Integrating multiple representations of spatial knowledge for mapping, navigation, and communication

> Patrick Beeson Matt MacMahon Joseph Modayil Aniket Murarka Benjamin Kuipers Department of Computer Sciences

> > Brian Stankiewicz Department of Psychology

The University of Texas at Austin

Goal

- Intelligent Wheelchair
 - Provides:
 - Safe execution of commands
 - Perception
 - Communication
 - Benefits:
 - Mobility impaired
 - Visually impaired
 - Cognitively impaired

Wheelchair Research Issues

- Wheelchair Hardware
 - Sensors, power consumption, etc.
- Interface Hardware
 - Varies by disability, personal preference, etc.
- Low-level Control
 - Velocities to motor voltages, safe/comfortable acceleration
- Knowledge Representation
 - Perception, navigation, spatial concepts, mixed autonomy
- User community studies
 - Usefulness, trust, cost

Interface Goals

- "Dock at my desk."
- "Enter restroom stall."
- "Go to the end of the hallway."
- "Take the next left."
- "Go right at the 'T' intersection."
- "Go to the Psychology building."
- "Stop at the water fountain."
- "Take the scenic route."

Representation Independence

- We want the spatial reasoning system to be independent of:
 - Specific interface with user
 - Specific robot platform/sensors

Talk Overview

- 1. Knowledge Representation
- 2. Pilot Experiments

Current focus

- Knowledge representation should facilitate:
 - Modeling of environment
 - Safe navigation
 - Communication
 - Mixed autonomy
- High-precision control (small, precise spaces)
 - Bathroom stalls, office navigation/desk docking, etc.
- Low-precision control (large-scale spaces)
 - Obstacle avoidance in hallways, turning corners, etc.

Progress

- This talk:
 - Spatial reasoning framework
 - The Hybrid Spatial Semantic Hierarchy (HSSH)
 - Experimental results
 - Wheelchair navigation with simulated low-vision users
- Related work from our lab:
 - Natural language route instructions
 - 3D safety
 - Object / Place learning

State of the art in mobile robotics

- Mobile robot research is largely focused on SLAM (simultaneous localization and mapping).
- Most SLAM implementations create a monolithic representation of space
 - Metrical map
 - Single frame of reference
 - e.g. occupancy grids, landmark maps

Issues:

- Closing large loops
 - Heuristic
 - Long compute times
- Interaction
 - Exploring a new environment
 - Blind users
 - Planning

Hybrid Spatial Semantic Hierarchy

- Factor spatial reasoning about the environment into reasoning at four levels
 - local metrical models obstacle locations in local surround
 - local topology models symbolic structure of local surround
 - global topology models global symbolic structure of entire environment
 - global metrical models global layout of obstacle locations
 - Largely unnecessary, but often useful if it exists
- Each level has its own ontology / language
 - Inspired by human cognitive behaviors
- More robust and efficient than a single, monolithic representation, but also more useful to provide human-robot interaction.
 - Better than a single, large occupancy grid representation

Small-scale models

Large-scale models

HSSH Diagram

Local Metrical Level

- Environment is modeled as a bounded metrical map of small-scale space within the agent's perceptual surround.
 - Scrolls with the agent's motion
 - Not tied to a global frame of reference.
 - Useful for "situational awareness" of the immediate surround.

Local Metrical Control

- Driver uses the joystick.
 - Robot checks commands against the local map for safety.
- Driver may specify a target or direction of motion within the local map.
 - Robot plans hazardavoiding motion toward that target.

Local geometry \rightarrow local topology

• Compute "gateways"

Gateways help define
 "places"

Local Topology Level

- Environment is modeled as a set of discrete decision points, linked by actions
 - Turn selects among options at a decision point
 - Travel moves to the next decision point.

Local Topology Control

- Driver specifies turn actions at decision points.
 - Turning actually corresponds to selecting a gateway location and performing control at the local metrical level.
 - Travel moves from a gateway to the next place.

