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Abstract—Contour features play an important role in ob-
ject recognition. Psychological experiments have shown that
maximum-curvature points are most distinctive along a con-
tour [6]. This paper presents an object detection method
based on Principal Contour Fragments (PCFs), where PCFs are
extracted by partitioning connected edge pixels at maximum-
curvature points. An object is represented by a set of PCFs
and their mutual geometric relations. The mutual geometric
relations are described in each PCF’s local coordinate system,
and they are invariant to translation, rotation, and scale.

With this representation, given any individual PCF, the
system is capable of predicting all other PCFs’ geometric
properties. Object instances are detected in test images by
sequentially locating PCFs whose geometric properties best
match their predictions. Detected objects are verified according
to their similarity to the model based on both individual PCF
descriptors and mutual relation descriptors. Evaluation results
show that the system works well in the presence of background
clutter, large scale changes, and intra-class shape variations.

Keywords-object detection; shape matching; contour match-
ing; edge matching.

I. INTRODUCTION

To identify and localize objects, various visual cues can

be exploited such as brightness, color, texture, and con-

tour. Contour features are relatively robust to illumination

changes and variations in color and texture. Psychophysical

experiments [3] show that humans can identify a simple line

drawing as quickly and as accurately as a fully detailed,

textured, colored photographic image of the same object.

This paper focuses on localizing object instances in test

images based on contour cues, given a single hand-drawn

shape exemplar.

Contour fragments are commonly constructed based on

edge maps. As is well known, edge detection may give brittle

results for cluttered images. Some important edges may be

missing, and a single contour can be broken into a few

pieces. Previous works [9], [15] use mostly short contour

fragments to build models for object detection. In our work,

we construct more salient Principal Contour Fragments

(PCFs), by first linking edges having position and curvature

continuity and then partitioning them at maximum-curvature

points. Maximum-curvature points are shown to be most

distinctive along a contour [6], hence provide robustness to

our PCF-based model.

We represent an object by a set of PCFs and their

mutual geometric relations. The model is described by a

fully connected graph with the PCFs as nodes and their

mutual relations as edges. The mutual geometric relations

are described in each PCF’s local coordinate system. This

local coordinate system is independent of the original image

coordinate system, and provides the geometric relations with

invariance to translation, rotation, and scale. With this PCF-

based object model, the system is capable of predicting a

PCF’s geometric properties based on any other PCF.

In the object detection stage, corresponding PCFs are

discovered sequentially in test images to match the object

model. Each time we predict the geometric properties of

the next PCF to be detected, based on previously detected

PCFs and the relations between the to-be-detected PCF

and previously detected PCFs. Then we search for the one

that best matches the prediction. The detection order is

determined by calculating a detection priority score for each

of the remaining PCFs in the object model. After an object

instance is detected, a verification step is taken and the

object instance is assigned a confidence score representing

the similarity between the object instance and the object

model.

In the PCF-based model, each individual PCF is assigned

a weight indicating their relative importance. Each PCF

relation is also assigned a weight indicating how closely

the two corresponding PCFs are related. These weights

provide a way to set PCFs’ priority in the process of object

detection. At any time, the PCF with the highest priority

is selected as the next to-be-detected PCF. Note that the

next to-be-detected PCF is not necessarily a neighbor of the

last detected PCF, which is different from general contour

tracing such as in [10].

The weight for a PCF relation depends on both the overall

distance between the two corresponding PCFs and the local

connection between the PCFs’ ending points. Thus the PCF-

based model encodes information for both global distribution

of PCFs and local continuity between adjacent PCFs.

Since we detect object instances by locating correspond-

ing PCFs, the detection results produce the actual object

contours, not just bounding boxes.

The rest of the paper is organized as follows. Section II



reviews related work. The object representation is described

in Section III. Section IV presents the object detection

approach. Evaluation results are demonstrated in Section V.

Section VI discusses future work and concludes.

II. RELATED WORK

Several methods such as Shape Contexts [2] and Shock

Graphs [13] measure similarity between object shapes, but

they assume the objects are pre-segmented. Chamfer match-

ing can be used to detect shapes in cluttered images, but

it usually requires multiple templates to handle intra-class

shape variations [16].

Extracting contour features typically requires a pre-

processing step for edge detection. The Canny edge de-

tector [4] and the Berkeley boundary detector [12] are

two popular methods. It has been shown that the Berkeley

boundary detector performs better in contour-based object

detection compared with the Canny edge detector [15],

thus we choose the Berkeley boundary detector for contour

detection in our system.

