
EECS 583 – Class 10

ILP Optimization and Intro. to

Code Generation

University of Michigan

October 10, 2011

- 1 -

Reading Material + Announcements

 List of references for each project area available on
course website

 Places to find papers on compilers

» Conferences: PLDI, CGO, VEE, CC, Micro, Asplos

» Journals: ACM Transactions on Computer Architecture and
Code Optimization, Software Practice & Experience, IEEE
Transactions on Computers, ACM Transactions on Programming
Languages and Systems

 Today’s class

» “Machine Description Driven Compilers for EPIC Processors”,
B. Rau, V. Kathail, and S. Aditya, HP Technical Report, HPL-
98-40, 1998. (long paper but informative)

 Next class

» “The Importance of Prepass Code Scheduling for Superscalar and
Superpipelined Processors,” P. Chang et al., IEEE Transactions
on Computers, 1995, pp. 353-370.

- 2 -

From Last Time: Class Problem

Optimize this applying

induction var str reduction

r5 = r5 + 1

r11 = r5 * 2

r10 = r11 + 2

r12 = load (r10+0)

r9 = r1 << 1

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r2 - 1

r1 = r1 + 1

r2 = r2 + 1

r1 = 0

r2 = 0

r13, r12, r6, r10

liveout

r5 = r5 + 1

r111 = r111 + 2

r11 = r111

r10 = r11 + 2

r12 = load (r10+0)

r9 = r109

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r113

r1 = r1 + 1

r109 = r109 + 2

r2 = r2 + 1

r113 = r113 + 1

r1 = 0

r2 = 0

r111 = r5 * 2

r109 = r1 << 1

r113 = r2 -1

r13, r12, r6, r10

liveout

Note, after copy

propagation, r10

and r4 can be

strength reduced

as well.

- 3 -

From Last Time: Class Problem

Assume: + = 1, * = 3

0

r1

0

r2

0

r3

1

r4

2

r5

0

r6

operand

arrival times

r10 = r1 * r2

r11 = r10 + r3

r12 = r11 + r4

r13 = r12 – r5

r14 = r13 + r6

Back susbstitute

Re-express in tree-height reduced form

 Account for latency and arrival times

Back substituted expression:

r14 = r1*r2+r3+r4-r5+r6

Re-associate and parenthesize to

reduce height:

r14 = ((r1*r2)+(((r3+r6)+r4)-r5))

Final assembly code:

t1 = r1 * r2

t2 = r3 + r6

t3 = t2 + r4

t4 = t3-r5

r14 =t1 + t4

- 4 -

Optimizing Unrolled Loops

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

Unroll = replicate loop body

n-1 times.

Hope to enable overlap of

operation execution from

different iterations

Not possible!

loop:

unroll 3 times

- 5 -

Register Renaming on Unrolled Loop

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 6 -

Register Renaming is Not Enough!

 Still not much overlap possible

 Problems

» r2, r4, r6 sequentialize the

iterations

» Need to rename these

 2 specialized renaming optis

» Accumulator variable

expansion (r6)

» Induction variable expansion

(r2, r4)

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r6 = r6 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r6 = r6 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:

- 7 -

Accumulator Variable Expansion

 Accumulator variable

» x = x + y or x = x – y

» where y is loop variant!!

 Create n-1 temporary

accumulators

 Each iteration targets a

different accumulator

 Sum up the accumulator

variables at the end

 May not be safe for floating-

point values

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r11 = load(r2)

r13 = load(r4)

r15 = r11 * r13

r16 = r16 + r15

r2 = r2 + 4

r4 = r4 + 4

r21 = load(r2)

r23 = load(r4)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 8 -

Induction Variable Expansion

 Induction variable

» x = x + y or x = x – y

» where y is loop invariant!!

 Create n-1 additional induction

variables

 Each iteration uses and

modifies a different induction

variable

 Initialize induction variables to

init, init+step, init+2*step, etc.

 Step increased to n*original

step

 Now iterations are completely

independent !!

