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Abstract— We present a method for an embodied agent with
vision sensor to create a concise and useful model of the local
indoor environment from its experience of moving within it.
Our method generates and evaluates a set of qualitatively
distinct hypotheses of the local environment and refines the
parameters within each hypothesis quantitatively. Our method
is a continual, incremental process that transforms current
environmental-structure hypotheses into children hypotheses
describing the same environment in more detail. Since our
method only relies on simple geometric and probabilistic infer-
ences, our method runs in real-time, and it avoids the need of
extensive prior training and the Manhattan-world assumption,
which makes it practical and efficient for a navigating robot.
Experimental results on a collection of indoor videos suggests
that our method is capable of modeling various structures of
indoor environments.

I. INTRODUCTION

A navigating robot must perceive its local environment.
Visual perception has many advantages, such as acquiring
more information for place recognition, acquiring more in-
formation at lower cost, the ability to detect drop-offs, etc.
The output of visual perception must be a concise description
of the agent’s environment at a level of granularity that is
useful to the agent in making plans or achieving a richer
understanding of the environment. Visual processing must
be done in real-time to keep up with the agent’s needs.

Methods, such as Structure-from-Motion [9], [20], [3],
[21] and Visual SLAM [4], [19], [6], [14], take a stream
of visual observations and produce a model of the scene
in the form of a 3D point cloud. A more concise, large-
granularity model that would be useful to an agent in
planning and navigation must then be constructed from the
point cloud. There are methods [27], [18] that combine
3D point cloud and image data for semantic segmentation.
Other methods [8], [7], use the Manhattan-world assumption
to reconstruct a planar structure of an indoor environment
through a collection of images. These methods are offline and
computationally intensive, making them difficult to apply in
real-time robot navigation.

There has been impressive recent work on visual scene
understanding and on the derivation of depth maps from sin-
gle images of indoor and outdoor scenes [11], [13], [5], [15],
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[22], [10], [16], [26], [1]. These methods typically depend
on careful training with prior knowledge linking local image
properties to a classification of local surface orientation [11],
[13], [10], to depth of surfaces in the environment [22], or
to semantic labels and then to depth [16], [26]. Dependence
on prior training knowledge with relevant domain specific
examples makes these methods difficult to generalize to
different environments. In addition, real-time performance
may be difficult to achieve when evaluations at the pixel or
superpixel level are involved. Furthermore, coherent results
of the 3D scene estimation may be difficult to achieve if each
frame is independently processed.

In this paper, we present a concise and useful representa-
tion of an indoor environment that describes the environment
by a set of meaningful planes — the ground plane G and a
set of planar walls Wi that are perpendicular to the ground
plane but not necessarily to each other. There is a one-to-
one correspondence between this representation and a set
of lines (the ground-wall boundaries) in the ground plane,
represented in the same 3D world frame. We assume that
the ground plane G can be unambiguously identified.

By identifying potential ground-wall boundary lines in the
2D images, we generate a set of hypotheses Mk for the 3D
structure of the environment, where each

Mk = {G,W k
1 ,W

k
2 ,W

k
3 , ...,W

k
nk
}. (1)

Given the camera pose, we predict how point features move
in the 2D images from each hypothesis and compute the
likelihood of the hypothesis by comparing the predicted
and observed location of the features in each frame. These
hypotheses can be efficiently tested during robot motion by
Bayesian filtering [25]. However, our previous work focused
only on simple corridor-like environments that consist of at
most three walls where each wall intersects with its adjacent
walls. Moreover, it is only capable of modeling the portion
of the local environment that is visible in the first frame of
the video.

In this paper, we extend our representation for wall planes
to include sets of endpoints for line segments in the ground-
wall boundary lines, delimiting where the wall is present
and where there is an opening (e.g. at an intersection). Since
such an opening may not be visible in the image from a
distance, we introduce a continual, incremental process for
transforming a current environmental-structure hypothesis
into children hypotheses describing the same environment
in more detail. Fig. 1 illustrates our approach. In addition
to introducing qualitative structural improvements through
new children hypotheses, we use the information in current
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Fig. 1. Our proposed framework. (Best viewed in color.) A generate-and-test framework is proposed to build the geometric structure of the local
environment. Hypotheses about the structure of the environment are generated through a continual, incremental process, and evaluated through a Bayesian
filter. (left) Starting from a set of simple parent hypotheses, the Bayesian filtering framework identifies the best hypotheses and removes hypotheses with
low posterior probabilities. (center and right) A set of children hypotheses are generated from the existing hypotheses to describe the same environment
in more detail. Our Bayesian filtering framework continuously evaluates each new set of hypotheses.

observations to refine the quantitative precision of existing
hypotheses. Since the method relies only on simple geomet-
ric and probabilistic inference, the system runs in real-time
and does not rely on prior training data.

