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ABSTRACT

We present a method whereby a robot can learn to rec-
ognize places with high accuracy, in spite of percep-
tual aliasing (different places appear the same) and im-
age variability (the same place appears differently). The
first step in learning place recognition restricts atten-
tion to distinctive states identified by the map-learning
algorithm, and eliminates image variability by unsu-
pervised learning of clusters of similar sensory images.
The clusters define views associated with distinctive
states, often increasing perceptual aliasing. The sec-
ond step eliminates perceptual aliasing by building a
causal/topological map and using history information
gathered during exploration to disambiguate distinctive
states. The third step uses the labeled images for su-
pervised learning of direct associations from sensory im-
ages to distinctive states. We evaluate the method using
a physical mobile robot in two environments, showing
high recognition rates in spite of large amounts of per-
ceptual aliasing.

Introduction

Can a robot learn to recognize places (posi-

tion and orientation), given a single sensory

image, with high accuracy?� Two complementary problems stand in the way of
reliable place recognition.

– Perceptual aliasing: different places may have
similar or identical sensory images.

– Image variability: the same position and orien-
tation may have different sensory images on
different occasions.� Bootstrap learning is a way of composing multiple

learning and inference methods to start with weak
methods and build prerequisites for the application
of stronger methods.� Applying bootstrap learning to place recognition
exploits the structure of the Spatial Semantic Hier-
archy (SSH) (Kuipers 2000).� Bootstrap learning eliminates image variability and
perceptual aliasing from groups of sensor images.

distinctive state (dstate) The isolated fixed-point of a
hill-climbing control law.

action A sequence of control laws taking the robot from
one dstate to the next.

image A sensor snapshot at a distinctive state.

view Every dstate has a single view. A view can be
thought of as a prototype image at a dstate.

causal map A graph made of dstates (and their views)
and the actions between them.
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1. Restrict attention to recognizing distinctive states
(dstates). Distinctive states are well-separated in
the robot’s state space.

2. Apply an unsupervised clustering algorithm to the
sensory images obtained at the dstates in the envi-
ronment.� Reduces image variability by mapping differ-

ent images of the same place into the same
cluster, even at the cost of increasing percep-
tual aliasing.� We define each cluster to be a view.

3. Build the SSH causal and topological maps — sym-
bolic descriptions made up of dstates, views, topo-
logical places, and paths — by exploration and ab-
duction from the observed sequence of views and
actions.

4. The correct causal/topological map labels each im-
age with the correct dstate. Apply a supervised
learning algorithm to learn a direct association
from sensory image to dstate.

Focusing on Distinctive States
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V2� We use wall-following and hill-climbing control
laws to arrive at dstates in an environment.� We use the images from dstates to infer a causal
map of views, dstates, and actions.� By limiting global localization to dstates, we can
simplify the Markov localization equation, used by
many for robot localization (?).

p(x’ja,o,m)= α p(ojx’,m)
Z

p(x’jx,a,m) p(xjm) dx

– Since actions are deterministic, if hx,a,x’i, then
p(x’jx,a,m)=1, otherwise 0.

p(x’ja,o,m) = α p(ojx’,m)∑fp(xjm) :hx,a,x’ig
A sum over part of the topological graph is

much more efficient than integration over an
occupancy grid.

– We cluster sensory images o into a small set of
clusters called views v.

p(x’ja,v,m) = α p(vjx’,m)∑fp(xjm) :hx,a,x’ig
Unlike p(ojx,m), p(vjx’,m) is large enough to be
meaningful.

– For a given distinctive state x, there is a sin-
gle view v such that, for every sensory image
o observed at x, o 2 v (i.e., p(vjx’,m) 2 f0,1g).

p(x’ja,v,m) = α∑fp(xjm) :hx,a,x’i^ view(x’,v)g� This Markov equation simplification clarifies the
relation between our approach and previous ones.

– When strong assumptions hold (deterministic
actions, no image variability), logical inference
determines the set of possible dstates x’.

