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Reading Material + Announcements 

 List of references for each project area available on 
course website 

 Places to find papers on compilers 

» Conferences: PLDI, CGO, VEE, CC, Micro, Asplos 

» Journals: ACM Transactions on Computer Architecture and  
Code Optimization, Software Practice & Experience, IEEE 
Transactions on Computers, ACM Transactions on Programming 
Languages and Systems 

 Today’s class 

» “Machine Description Driven Compilers for EPIC Processors”, 
B. Rau, V. Kathail, and S. Aditya, HP Technical Report, HPL-
98-40, 1998. (long paper but informative) 

 Next class 

» “The Importance of Prepass Code Scheduling for Superscalar and 
Superpipelined Processors,” P. Chang et al., IEEE Transactions 
on Computers, 1995, pp. 353-370. 
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From Last Time: Class Problem 

Optimize this applying 

induction var str reduction 

r5 = r5 + 1 

r11 = r5 * 2 

r10 = r11 + 2 

r12 = load (r10+0) 

r9 = r1 << 1 

r4 = r9 - 10 

r3 = load(r4+4) 

r3 = r3 + 1 

store(r4+0, r3) 

r7 = r3 << 2 

r6 = load(r7+0) 

r13 = r2 - 1 

r1 = r1 + 1 

r2 = r2 + 1 

 

r1 = 0 

r2 = 0 

r13, r12, r6, r10 

liveout 

r5 = r5 + 1 

r111 = r111 + 2 

r11 = r111 

r10 = r11 + 2 

r12 = load (r10+0) 

r9 = r109 

r4 = r9 - 10 

r3 = load(r4+4) 

r3 = r3 + 1 

store(r4+0, r3) 

r7 = r3 << 2 

r6 = load(r7+0) 

r13 = r113 

r1 = r1 + 1 

r109 = r109 + 2 

r2 = r2 + 1 

r113 = r113 + 1 

 

r1 = 0 

r2 = 0 

r111 = r5 * 2 

r109 = r1 << 1 

r113 = r2 -1  

r13, r12, r6, r10 

liveout 

Note, after copy 

propagation, r10  

and r4 can be 

strength reduced 

as well. 



- 3 - 

From Last Time: Class Problem 

Assume: + = 1, * = 3 

0 

r1 

0 

r2 

0 

r3 

1 

r4 

2 

r5 

0 

r6 

operand 

arrival times 

r10 = r1 * r2 

r11 = r10 + r3 

r12 = r11 + r4 

r13 = r12 – r5 

r14 = r13 + r6 

Back susbstitute 

Re-express in tree-height reduced form 

 Account for latency and arrival times 

Back substituted expression: 

 

r14 = r1*r2+r3+r4-r5+r6 

Re-associate and parenthesize to  

reduce height: 

 

r14 = ((r1*r2)+(((r3+r6)+r4)-r5)) 

Final assembly code: 

 

t1 = r1 * r2 

t2 = r3 + r6 

t3 = t2 + r4 

t4 = t3-r5 

r14 =t1 + t4 
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Optimizing Unrolled Loops 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

if (r4 < 400) goto loop 

loop: r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

if (r4 < 400) goto loop 

iter1 

iter2 

iter3 

Unroll = replicate loop body  

n-1 times. 

 

Hope to enable overlap of 

operation execution from 

different iterations 

 

Not possible! 

loop: 

unroll 3 times 
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Register Renaming on Unrolled Loop 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

if (r4 < 400) goto loop 

iter1 

iter2 

iter3 

loop: r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

r11 = load(r2) 

r13 = load(r4) 

r15 = r11 * r13 

r6 = r6 + r15 

r2 = r2 + 4 

r4 = r4 + 4 

r21 = load(r2) 

r23 = load(r4) 

r25 = r21 * r23 

r6 = r6 + r25 

r2 = r2 + 4 

r4 = r4 + 4 

if (r4 < 400) goto loop 

iter1 

iter2 

iter3 

loop: 
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Register Renaming is Not Enough! 