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 12

r4 = r4 + 12

r11 = load(r12)

r13 = load(r14)

r15 = r11 * r13

r16 = r16 + r15

r12 = r12 + 12

r14 = r14 + 12

r21 = load(r22)

r23 = load(r24)

r25 = r21 * r23

r26 = r26 + r25

r22 = r22 + 12

r24 = r24 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

r12 = r2 + 4, r22 = r2 + 8

r14 = r4 + 4, r24 = r4 + 8

- 9 -

Better Induction Variable Expansion

 With base+displacement

addressing, often don’t need

additional induction variables

» Just change offsets in each

iterations to reflect step

» Change final increments to n

* original step

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r11 = load(r2+4)

r13 = load(r4+4)

r15 = r11 * r13

r16 = r16 + r15

r21 = load(r2+8)

r23 = load(r4+8)

r25 = r21 * r23

r26 = r26 + r25

r2 = r2 + 12

r4 = r4 + 12

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
r16 = r26 = 0

r6 = r6 + r16 + r26

- 10 -

Homework Problem

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

r1 = load(r2)

r5 = r6 + 3

r6 = r5 + r1

r2 = r2 + 4

if (r2 < 400) goto loop

loop:

Optimize the unrolled

loop

Renaming

Tree height reduction

Ind/Acc expansion

- 11 -

New Topic - Code Generation

 Map optimized “machine-independent” assembly to final
assembly code

 Input code

» Classical optimizations

» ILP optimizations

» Formed regions (sbs, hbs), applied if-conversion (if appropriate)

 Virtual  physical binding

» 2 big steps

» 1. Scheduling

 Determine when every operation executions

 Create MultiOps

» 2. Register allocation

 Map virtual  physical registers

 Spill to memory if necessary

- 12 -

What Do We Need to Schedule Operations?

 Information about the processor

» Number of resources

» Which resources are used by each operation

» Operation latencies

» Operand encoding limitations

» For example:

 2 issue slots, 1 memory port, 1 adder/multiplier

 load = 2 cycles, add = 1 cycle, mpy = 3 cycles; all fully pipelined

 Each operand can be register or 6 bit signed literal

 Ordering constraints amongst operations

» What order defines correct program execution?

» Need a precedence graph – flow, anti, output deps

 What about memory deps? control deps? Delay slots?

- 13 -

How Do We Schedule?

 When is it legal to schedule an

instruction?

» Correct execution is maintained

» Resources not oversubscribed

 Given multiple operations that can be

scheduled, how do you pick the best

one?

» How do you know it is the best one?

 What about a good guess?

 Does it matter, just pick one at random?

» Are decisions final?, or is this an

iterative process?

 How do we keep track of resources that

are busy/free

» Need a reservation table

 Matrix (resources x time)

r1 = load(r10)

r2 = load(r11)

r3 = r1 + 4

r4 = r1 – r12

r5 = r2 + r4

r6 = r5 + r3

r7 = load(r13)

r8 = r7 * 23

store (r8, r6)

- 14 -

More Stuff to Worry About

 Model more resources

» Register ports, output busses

» Non-pipelined resources

 Dependent memory operations

 Multiple clusters

» Cluster = group of FUs connected to a set of register files such that an

FU in a cluster has immediate access to any value produced within the

cluster

» Multicluster = Processor with 2 or more clusters, clusters often

interconnected by several low-bandwidth busses

 Bottom line = Non-uniform access latency to operands

 Scheduler has to be fast

» NP complete problem

» So, need a heuristic strategy

 What is better to do first, scheduling or register allocation?

- 15 -

Schedule Before or After Register Allocation?

r1 = load(r10)

r2 = load(r11)

r3 = r1 + 4

r4 = r1 – r12

r5 = r2 + r4

r6 = r5 + r3

r7 = load(r13)

r8 = r7 * 23

store (r8, r6)

R1 = load(R1)

R2 = load(R2)

R5 = R1 + 4

R1 = R1 – R3

R2 = R2 + R1

R2 = R2 + R5

R5 = load(R4)

R5 = R5 * 23

store (R5, R2)

physical registers virtual registers

Too many artificial ordering constraints if schedule after allocation!!!!

- 16 -

Code Gen: The 6 Step Program

 1. Code selection, Literal handling

» Semantic operations to generic operations

» How to realize a specific function on this machine

» Complement all bits  xor with –1

» Can literal be encoded in operation, if not need load/move

 2. Prepass operation binding

» Partially bind operation to subset of resources

» Resources are access equivalent

 Any choice is equal to any other choice

» Multi-cluster machine – bind operation to a cluster

 3. Scheduling

» What time the operation will be executed

» What execution resources will be used

 Chooses alternative

- 17 -

Code Gen: The 6 Step Program (cont)