The main contribution of this paper is an online method
that builds the geometric structure of the local indoor en-
vironment, without the need for prior training data or the
Manhattan-world assumption. Our method generates and
evaluates a set of qualitatively distinct hypotheses of the
local environment while refining the parameters within each
hypothesis quantitatively. Our representation is a coarse-
grained description of the indoor environment in terms of
meaningful planes (the ground plane and the walls), instead
of a low-level fine-grained representation like point clouds.
Furthermore, our representation is capable of representing
partial knowledge of the local environment such that un-
known areas can be incrementally built as observations
become available.

II. METHOD

A. Representation of the Indoor Planar Structure

We represent a 3D indoor environment by a set of
semantically meaningful planes, namely, a ground plane
and a set of walls which are perpendicular to the ground
plane but not necessarily to each other. There is a one-to-
one correspondence between this representation and a set
of lines (the ground-wall boundaries) in the ground plane,
represented in the same 3D world frame. 1

A wall Wi contains a set of disjoint wall segments which
share the same plane equation in the 3D world coordinate.
In the ground-plane map, a wall segment is represented by
a pair of endpoints on the corresponding line. There are
three different types of endpoints: dihedral, occluding and
indefinite. A dihedral endpoint corresponds to two visible
wall segments, where the location of the endpoint is the
projection of the intersection of the two walls. An occluding
endpoint corresponds to only one visible wall segment. An

1For a robot rolling or walking on the ground plane, the ceiling is much
less relevant than the ground plane and the walls, so it can safely be omitted
from the representation. An indoor flying vehicle would require us to extend
this representation to include the ceiling.

indefinite endpoint is an endpoint that is known to exist but
its actual location has not yet been observed by the robot
due to occlusions or the end of the robot’s field of view.

B. 3D Reconstruction

In this paper, we assume that the robot moves on the
ground plane and the camera is at the robot’s center of
rotation at a fixed height h from the ground plane. 2 We
set the x-y plane of the coordinate system to be parallel to
the ground plane with the origin at the initial location of
the camera center. The x-axis and y-axis of the coordinate
system are pointing to the front and the left of the camera.
Furthermore, we define the ground-plane map as the top-
down view of the world coordinate, which corresponds to
the x-y plane of the world coordinate. The ground-plane map
location of a 3D point P = (x, y, z) is p̃ = (x, y).

In the world coordinate, the camera pose is denoted as
u = (xc, yc, zc, θc, φc, ψc). We assume that the robot has
a fixed and known tilt φc and roll ψc angles with respect
to the ground plane, and has a fixed height zc = −h from
the ground plane. Thus, the camera pose is simplified to
u = (xc, yc, θc).

The 3D location Pi = (xi, yi, zi)
T of an image point 3

pi = (ui, vi, 1)T that lies on the ground plane is related by

RψcRφcRc

 xi
yi
−h

 = λ

uivi
1

 (2)

where Rψc and Rφc are the rotation matrices related to the
camera tilt and roll angles, respectively. In this case, the
rotation matrix corresponding to the roll angle is

Rψc =

cosψc − sinψc 0
sinψc cosψc 0

0 0 1

 , (3)

2Our geometry is defined under this assumption. If this is not the case,
a transformation must be done so that the camera center is at the robot’s
center of rotation.

3The camera needs to be calibrated so that the image point is on the
normalized image plane (focal length f = 1).



and the rotation matrix corresponding to the tilt angle is

Rφc =

1 0 0
0 cosφc − sinφc

0 sinφc cosφc

 . (4)

Rc is the matrix that transforms the location of a 3D point
from the image coordinate to the world coordinate:

Rc =

 0 0 1
−1 0 0
0 −1 0

 . (5)

Solving (2) gives us the 3D location of the ground plane
point in the world coordinate,xiyi
zi

 =

 λi(cosφc − vi sinφc)
−λi(sinψc sinφc + ui cosψc + vi cosφc sinψc)

−h


(6)

where

λi =
h

cosψc sinφc − ui sinψc + vi cosψc cosφc
.

A wall plane Wj in the 3D world coordinate corresponds
to a line parametrized by (αj , dj) in the ground-plane map.
αj ∈

(
−π2 ,

π
2

]
is the orientation of the line which implies the

normal direction of the wall plane in the 3D coordinate, and
dj ∈ R is the directed distance from the origin of the ground-
plane map to the line. Since the walls are perpendicular to
the ground plane, the normal vector of the wall Nj in the
world coordinate is Nj = (cosαj , sinαj , 0), and the directed
distance from the origin of the world coordinate to the plane
is dj . Nj and dj determine the equation of the wall in the
3D world coordinate.

We start by selecting any two points along the line and
reconstruct their locations in the ground-plane map, p̃1 =
(x1, y1)T and p̃2 = (x2, y2)T , using the geometry of ground
plane points. Given the two points, αj can be determined by,

αj = − arctan
x1 − x2
y1 − y2

. (7)

and thus, the normal vector of the corresponding line in the
ground-plane map is nj = (cosαj , sinαj)

T . The directed
distance dj from the origin to the line can be determined by,

dj = nj · p̃1 = nj · p̃2 (8)

If a point lies on the wall plane with position pi in the
image, its 3D location in the world coordinate is related by

dj = Nj · (λjR−1
c R−1

φt
R−1
φr

pi) = Nj ·Pi. (9)

Solving λj in (9) gives us the 3D location of the point Pj .