 Still not much overlap possible 

 Problems 

» r2, r4, r6 sequentialize the 

iterations 

» Need to rename these 

 2 specialized renaming optis 

» Accumulator variable 

expansion (r6) 

» Induction variable expansion 

(r2, r4) 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

r11 = load(r2) 

r13 = load(r4) 

r15 = r11 * r13 

r6 = r6 + r15 

r2 = r2 + 4 

r4 = r4 + 4 

r21 = load(r2) 

r23 = load(r4) 

r25 = r21 * r23 

r6 = r6 + r25 

r2 = r2 + 4 

r4 = r4 + 4 

if (r4 < 400) goto loop 

iter1 

iter2 

iter3 

loop: 
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Accumulator Variable Expansion 

 Accumulator variable 

» x = x + y or x = x – y 

» where y is loop variant!! 

 Create n-1 temporary 

accumulators 

 Each iteration targets a 

different accumulator 

 Sum up the accumulator 

variables at the end 

 May not be safe for floating-

point values 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 4 

r4 = r4 + 4 

r11 = load(r2) 

r13 = load(r4) 

r15 = r11 * r13 

r16 = r16 + r15 

r2 = r2 + 4 

r4 = r4 + 4 

r21 = load(r2) 

r23 = load(r4) 

r25 = r21 * r23 

r26 = r26 + r25 

r2 = r2 + 4 

r4 = r4 + 4 

if (r4 < 400) goto loop 

iter1 

iter2 

iter3 

loop: 
r16 = r26 = 0 

r6 = r6 + r16 + r26 
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Induction Variable Expansion 

 Induction variable 

» x = x + y or x = x – y 

» where y is loop invariant!! 

 Create n-1 additional induction 

variables 

 Each iteration uses and 

modifies a different induction 

variable 

 Initialize induction variables to 

init, init+step, init+2*step, etc. 

 Step increased to n*original 

step 

 Now iterations are completely 

independent !! 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

r2 = r2 + 12 

r4 = r4 + 12 

r11 = load(r12) 

r13 = load(r14) 

r15 = r11 * r13 

r16 = r16 + r15 

r12 = r12 + 12 

r14 = r14 + 12 

r21 = load(r22) 

r23 = load(r24) 

r25 = r21 * r23 

r26 = r26 + r25 

r22 = r22 + 12 

r24 = r24 + 12 

if (r4 < 400) goto loop 

iter1 

iter2 

iter3 

loop: 
r16 = r26 = 0 

r6 = r6 + r16 + r26 

r12 = r2 + 4, r22 = r2 + 8 

r14 = r4 + 4, r24 = r4 + 8 
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Better Induction Variable Expansion 

 With base+displacement 

addressing, often don’t need 

additional induction variables 

» Just change offsets in each 

iterations to reflect step 

» Change final increments to n 

* original step 

r1 = load(r2) 

r3 = load(r4) 

r5 = r1 * r3 

r6 = r6 + r5 

 

 

r11 = load(r2+4) 

r13 = load(r4+4) 

r15 = r11 * r13 

r16 = r16 + r15 

 

 

r21 = load(r2+8) 

r23 = load(r4+8) 

r25 = r21 * r23 

r26 = r26 + r25 

r2 = r2 + 12 

r4 = r4 + 12 

if (r4 < 400) goto loop 

iter1 

iter2 

iter3 

loop: 
r16 = r26 = 0 

r6 = r6 + r16 + r26 
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Homework Problem 

r1 = load(r2) 

r5 = r6 + 3 

r6 = r5 + r1 

r2 = r2 + 4 

if (r2 < 400) goto loop 

loop: 

r1 = load(r2) 

r5 = r6 + 3 

r6 = r5 + r1 

r2 = r2 + 4 

r1 = load(r2) 

r5 = r6 + 3 

r6 = r5 + r1 

r2 = r2 + 4 

r1 = load(r2) 

r5 = r6 + 3 

r6 = r5 + r1 

r2 = r2 + 4 

if (r2 < 400) goto loop 

loop: 

Optimize the unrolled 

loop 

 

Renaming 

Tree height reduction 

Ind/Acc expansion 
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New Topic - Code Generation 

 Map optimized “machine-independent” assembly to final 
assembly code 

 Input code 

» Classical optimizations 

» ILP optimizations 

» Formed regions (sbs, hbs), applied if-conversion (if appropriate) 

 Virtual  physical binding 

» 2 big steps 

» 1. Scheduling 

 Determine when every operation executions 

 Create MultiOps 

» 2. Register allocation 

 Map virtual  physical registers 

 Spill to memory if necessary 
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What Do We Need to Schedule Operations? 