 4. Register allocation

» Assign physical registers

» Bind each access-equivalent register to a specific physical
register

» Introduce additional code to spill registers to memory

 5. Postpass scheduling

» A second pass of scheduling to handle spill code

» Resource assignments from first pass are ignored

» But, registers are physical, so less code motion freedom

 6. Code emission

» Convert “fully qualified” operations into real assembly

» A translator basically

» Assembler converts this assembly to machine code

 Focus for now on 3, 4, 5, assume 1, 2, 6 are not needed

- 18 -

Data Dependences

 Data dependences

» If 2 operations access the same register, they are dependent

» However, only keep dependences to most recent

producer/consumer as other edges are redundant

» Types of data dependences

Flow Output Anti

r1 = r2 + r3

r4 = r1 * 6

r1 = r2 + r3

r1 = r4 * 6

r1 = r2 + r3

r2 = r5 * 6

- 19 -

More Dependences

 Memory dependences

» Similar as register, but through memory

» Memory dependences may be certain or maybe

 Control dependences

» We discussed this earlier

» Branch determines whether an operation is executed or not

» Operation must execute after/before a branch

» Note, control flow (C0) is not a dependence

Mem-flow Mem-output Mem-anti

store (r1, r2)

r3 = load(r1)

store (r1, r2)

store (r1, r3)

r2 = load(r1)

store (r1, r3)

Control (C1)

if (r1 != 0)

 r2 = load(r1)

- 20 -

Dependence Graph

 Represent dependences between operations in a block via

a DAG

» Nodes = operations

» Edges = dependences

 Single-pass traversal required to

insert dependences

 Example

1: r1 = load(r2)

2: r2 = r1 + r4

3: store (r4, r2)

4: p1 = cmpp (r2 < 0)

5: branch if p1 to BB3

6: store (r1, r2)

1

2

5

4

3

6
BB3:

- 21 -

Dependence Edge Latencies

 Edge latency = minimum number of cycles necessary
between initiation of the predecessor and successor in
order to satisfy the dependence

 Register flow dependence, a  b

» Latest_write(a) – Earliest_read(b) (earliest_read typically 0)

 Register anti dependence, a  b

» Latest_read(a) – Earliest_write(b) + 1 (latest_read typically equal
to earliest_write, so anti deps are 1 cycle)

 Register output dependence, a  b

» Latest_write(a) – Earliest_write(b) + 1 (earliest_write typically
equal to latest_write, so output deps are 1 cycle)

 Negative latency

» Possible, means successor can start before predecessor

» We will only deal with latency >= 0, so MAX any latency with 0

- 22 -

Dependence Edge Latencies (2)

 Memory dependences, a  b (all types, flow, anti,
output)

» latency = latest_serialization_latency(a) –
earliest_serialization_latency(b) + 1 (generally this is 1)

 Control dependences

» branch  b

 Op b cannot issue until prior branch completed

 latency = branch_latency

» a  branch

 Op a must be issued before the branch completes

 latency = 1 – branch_latency (can be negative)

 conservative, latency = MAX(0, 1-branch_latency)

- 23 -

Class Problem

r1 = load(r2)

r2 = r2 + 1

store (r8, r2)

r3 = load(r2)

r4 = r1 * r3

r5 = r5 + r4

r2 = r6 + 4

store (r2, r5)

machine model

latencies

add: 1

mpy: 3

load: 2

 sync 1

store: 1

 sync 1

1. Draw dependence graph

2. Label edges with type and

latencies

- 24 -

Dependence Graph Properties - Estart

 Estart = earliest start time, (as soon as possible - ASAP)

» Schedule length with infinite resources (dependence height)

» Estart = 0 if node has no predecessors

» Estart = MAX(Estart(pred) + latency) for each predecessor node

» Example
1

2

5 4

3

6

8 7

1
2

1 2

3

2

3

2

1

3

- 25 -

Lstart

 Lstart = latest start time, ALAP

» Latest time a node can be scheduled s.t. sched length not

increased beyond infinite resource schedule length

» Lstart = Estart if node has no successors

» Lstart = MIN(Lstart(succ) - latency) for each successor node

» Example 1

2

5 4

3

6

8 7

1
2

1 2

3

2
3

2

1

3

- 26 -

Slack

 Slack = measure of the scheduling freedom

» Slack = Lstart – Estart for each node

» Larger slack means more mobility

» Example

1

2

5 4

3

6

8 7

1
2

1 2

3

2
3

2

1

3

- 27 -

Critical Path

 Critical operations = Operations with slack = 0

» No mobility, cannot be delayed without extending the schedule

length of the block

» Critical path = sequence of critical operations from node with no

predecessors to exit node, can be multiple crit paths

1

2

5 4

3

6

8 7

1
2

1 2

3

2

3

2

1

3

- 28 -

Class Problem

1

2

5

4 3

6

9

7

1
2

1

3

3

1

1
1

8

2

2

1

2

Node Estart Lstart Slack

1

2

3

4

5

6

7

8

9

Critical path(s) =