– If action determinism or image uniqueness
fail, we can fall back to Markov localization,
retaining the other simplifications. (See Future
Work.)

Unsupervised Learning (Clustering)� We use k-means to cluster images into views.

– This ensures there is no a priori knowledge
about the sensor configuration being added to
the learning system.� The robot selects the number of clusters k to maxi-

mize the decision metric M.

M=
mini 6= j[minfdist(x,y) : x 2 ci, y 2 c jg℄

maxi[maxfdist(x,y) : x,y 2 cig℄� The researchers can verify that the decision metric
works properly by using an evaluation metric that
knows the correct state labels for each image. We
use the uncertainty coefficient (?, pp. 632–635):

U (vjx) =
H(v)-H(vjx)

H(v)

H(v) = �∑
i

pi� ln pi� where pi�=∑
j

pi, j

H(vjx) = �∑
i, j

pi, j ln
pi, j

p� j
where p� j=∑

i
pi, j� The robot chooses the maximum M. Ideally, this

will correspond to the largest k where U=1. When
U=1, image variability is gone (no images from the
same location fall into different clusters).� Clustering images into views eliminates image
variability, but retains or increases perceptual alias-
ing:

view(x,v1)^ view(x,v2) ! v1=v2

view(x1,v)^ view(x2,v) 6! x1=x2

Map Building� Determine the minimal set of distinctive states,
topological places, and paths consistent with the
observed sequence of views and actions and with
the axioms for the SSH causal and topological
maps.� Remolina (2001) provides axioms and an algorithm
for building the cognitive map.� Associates each dstate with the correct image.

Supervised Learning� Learn the dstate labels (given by the causal map)
directly from the sensor snapshots, images, ob-
tained at that dstate.� We use nearest neighbor to do supervised learning.

Lassie

Experiments were performed
with Lassie, an RWI Magellan
Pro mobile robot, using a laser
range finder scan for an image.
The laser range finder returns
180 range points in a half-circle
in front of the robot. Lassie does
not have a compass.

A Simple Experiment

We began testing our
method in the
simplest
environment with a
distinguishing
feature (the notch)
small enough to be
obscured by image
variability.

Learning Results

After 50 clockwise cycles, 400 images.
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The decision metric
M(k) is maximal at
k=4 views. The
evaluation metric
confirmed that
U (4)=1, so all image
variability is
eliminated.

Map Building

Non-monotonic reasoning found a map with 8 dstates, 4
topological places, and 4 paths.

Supervised Learning
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Supervised learning
from images to
dstate labels reached
100% accuracy after
30 cycles around the
rectangle. (10-fold
cross validation was
used).

A Natural Office Environment

The robot explored Taylor Hall second floor.

Learning Results

After 10 circuits, 240 images.
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The decision metric
M(k) is maximal at
k=10 views. The
evaluation metric
confirmed that
U (10)=1, so all image
variability is
eliminated, but k=10
is not optimal, since
U (13)=1 as well.

Causal/Topological Map Building

Using the views from clustering, non-monotonic rea-
soning determined there were 20 dstates, 7 topological
places, and 4 paths in the environment.

Supervised Learning
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When it reaches a
dstate, the robot can
recognize its location
with 100 accuracy
after only 9 training
tours around the
environment.
(10-fold cross
validation was used).

Discussion� Confirmed the value of bootstrap learning.

– Unsupervised clustering abstracts the world.

– Deductive inference builds a correct model.

– Supervised learning with accurate labels gives
high performance from real inputs.

Future Work� Eliminate need for physical hill-climbing

– Robot will no longer return to same pose when
entering a dstate neighborhood.

– We will use local metrical maps as images and
compare these to get views.� Implement using vision sensors

– Representation does not rely on range sensors.

– cf. (?)� Make learning occur online, incrementally� Error recovery when reliable actions fail.

– Fall back to Markov localization, temporarily.
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