 Information about the processor 

» Number of resources 

» Which resources are used by each operation 

» Operation latencies 

» Operand encoding limitations 

» For example: 

 2 issue slots, 1 memory port, 1 adder/multiplier 

 load = 2 cycles, add = 1 cycle, mpy = 3 cycles; all fully pipelined 

 Each operand can be register or 6 bit signed literal 

 Ordering constraints amongst operations 

» What order defines correct program execution? 

» Need a precedence graph – flow, anti, output deps 

 What about memory deps?  control deps? Delay slots? 
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How Do We Schedule? 

 When is it legal to schedule an 

instruction? 

» Correct execution is maintained 

» Resources not oversubscribed 

 Given multiple operations that can be 

scheduled, how do you pick the best 

one? 

» How do you know it is the best one? 

 What about a good guess? 

 Does it matter, just pick one at random? 

» Are decisions final?, or is this an 

iterative process? 

 How do we keep track of resources that 

are busy/free 

» Need a reservation table 

 Matrix (resources x time) 

r1 = load(r10) 

r2 = load(r11) 

r3 = r1 + 4 

r4 = r1 – r12 

r5 = r2 + r4 

r6 = r5 + r3 

r7 = load(r13) 

r8 = r7 * 23 

store (r8, r6) 
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More Stuff to Worry About 

 Model more resources 

» Register ports, output busses 

» Non-pipelined resources 

 Dependent memory operations 

 Multiple clusters 

» Cluster = group of FUs connected to a set of register files such that an 

FU in a cluster has immediate access to any value produced within the 

cluster 

» Multicluster = Processor with 2 or more clusters, clusters often 

interconnected by several low-bandwidth busses 

 Bottom line = Non-uniform access latency to operands 

 Scheduler has to be fast 

» NP complete problem 

» So, need a heuristic strategy 

 What is better to do first, scheduling or register allocation? 
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Schedule Before or After Register Allocation? 

r1 = load(r10) 

r2 = load(r11) 

r3 = r1 + 4 

r4 = r1 – r12 

r5 = r2 + r4 

r6 = r5 + r3 

r7 = load(r13) 

r8 = r7 * 23 

store (r8, r6) 

R1 = load(R1) 

R2 = load(R2) 

R5 = R1 + 4 

R1 = R1 – R3 

R2 = R2 + R1 

R2 = R2 + R5 

R5 = load(R4) 

R5 = R5 * 23 

store (R5, R2) 

physical registers virtual registers 

Too many artificial ordering constraints if schedule after allocation!!!! 
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Code Gen: The 6 Step Program 

 1. Code selection, Literal handling 

» Semantic operations to generic operations 

» How to realize a specific function on this machine 

» Complement all bits  xor with –1 

» Can literal be encoded in operation, if not need load/move 

 2. Prepass operation binding 

» Partially bind operation to subset of resources 

» Resources are access equivalent 

 Any choice is equal to any other choice 

» Multi-cluster machine – bind operation to a cluster 

 3. Scheduling 

» What time the operation will be executed 

» What execution resources will be used 

 Chooses alternative 
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Code Gen: The 6 Step Program (cont) 

 4. Register allocation 

» Assign physical registers 

» Bind each access-equivalent register to a specific physical 
register 

» Introduce additional code to spill registers to memory 

 5. Postpass scheduling 

» A second pass of scheduling to handle spill code 

» Resource assignments from first pass are ignored 

» But, registers are physical, so less code motion freedom 

 6. Code emission 

» Convert “fully qualified” operations into real assembly 

» A translator basically 

» Assembler converts this assembly to machine code 

 Focus for now on 3, 4, 5, assume 1, 2, 6 are not needed 



- 18 - 

Data Dependences 

 Data dependences 

» If 2 operations access the same register, they are dependent 

» However, only keep dependences to most recent 

producer/consumer as other edges are redundant 

» Types of data dependences 

 

Flow Output Anti 

r1 = r2 + r3 

 

 

r4 = r1 * 6 

r1 = r2 + r3 

 

 

r1 = r4 * 6 

r1 = r2 + r3 

 

 

r2 = r5 * 6 



- 19 - 

More Dependences 

 Memory dependences 

» Similar as register, but through memory 

» Memory dependences may be certain or maybe 

 Control dependences 

» We discussed this earlier 

» Branch determines whether an operation is executed or not 

» Operation must execute after/before a branch 

» Note, control flow (C0) is not a dependence 

Mem-flow Mem-output Mem-anti 

store (r1, r2) 