Shotton et al. [14], [15] built a class-specific codebook

of uncluttered contour fragments from noisy data where

local contour fragments are spatially arranged in a star

configuration. This method detects objects across various

locations and scales, but it is not clear how well it can

identify the actual object boundaries. In addition, a star-

based spatial configuration may not be suitable for object

shapes that have large imbalance. Ferrari et al. [10], [9] con-

structed a codebook of pairs of adjacent contour fragments

and learned class-specific shape models. Fergus et al. [8]

incorporated high-level meaningful contour fragments and

learned a constellation part-based model for object detection.

While many training images are required in [14], [15], [8],

[9], our system needs only a shape exemplar as input (similar

to [10]). Compared to [10], [9], [14], [15] which use mostly

short contour fragments to represent objects, we extract

more meaningful and salient Principal Contour Fragments

to achieve robust detection results (similar to [8]).

In [17], objects are detected based on a single shape

exemplar where the shape exemplar is manually partitioned

into a few semantic parts. Our system also takes a hand-

drawn exemplar as input, but it can automatically partitions

the exemplar into meaningful PCFs. In [1] shape variations

are handled as a Shape Band model, which exploits the

boundary edges only. Our approach can work on either the

boundary edges, or internal edges, or both.

Among all the above works, our work is most similar

to [10] which locates contour fragments one by one along

the object outline. Our work differs from [10] in that it can

take advantage of patterns consisting of unconnected con-

tour fragments, because geometric relations are considered

between every pair of PCFs regardless of their adjacency.

Also, in [10] only roughly straight contour fragments are

used where the breaking points on a contour fragment may

lie on indistinctive positions. We instead use more general

fragments which can be straight fragments or curved ones,

where the breaking points lie robustly on positions with

maximum curvature.

III. OBJECT REPRESENTATION

An object is modeled by a set of PCFs, {fi} (i =
1, ..., N), and their mutual geometric relations, {rij} (i, j =
1, ..., N, and i 6= j). Each fi has a weight wi, and each

rij has a weight wij , indicating their respective importance.

These weights determine each PCF’s priority and importance

in object detection and verification.

The object model can be depicted in a fully connected

graph, with the PCFs as nodes and their relations as edges

(Fig. 1).
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Figure 1. Object representation. The right figure shows extracted PCFs
in different colors for a swan. The left figure is an illustration of the PCF-
based object model where all the PCFs are related to each other. An object
model includes two classes of descriptors: descriptors for individual PCFs
and descriptors for PCF relations.

The PCFs are extracted from the input hand-drawn shape

exemplar by dividing connected edge pixels at maximum-

curvature points. This PCF extraction process in the shape

exemplar is the same as in test images, and is done without

user intervention (See next section for details).

A PCF is described by

fi = {P c
i , P

s
i , P

e
i , θi, li, γi, αi} (1)

where P c
i = (xc

i , y
c
i ) is the PCF’s centroid, P s

i = (xs
i , y

s
i )

is its start point, P e
i = (xe

i , y
e
i ) is its end point, θi is its

orientation from P s
i to P e

i , li is its integral length, γi is

its bending ratio defined as |P e
i − P s

i | divided by li, and

αi measures its bending strength/direction and is defined as

the distance from P c
i to the line

−−−→
P s
i P

e
i divided by li, with a

positive sign if P c
i is on the left side of

−−−→
P s
i P

e
i and a negative

sign otherwise.

The importance weight for a PCF fi is proportional to its

length and is defined as

wi = li/
∑

k

lk (2)

where longer PCFs are given more weights than shorter ones.



A relation rij models fj’s geometric attributes (orientation

θij , length lij , centroid P c
ij , start point P s

ij , and end point

P e
ij) in fi’s local coordinate system (Fig. 2) and is described

by

rij = {θ̄ij , σ
θ
ij , l̄ij , σ

l
ij , P̄

c
ij , σ

c
ij , P̄

s
ij , σ

s
ij , P̄

e
ij , σ

e
ij} (3)

where θ̄ij ∈ [−π, π), P̄h
ij = (x̄h

ij , ȳ
h
ij) (h ∈ {c, s, e}).

