EECS 583 – Class 11 Instruction Scheduling

University of Michigan

October 12, 2011

Reading Material + Announcements

Today's class

"The Importance of Prepass Code Scheduling for Superscalar and Superpipelined Processors," P. Chang et al., IEEE Transactions on Computers, 1995, pp. 353-370.

Next class

- "Sentinel Scheduling for VLIW and Superscalar Processors", S. Mahlke et al., ASPLOS-5, Oct. 1992, pp.238-247.
- ❖ Reminder: HW 2 Speculative LICM
 - » Due Week from Fri → Get busy, go bug Daya if you are stuck!
- Class project proposals
 - » Week of Oct 24: Daya and I will meet with each group to discuss informal project proposal
 - » Signup sheet available next week
 - » Think about partners/topic!

Homework Problem From Last Time - Answer

loop:

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

if (r2 < 400) goto loop

Optimize the unrolled loop

Renaming
Tree height reduction
Ind/Acc expansion

loop:

r1 = load(r2)

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2=r2+4$$

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

if
$$(r2 < 400)$$

goto loop

loop:

$$r1 = load(r2)$$

$$r5 = r1 + 3$$

$$r6 = r6 + r5$$

$$r2 = r2 + 4$$

$$r11 = load(r2)$$

$$r15 = r11 + 3$$

$$r6 = r6 + r15$$

$$r2 = r2 + 4$$

$$r21 = load(r2)$$

$$r25 = r21 + 3$$

$$r6 = r6 + r25$$

$$r2 = r2 + 4$$

if
$$(r2 < 400)$$

goto loop

$$r16 = r26 = 0$$

loop:

$$r1 = load(r2)$$

$$r5 = r1 + 3$$

$$r6 = r6 + r5$$

$$r11 = load(r2+4)$$

$$r15 = r11 + 3$$

$$r16 = r16 + r15$$

$$r21 = load(r2+8)$$

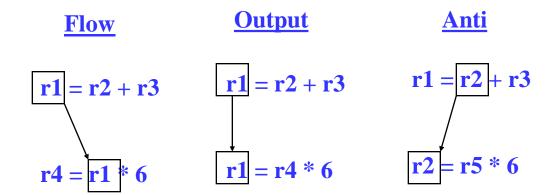
$$r25 = r21 + 3$$

$$r26 = r26 + r25$$

$$r2 = r2 + 12$$

if
$$(r2 < 400)$$

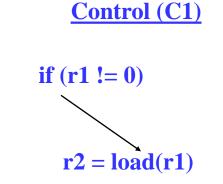
$$r6 = r6 + r16$$


$$r6 = r6 + r26$$

after renaming and tree height reduction

after acc and ind expansion

From Last Time: Dependences


Register Dependences

Memory Dependences

Control Dependences

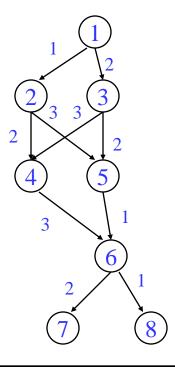
From Last Time: Dependence Graph

- Represent dependences between operations in a block via a DAG
 - » Nodes = operations
 - » Edges = dependences
- Single-pass traversal required to insert dependences

1

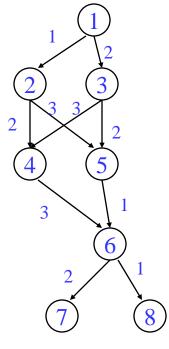
- Example
 - 1: r1 = load(r2)
 - 2: r2 = r1 + r4
 - 3: store (r4, r2)
 - 4: p1 = cmpp (r2 < 0)
 - 5: branch if p1 to BB3
 - 6: store (r1, r2)

5

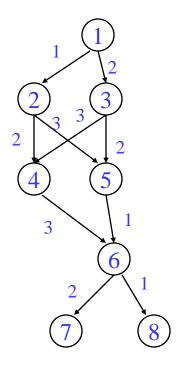

 $\left(3\right)$

BB3:

