0 3 1 1 1 1 A B C D

0 2 0 1 1 1 - B C D

0 1 0 0 1 1 - - C D

0 0 0 0 0 1 - - - D

A if P[0]; B if P[1]; C if P[2]; D if P[3]; P[0] = BRF;

LC = 3, ESC = 3 /* Remember 0 relative!! */

Clear all rotating predicates

P[0] = 1

4 iterations, 4 stages, II = 1, Note 4 + 4 –1 iterations of kernel executed