This descriptor contains both expected values and de-

viations for geometric attributes. The confidence for each

geometric attribute is evaluated by

g(θij) = exp(−
(T (θij − θ̄ij))

2

(σθ
ij)

2
),

g(lij) = exp(−
(lij − l̄ij)

2

(σl
ij)

2
),

g(Ph
ij) = exp(−

(xh
ij − x̄h

ij)
2 + (yhij − ȳhij)

2

(σh
ij)

2
)

(4)

where g(·) ∈ (0, 1] and T (.) is a function that normalizes

its argument to [−π, π).

Y

j
f ij

( , )e e

ij ijx y

j

( , )c c

ij ijx y

( , )s s

ij ijx y

f
c

iP

i
f

X

i

Figure 2. Illustration of the PCF relation rij . The relation is represented
in fi’s local coordinate system. The origin is at fi’s centroid P c

i , the x-axis
is aligned with the direction from fi’s start point to its end point, and fi’s
length is normalized to 1.

This representation provides the system the flexibility of

PCFs’ geometric distribution, therefore allows the system

to be capable of accommodating shape deformations. The

parameters in Eq. 3 are defined as

θ̄ij = θj − θi,

l̄ij = lj/li,

x̄h
ij =

√

(xh
j − xc

i )
2 + (yhj − yci )

2 cos(θj − θi)/li,

ȳhij =
√

(xh
j − xc

i )
2 + (yhj − yci )

2 sin(θj − θi)/li

(5)

and

σθ
ij = π/6,

σl
ij = 0.5lij ,

σh
ij = min{|Ph

j − P c
i |, |P

h
j − P s

i |, |P
h
j − P e

i |}/li

(6)

where h ∈ {c, s, e}. The parameters σθ
ij , σl

ij , and σh
ij are

empirically selected by allowing the object shape to deform

in a certain range (ideally they should be learned from real

images), and kept fixed in this work. Note that l̄ij , x̄h
ij , ȳhij ,

σl
ij , and σh

ij have been scaled according to fi’s length.

Since we define the relation rij in fi’s local coordinate

system, rij is completely independent of the original image

coordinate system.

The importance weight for rij is defined as

wij = 0.5 exp(−
|P c

j − P c
i |

L
)

+ 0.5 exp(−
minh1,h2 |Ph1

j − Ph2

i |

0.05L
) (7)

where h1, h2 ∈ {c, s, e}. The first part in the right-hand

side measures the global connection strength between the

two PCFs, and the second part measures the local connection

strength. Intuitively closer PCFs are assigned higher weights.

Here L = (li + lj)/2. Note that in our definitions, wij and

wji are always the same, but rij may be different from rji.

In this PCF-based object representation, each PCF is

related to all others in its local coordinate system, which

provides our system the ability to predict all other PCFs’

geometric properties from any individual PCF.

IV. OBJECT DETECTION

The goal of the system is to locate potential object

instances and return corresponding confidence scores, given

a hand-drawn object shape exemplar. We first extract PCFs

in the input shape exemplar as well as in test images. Then

the object model is created based on the extracted PCFs

in the shape exemplar. Then we search for PCF subsets as

object instances in test images to match the object model.

Each detected object instance is then verified based on the

object model.

A. Extract Principal Contour Fragments

To extract PCFs, we first trace connected edge pixels to

form initial fragments, then link initial fragments into longer

ones according to their position and curvature continuity, and

then partition the resulting fragments at maximum-curvature

points.

1) Extract initial contour fragments: Initial contour frag-

ments can be formed by tracing neighboring edge pixels

in the extracted edge map of an input image. In our ex-

periments, we used the ETHZ Shape Classes dataset [10],

[9] and copied the edge detection results from the dataset

which uses the Berkeley boundary detector [12]. Very small

fragments are removed since they are usually not salient

features.



2) Link contour fragments: Edge detection results can be

very brittle, and an ideal contour may be broken into a few

pieces. Among the initial contour fragments, we repeatedly

link fragment pairs that have position and curvature conti-

nuity.

Let fa and fb be two fragments where fb’s start point is

close to fa’s end point. We sample three points {a0, a1, a2}
with equal space from fa’s end part, and another three points

{b0, b1, b2} from fb’s start part.

We first fit a circle for {a0, a1, a2} and measure the

distance from each point in {b0, b1, b2} to the circle. Then

we fit another circle for {b0, b1, b2} and measure the distance

from each point in {a0, a1, a2} to the new circle. If these

distances are lower than some threshold, the two fragments

are linked to form a new one. This process repeats until no

two fragments can be linked any further.