 

 

r3 = load(r1) 

store (r1, r2) 

 

 

store (r1, r3) 

r2 = load(r1) 

 

 

store (r1, r3) 

Control (C1) 

if (r1 != 0) 

 

 

    r2 = load(r1) 
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Dependence Graph 

 Represent dependences between operations in a block via 

a DAG 

» Nodes = operations 

» Edges = dependences 

 Single-pass traversal required to  

insert dependences 

 Example 

1: r1 = load(r2) 

2: r2 = r1 + r4 

3: store (r4, r2) 

4: p1 = cmpp (r2 < 0) 

5: branch if p1 to BB3 

6: store (r1, r2) 

1 

2 

5 

4 

3 

6 
BB3: 
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Dependence Edge Latencies 

 Edge latency = minimum number of cycles necessary 
between initiation of the predecessor and successor in 
order to satisfy the dependence 

 Register flow dependence, a  b 

» Latest_write(a) – Earliest_read(b) (earliest_read typically 0) 

 Register anti dependence, a  b 

» Latest_read(a) – Earliest_write(b) + 1 (latest_read typically equal 
to earliest_write, so anti deps are 1 cycle) 

 Register output dependence, a  b 

» Latest_write(a) – Earliest_write(b) + 1 (earliest_write typically 
equal to latest_write, so output deps are 1 cycle) 

 Negative latency 

» Possible, means successor can start before predecessor 

» We will only deal with latency >= 0, so MAX any latency with 0 
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Dependence Edge Latencies (2) 

 Memory dependences, a  b (all types, flow, anti, 
output) 

» latency = latest_serialization_latency(a) – 
earliest_serialization_latency(b) + 1 (generally this is 1) 

 Control dependences 

» branch  b 

 Op b cannot issue until prior branch completed 

 latency = branch_latency 

» a  branch 

 Op a must be issued before the branch completes 

 latency = 1 – branch_latency (can be negative) 

 conservative, latency = MAX(0, 1-branch_latency) 
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Class Problem 

r1 = load(r2) 

r2 = r2 + 1 

store (r8, r2) 

r3 = load(r2) 

r4 = r1 * r3 

r5 = r5 + r4 

r2 = r6 + 4 

store (r2, r5) 

machine model 

 

latencies 

 

add:    1 

mpy:    3 

load:   2 

           sync 1 

store: 1 

           sync 1 

1. Draw dependence graph 

2. Label edges with type and 

latencies 
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Dependence Graph Properties - Estart 

 Estart = earliest start time, (as soon as possible - ASAP) 

» Schedule length with infinite resources (dependence height) 

» Estart = 0 if node has no predecessors 

» Estart = MAX(Estart(pred) + latency) for each predecessor node 

» Example 
1 

2 

5 4 

3 

6 

8 7 

1 
2 

1 2 

3 

2 

3 

2 

1 

3 
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Lstart 

 Lstart = latest start time, ALAP  

» Latest time a node can be scheduled s.t. sched length not 

increased beyond infinite resource schedule length 

» Lstart = Estart if node has no successors 

» Lstart = MIN(Lstart(succ) - latency) for each successor node 

» Example 1 

2 

5 4 

3 

6 

8 7 

1 
2 

1 2 

3 

2 
3 

2 

1 

3 
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Slack 

 Slack =  measure of the scheduling freedom 

» Slack = Lstart – Estart for each node 

» Larger slack means more mobility 

» Example 

1 

2 

5 4 

3 

6 

8 7 

1 
2 

1 2 

3 

2 
3 

2 

1 

3 
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Critical Path 

 Critical operations = Operations with slack = 0 

» No mobility, cannot be delayed without extending the schedule 

length of the block 

» Critical path = sequence of critical operations from node with no 

predecessors to exit node, can be multiple crit paths 

1 

2 

5 4 

3 

6 

8 7 

1 
2 

1 2 

3 

2 

3 

2 

1 

3 
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Class Problem 

1 

2 

5 

4 3 

6 

9 

7 

1 
2 

1 

3 

3 

1 

1 
1 

8 

2 

2 

1 

2 

Node Estart Lstart Slack 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Critical path(s) =  


