
r10 = SHIFT(variant)
r1 = LD (r5) [invariant]
r2 = ADD(r1, invariant)
r3 = MPY(r2, invariant)

r4 = SUB(r3, variant)
if (r2 > 0)

Conceptual LICM Transformation
for HW2

ST(r7, r8)
[aliases with LD]

Initial code

invariant load that cannot
be removed due to aliasing
store.

Check the memory dependence
profile and see that the alias
count between LD and ST is
small

Hoist out the LD

LICM will then take over and hoist
out any instructions that become
invariant after the LD is removed.
In this case, the ADD and MPY
will also be moved out

homeBB:

r10 = SHIFT(variant)
if (flag) goto redoBB

ST(r7, r8)
[aliases with LD]
flag = (r7 == r5)

r1 = LD (r5) [invariant]
r2 = ADD(r1, invariant)
r3 = MPY(r2, invariant)
flag = 0r4 = SUB(r3, variant)

if (r2 > 0)

r1 = LD (r5) [invariant]
r2 = ADD(r1, invariant)
r3 = MPY(r2, invariant)
flag = 0

redoBB:

Result of speculative LICM

restBB:

homeBB:

preheaderBB:

Notes on Transformation
• Split home BB of hoisted LD

– Everything above LD stays put in homeBB
– Everything after LD gets put in new BB called restBB
– new branch added to end of homeBB, that tests if flag=1 and branches to

redoBB if true, and restBB if false
• redoBB

– Place copy of hoisted LD, and copy of any other hoisted invariant instructions
that directly or indirectly use the result of the LD. Note it’s important to populate
this list correctly. Look at the set of instrs that are hoisted to identify those that
became invariant because of the LD by examining the use lists

– Note - invariant uses of the LD will automatically get hoisted by LICM, you don’t
need to do anything to make this happen

– Note2 – even if these uses that become invariant occur in other BBs, you can
redo them all in redoBB (think about this one!)

– Clear flag at the end of redoBB
• Preheader

– Set all flags to 0 at end of preheader. Note, each LD that you hoist should have
its own flag variable

	Conceptual LICM Transformation for HW2
	Slide Number 2
	Notes on Transformation