3) Partition contour fragments: For each resulting frag-

ment obtained from the above step, we calculate the cur-

vature for every point on the fragment. Local maximum-

curvature points are then identified [11]. Among these

maximum-curvature points, those whose curvatures exceed

a threshold are used to partition this fragment into a list of

PCFs. In test images, besides each originally extracted PCF,

we also store a reversed copy where the original PCF and

the reversed one have the same set of points but opposite

directions.

B. Build the Object Model

The extracted PCFs from the shape exemplar contribute

the set of PCFs {fi} (i = 1, ..., N) in the object model.

For each fi, we calculate its orientation, length, cen-

troid, start point, end point, bending ratio, and bending

strength/direction. Then for each pair of PCFs, their geo-

metric relation is identified according to Eq. 5. The weights

for the PCFs and their relations are assigned according to

Eq. 2 and Eq. 7.

C. Detect Object Instances

The task is to find PCF subsets from the set of PCFs

{f I
j } (j = 1, ...,M) in the test image, where each PCF

subset has a good match with the PCFs {fi} (i = 1, ..., N) in

the object model. We will refer to each matching PCF subset

as a candidate contour. The process of forming candidate

contours is as follows.

1) Let K = {1, ..., N} be the index set for {fi}(i =
1, ..., N). For each pair of fi and f I

j , we create a new

candidate contour and f I
j is added into the contour as

f̃i (corresponding to fi). An associated index set K̃ is

also created to indicate which PCFs in the model have

been detected, and i is added as the first element.

2) For each candidate contour, the index of the next to-

be-detected PCF in the model is determined by

k = argmax
m

∑

i

wiwim, i ∈ K̃, m ∈ K\K̃ (8)

where all previously detected PCFs vote to decide

which is the next PCF to be discovered. Intuitively

the next to-be-detected PCF is the one that has

the strongest connection with the previously detected

PCFs.

3) The geometric attributes of the next to-be-detected

PCF f̃k are predicted based on the object model and

previously detected PCFs in the candidate contour.

The final prediction is an weighted average of the

predictions from all individual detected PCFs, where

the weights are wiwik (i ∈ K̃).
4) Find the best PCF candidate in the test image, and add

this PCF into the candidate contour. If the matching

confidence is too low, then the corresponding PCF in

the model is tagged as missing.

5) Repeat the above procedures until all candidate con-

tours are formed.

D. Measure Detection Confidence

For each detected object instance, we measure its simi-

larity confidence compared with the object model. We scale

each object instance such that its total length is the same as

the total length of corresponding PCFs in the object model.

The similarity confidence is then evaluated as

λ = wλλfλr (9)

where wλ is a weight factor, λf is the similarity for

individual PCFs, and λr is the similarity for PCF relations.

The weight factor wλ is defined as the total weight of

the successfully detected PCFs divided by the total weight

of all PCFs in the model including the missing ones. The

individual PCF similarity λf is calculated based on the

length, bending ratio, and bending strength/direction for each

PCF, which is measured in a similar way as in Eq. 4,

where the deviations are a third of the corresponding length,

bending ratio, and bending strength/direction respectively

in the model. The PCF relation similarity λr is calculated

according to Eq. 4.

E. Handle the Scale Problem

Our PCF-based model describes geometric relations in

a PCF’s local coordinate system, where the PCF’s length

is normalized to 1, thus the scale problem is intrinsically

handled for similarity evaluation between an object instance

and the object model. But the scale issue still exists in PCF

extraction.

In PCF extraction, the key step is to identify the

maximum-curvature points. The curvature at the kth point

is calculated based on the (k − δ)th and (k + δ)th points.

We choose δ at three different scales, δ = {l/16, l/32, l/64}
where l is the contour fragment’s length. Each input shape

exemplar produces three object models that contain different

PCFs. Each test image also produces three sets of different

PCFs that correspond to different scales.



Figure 3. Input shape exemplars and constructed PCF-based object models. The left column shows the five input shape exemplars used in our experiments.
The right three columns show the extracted PCFs in different colors for each exemplar. These PCFs are automatically extracted.