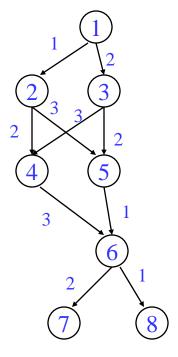
 $\left(6\right)$


Dependence Graph Properties - Estart

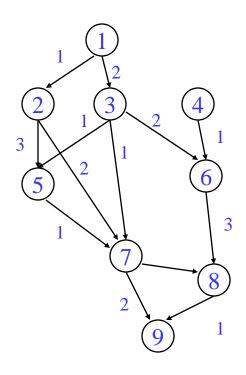
- Estart = earliest start time, (as soon as possible ASAP)
 - » Schedule length with infinite resources (dependence height)
 - » Estart = 0 if node has no predecessors
 - » Estart = MAX(Estart(pred) + latency) for each predecessor node
 - » Example


Lstart

- Lstart = latest start time, ALAP
 - » Latest time a node can be scheduled s.t. sched length not increased beyond infinite resource schedule length
 - » Lstart = Estart if node has no successors
 - » Lstart = MIN(Lstart(succ) latency) for each successor node
 - » Example


Slack

- ❖ Slack = measure of the scheduling freedom
 - Slack = Lstart Estart for each node
 - » Larger slack means more mobility
 - » Example



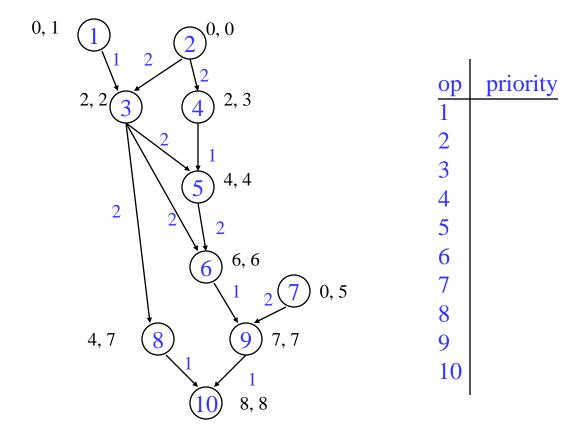
Critical Path

- \bullet Critical operations = Operations with slack = 0
 - » No mobility, cannot be delayed without extending the schedule length of the block
 - » Critical path = sequence of critical operations from node with no predecessors to exit node, can be multiple crit paths

Class Problem


```
Node Estart Lstart Slack

1
2
3
4
5
6
7
8
9
```

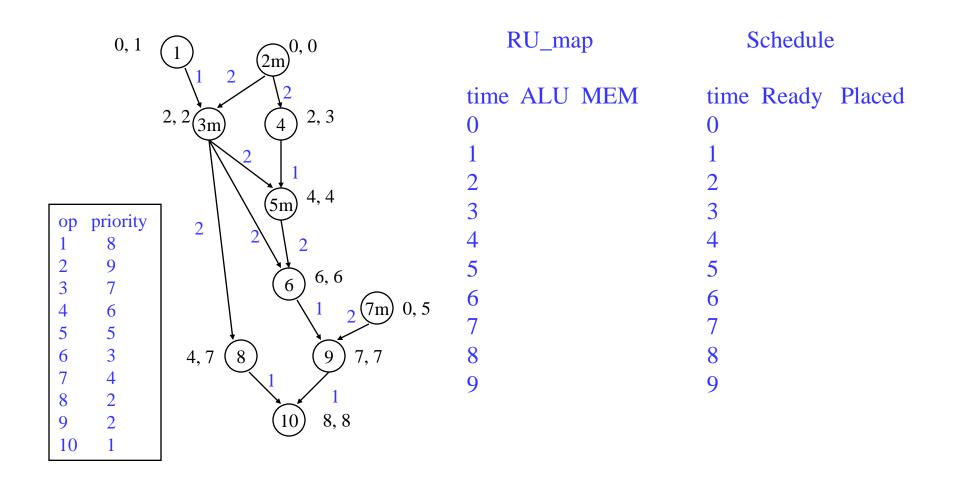

Critical path(s) =

Operation Priority

- Priority Need a mechanism to decide which ops to schedule first (when you have multiple choices)
- Common priority functions
 - » Height Distance from exit node
 - Give priority to amount of work left to do
 - » Slackness inversely proportional to slack
 - Give priority to ops on the critical path
 - » Register use priority to nodes with more source operands and fewer destination operands
 - Reduces number of live registers
 - Uncover high priority to nodes with many children
 - Frees up more nodes
 - Original order when all else fails

Height-Based Priority

- Height-based is the most common
 - » priority(op) = MaxLstart Lstart(op) + 1



List Scheduling (aka Cycle Scheduler)