Small-scale star description from PF1+ ((PF1+, (gw1,out) & (gw4,in)),

(PF2+, (gw2,out)), (PF3+, (gw5,in)), (PF4+, (gw3,out)), (PF1-, (gw4,out) & (gw1,in)), (PF4-, (gw3,in)), (PF3-, (gw5,out)), (PF2-, (gw2,in)))

Local topology \rightarrow global topology

- Detect loop closures based on matching local topology and local metrical models.
- Build tree of possible topological maps and use simplest model as current best guess.

Global Topology Level

- Environment is modeled as a network of places, on extended paths, contained in regions
 - Efficient route planning in large environments
 - graph search

Global Topology Control

- Driver specifies a destination place in a topological map, by name or in a schematic diagram (like a subway map).
 - 1. Robot plans a route to that goal
 - 2. Route is translated into a sequence of local topology travel/turn commands
 - 3. Route is executed by hazard-avoiding control laws in the local metrical model

Global topology \rightarrow global metrical

- Use local metrical information between topological places to find global metrical layout of places.
- Build global metrical map on top of the topological skeleton.
 - More computationally efficient than other methods

Global Metrical Level

- Environment has a geometric model in a single global frame of reference.
 - Useful for route optimization when available, but not necessary for large-scale navigation.

Control

- Driver clicks on a global metrical map
 - Robot plans a route to that destination in the topological map, then completes its route in the local metrical model.
- Driver specifies a saved destination that may not correspond to a "place", but has a location in the global map (e.g., "Go to the charger.").

Talk Overview

- 1. Knowledge Representation
- 2. Pilot Experiments

Background

• Wheelchair software is written for and tested on actual robotics platforms.

- To safely simulate disabled users, we port the code to a virtual environment.
 - Also useful for safely evaluating new ideas.

VR Setup

- Wheelchair software runs on "virtual wheelchair" in a virtual 3D maze environment.
 - Human avatars act as obstacles.
 - Virtual "laser scanner" at shin height
 - Users eye level at about chest height
- We test two perceptual conditions
 - Normal vision
 - Degraded vision

Pilot Study Interfaces

- 3 Navigation interfaces:
 - Manual (Joystick)
 - No intelligence
 - Joystick directly commands motion
 - Control (Joystick)
 - Uses local metrical model
 - Throttles velocities in hazard situations
 - Disregards unsafe actions
 - Command (GUI Interface)
 - Commands local topology level
 - "Go to next decision point", "turn left", etc.
 - Not tested:
 - Topological / Global metrical navigation

Experimental Questions

- Effect of Degraded Vision
 - Does reducing the visual information by adding fog make the task more difficult?
- Benefit of Assisted Joystick Control
 - Is performance better with local metrical control (collision avoidance)?
- Benefit of Local Topology Navigation
 - Does the navigation improve by using local topology knowledge in the wheelchair?
 - User gives discrete commands
 - Wheelchair performs navigation between decision points

Experiment Details

- 4 conditions
 - Normal vision: Manual interface (no safety)
 - Degraded vision: Manual interface (no safety)
 - Degraded vision: Control interface (safety)
 - Degraded vision: Command interface (decision graph w/ safety)
- 3 subjects
 - Each subject made 5 runs in each condition
 - 20 total runs
 - 20 runs were randomized for each subject

Experimental Details cont'd

- A run consisted of moving between 5 randomly chosen locations in the environment.
 - Natural language feedback
- Subjects knew
 environment beforehand
 - Avatars were randomly distributed for each run.

Qualitative Results

Quantitative Results

Future Work (Robot)

- Evaluate global topological navigation
 - User decides final location
 - Fully autonomous navigation by robot
 - Larger environments
- Evaluate interface devices with intelligent wheelchair platform
 - Force-feedback joystick
 - Touch screen
 - Natural language
- High-precision control
 - Create 2½ D local metrical models from vision.

Future Work (VR)

- Continue low-vision experiments
 - Better simulation of low-vision
 - Using real wheelchair and headmounted VR display
- Other measurements
 - Cognitive load
 - Stress
- Evaluate wheelchair for users with other disabilities
 - Fully blind
 - Quadriplegic
 - Memory loss / Alzheimer's

The End

http://www.cs.utexas.edu/~robot