V. EVALUATION

We evaluate the performance of the PCF-based object

model on the ETHZ Shape Classes dataset [10], [9]. This

dataset contains 5 object classes (apple logos, bottles, gi-

raffes, mugs, and swans) over 255 images. It provides

ground truth bounding boxes for object instances. The

dataset is challenging due to background clutter, large scale

changes, and intra-class shape variations.

The system is only given a single hand-drawn shape

exemplar for each class. For each shape exemplar we

automatically extract three object models (Fig. 3), which

correspond to different scales in PCF extraction (please see

Section IV-E for details). For edge detection, we use the

results from the work in [10] which is based on the Berkeley

boundary detector [12].

The detection results are shown in Fig. 4. Our system

can locate actual object contours as well as their bounding

boxes. In addition, it handles the scenario where there exist

multiple object instances (only the best detection is shown

in Fig. 4).

Corresponding to the detection results in Fig. 4, we

also show the extracted PCFs for these images in Fig. 5.

These PCFs are obtained by grouping neighboring edge

elements into contour fragments and then partitioning them

at maximum-curvature points.

We assess the system performance as the detection rate

(DR) versus the number of false positives per image

(FPPI). Following the criteria in [10], a detection is

considered correct if the detected bounding box and the

ground truth bounding box have an overlap rate over 20%.

The overlap rate is defined as ratio of the intersection area

over the union area of the two bounding boxes (between

ground truth and actual detection).

We quantitatively evaluate our system performance by

comparing the detection results with one of the state of the

art works in [10]. We choose this work as our comparison

baseline because both the work in [10] and ours use hand-

drawn shape exemplars as input and do not require a set of

training images. In addition, neither work needs to involve

a post-processing step for shape refinement (such as in [9]).

The comparison results are shown in Fig. 6. Our method

gives comparative overall performance. For apple logos,

giraffes, mugs, and swans, our method gives comparative or

better DR/FPPI rates. In particular, our method tends to give

higher detection rate at low FPPIs. For bottles, our detection

results are worse, mainly because there are many bottles in

the test images that are significantly different from the hand-

drawn shape exemplar.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel contour-based model for object

detection. The model is represented by a set of Principal

Contour Fragments (PCFs) and their mutual geometric re-

lations. Objects are detected in test images by sequentially

searching for the best matching PCFs based on the object

model.

Partial occlusion is a challenging problem in object detec-

tion, which is not significantly demonstrated in the ETHZ

dataset. The proposed PCF-based object model contains



Figure 4. Detection results (best viewed in color). Objects are detected by locating a set of PCFs in the test image such that they match the PCFs in the
object model. The bounding boxes of the detected objects are shown in red rectangles. Besides bounding boxes, the proposed method is also capable of
locating the actual object contours which are shown in green color.

information of the geometric relation for every PCF pair,

therefore we expect it to be capable of handling partial

occlusion. We will test the model using datasets with partial

occlusion in future work.

The object instances in the ETHZ dataset do not have

significant orientation changes from the shape exemplars.

The PCF-based model is expected to handle large orienta-

tion changes since it includes relative rather than absolute

geometric attributes between pairs of PCFs. We will test the

model using datasets with significant orientation changes.

Compared to the work in [10] which deals with ob-

ject shapes consisting of connected contour fragments, our

method can in principle handle both connected and un-

connected fragments. Thus the PCF-based model can take

advantage of internal contour fragments within the boundary

(these fragments may be completely disconnected from the



Figure 5. Extracted PCFs in test images (best viewed in color). PCFs are extracted by partitioning connected edge pixels at maximum-curvature points.
Curvatures are calculated with dynamic intervals based on the corresponding contour fragment’s length (see text for details). PCFs are shown in randomly
generated colors (different PCFs may accidentally generate the same color).

boundary) as well as those that lie on the boundary. We will

investigate how well it can detect patterns with unconnected

fragments.

Currently all the relation parameters between PCFs are

manually assigned and kept fixed in all the experiments. For

different object categories such as apple logos and swans,

their shape may vary to different extent, and fixed parameters

can not meet this need. One of our future focuses will be to

automatically learn these parameters from a set of training

images.

We will also develop richer descriptors for both individual

PCFs and PCF relations such as adding in orientations for

a PCF at its end points.
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Figure 6. Comparison results (best viewed in color). We compare our work with the results reported in [10] which also includes Chamfer matching
results. In overall, our method gives comparative results to Ferrari et al. ECCV 2006 work.
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