- Build dependence graph, calculate priority
- Add all ops to UNSCHEDULED set
- ★ time = -1
- while (UNSCHEDULED is not empty)
 - » time++
 - » READY = UNSCHEDULED ops whose incoming dependences have been satisfied
 - » Sort READY using priority function
 - » For each op in READY (highest to lowest priority)
 - op can be scheduled at current time? (are the resources free?)
 - Yes, schedule it, op.issue_time = time

 - **↓** Remove op from UNSCHEDULED/READY sets
 - No, continue

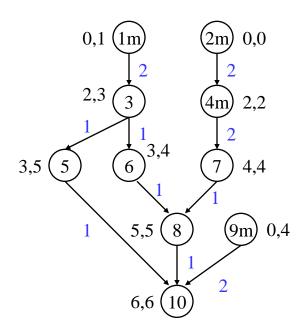
Cycle Scheduling Example

List Scheduling (Operation Scheduler)

- Build dependence graph, calculate priority
- Add all ops to UNSCHEDULED set
- while (UNSCHEDULED not empty)
 - » op = operation in UNSCHEDULED with highest priority
 - » For time = estart to some deadline
 - Op can be scheduled at current time? (are resources free?)
 - Yes, schedule it, op.issue_time = time

 - **↓** Remove op from UNSCHEDULED
 - ◆ No, continue
 - » Deadline reached w/o scheduling op? (could not be scheduled)
 - Yes, unplace all conflicting ops at op.estart, add them to UNSCHEDULED
 - Schedule op at estart

 - **↓** Remove op from UNSCHEDULED

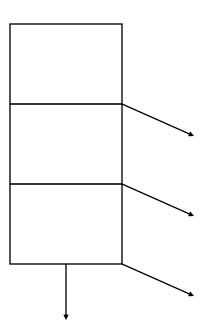

Homework Problem – Operation Scheduling

RU_map

Machine: 2 issue, 1 memory port, 1 ALU

Memory port = 2 cycles, pipelined

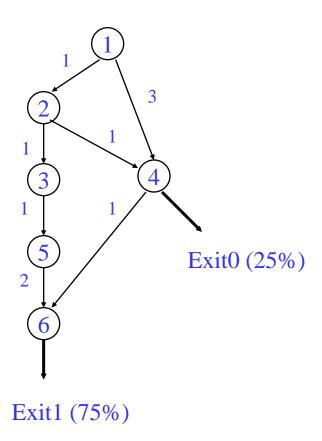
ALU = 1 cycle


_				
time ALU M	IEM	time	Ready	Placed
0		0		
1		1		
2		2		
3		3		
4		4		
5		5		
6		6		
7		7		
8		8		
9		9		

Schedule

- 1. Calculate height-based priorities
- 2. Schedule using Operation scheduler

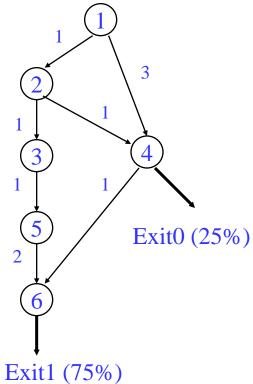
Generalize Beyond a Basic Block


- Superblock
 - » Single entry
 - » Multiple exits (side exits)
 - » No side entries
- Schedule just like a BB
 - » Priority calculations needs change
 - » Dealing with control deps

Lstart in a Superblock

- Not a single Lstart any more
 - » 1 per exit branch (Lstart is a vector!)
 - » Exit branches have probabilities

op Estart Lstart0 Lstart1
1
2
3
4
5
6


Operation Priority in a Superblock

- Priority Dependence height and speculative yield
 - » Height from op to exit * probability of exit
 - » Sum up across all exits in the superblock

Priority(op) = SUM(Probi * (MAX_Lstart - Lstarti(op) + 1))
valid late times for op

op Lstart0 Lstart1 Priority
1
2
3
4
5

6

Dependences in a Superblock

Superblock

```
1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)

6: r2 = r2 - 4

7: r5 = load(r2)

8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2
```

Note: Control flow in red bold

- * Data dependences shown, all are reg flow except 1→ 6 is reg anti
- * Dependences define precedence ordering of operations to ensure correct execution semantics
- * What about control dependences?
- * Control dependences define precedence of ops with respect to branches

Conservative Approach to Control Dependences

Superblock

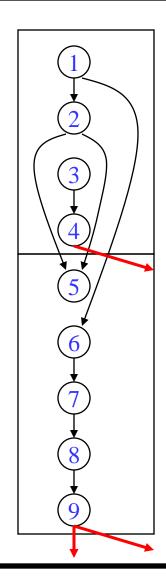
```
1: r1 = r2 + r3

2: r4 = load(r1)

3: p1 = cmpp(r3 == 0)

4: branch p1 Exit1

5: store (r4, -1)


6: r2 = r2 - 4

7: r5 = load(r2)

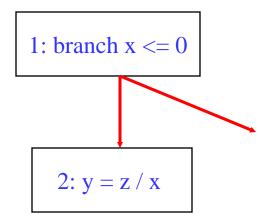
8: p2 = cmpp(r5 > 9)

9: branch p2 Exit2
```

Note: Control flow in red bold

- * Make branches barriers, nothing moves above or below branches
- * Schedule each BB in SB separately
- * Sequential schedules
- * Whole purpose of a superblock is lost

Upward Code Motion Across Branches


- Restriction 1a (register op)
 - » The destination of op is not in liveout(br)
 - » Wrongly kill a live value
- * Restriction 1b (memory op)
 - » Op does not modify the memory
 - Actually live memory is what matters, but that is often too hard to determine
- Restriction 2
 - » Op must not cause an exception that may terminate the program execution when br is taken
 - » Op is executed more often than it is supposed to (speculated)
 - » Page fault or cache miss are ok
- Insert control dep when either restriction is violated

if
$$(x > 0)$$

 $y = z / x$

. . .

control flow graph

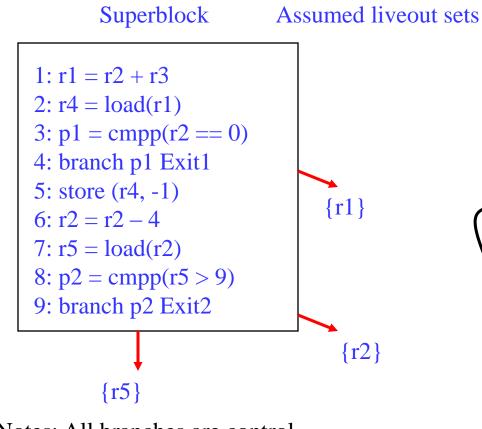
Downward Code Motion Across Branches

- Restriction 1 (liveness)
 - » If no compensation code
 - Same restriction as before, destination of op is not liveout
 - » Else, no restrictions
 - Duplicate operation along both directions of branch if destination is liveout
- Restriction 2 (speculation)
 - » Not applicable, downward motion is not speculation
- Again, insert control dep when the restrictions are violated
- Part of the philosphy of superblocks is no compensation code inseration hence R1 is enforced!

```
a = b * c
if (x > 0)
```

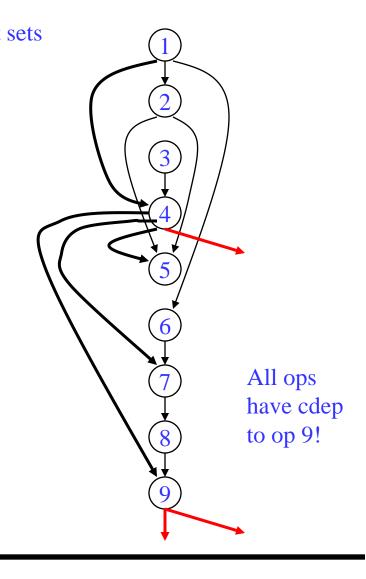
else

• • •

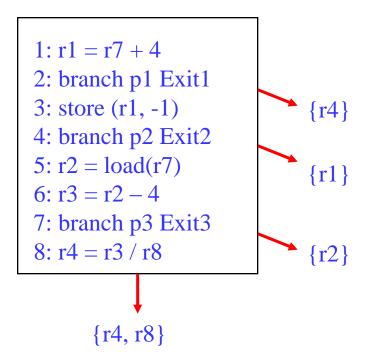


control flow graph

1:
$$a = b * c$$


2: branch x <= 0

Add Control Dependences to a Superblock



Notes: All branches are control dependent on one another.

If no compensation, all ops dependent on last branch

Class Problem

Draw the dependence graph