C. Hypotheses Generation

Given the camera pose, the image projection of the
ground-wall boundary of an indoor planar structure is a
polyline extending from the left to the right borders of
the image, where the initial and final segments may lie
along the lower image border. A non-vertical line segment
corresponds to a wall segment in the indoor planar structure
and vertical segments correspond to occluding edges between

(a) parent (b) child (type 1) (c) child (type 2)

Fig. 2. Types of child hypotheses (Best viewed in color.) On the ground-
map space, the walls are represented by (red) lines and a set of endpoints
delimiting where the wall is present. Dihedral endpoints are marked as
blue and occluding endpoints are marked as green. Indefinite endpoints are
marked as red hollow points. Given the parent hypothesis (a), two types of
hypothesis can be generated to describe the environment in more detail. (b)
adds two endpoints to an existing wall segment to form an opening, and
adds new walls that are visible through the openings. Note that in this case,
the representation captures the fact that the two wall segments are parts
of the same wall plane. (c) creates an opening between two walls that are
intersecting in the parent hypothesis.

planar wall segments. Thus, a set of hypotheses of the 3D
local environment can be generated from 2D image features.

We demonstrated an efficient method to generate a set of
simple hypotheses in corridor-like environments that consist
of at most three walls where each wall intersects with
its adjacent walls in [25]. The method generates a set of
hypotheses by connecting lines with certain constraints. To
obtain the lines, we extract line segments by edge linking
and then merge line segments to form a set of long straight
lines [24]. In this paper, in addition, we transform a current
hypothesis to a set of children hypotheses describing the
same environment in more detail.

Two types of child hypothesis can be generated from
a current hypothesis. The first type of child hypothesis
adds openings along walls. These children hypotheses add
endpoints to the existing wall segments in the parent hy-
pothesis to create the openings, and add new walls that are
visible through the openings (Fig. 2(b)). For each visible
wall, a set of candidate openings are generated. A candidate
opening consists of two endpoints belonging to two adjacent
segments of the same wall to create the gap. We start by
extracting image corner features along the projected ground-
wall boundary line, and collect a set of corner pairs that
are wide enough in 3D for the robot to pass through. For
each corner pair, we combine line segments between the
two corners to form a set of candidate openings. A child
hypothesis is generated by selecting at most one candidate
opening from each visible wall.

The second type of child hypothesis creates an opening be-
tween two walls that are intersecting in the parent hypothesis
(Fig. 2(c)). From each dihedral endpoint that corresponds to
a concave wall intersection, a set of candidate openings can
be generated by transforming the dihedral endpoint into an
occluding endpoint for one wall segment and an indefinite
endpoint for the other wall segment. Thus, we search for
image corner features along both associated wall segments
of the dihedral endpoint to become a candidate occluding
endpoint. A candidate opening is generated by a candidate



occluding endpoint that provides a feasible gap for the robot
to pass through. A child hypothesis is generated by selecting
at most one candidate opening from each concave dihedral
endpoint.

In addition to the above two transformations, we apply a
constrained version of the simple hypothesis generation pro-
cess [25] to generate children hypotheses. Certain elements
of the child hypotheses are constrained to have values from
their parent hypothesis, but we generate many hypotheses for
the previously unobserved portions of the environment.

D. Refining Planar Structure

We use the information in current observations to refine
the quantitative precision of each existing hypothesis. The
generic Extended Kalman Filter (EKF) is used to estimate
the parameters of each wall plane and the ground plane map
location of each occluding endpoint. The estimate update is
carried out in two stages, prediction and correction.

Prediction:

µ̂t = g(µt−1)

Σ̂t = GtΣt−1G
T
t +Qt,

(10)

where Gt = ∂g(µ)
∂µ

∣∣
µ=µt−1

and Qt is the prediction noise.
Correction:

µt = µ̂t +Kt(zt − h(µ̂t))

Σt = (I −KtHt)Σ̂t

Kt = Σ̂tH
T
t (HtΣ̂tH

T
t +Rt)

−1,

(11)

where Ht = ∂h(µ)
∂µ

∣∣
µ=µ̂t

and Rt is the measurement noise.
For each wall w that is visible, the parameters of the plane

at frame t are µwt = (αt, dt)
T . Since the walls are static in

the world coordinate, the state prediction function is,

g(µwt−1) = µwt−1. (12)

To obtain a 3D plane measurement zwt of the wall, we project
the predicted ground-wall boundary to the image space and
find the best match between the boundary line and a set of
lines under the camera center. Using the 3D reconstruction
method described in Section II-B, the measurement zwt can
be parametrized as a 3D wall, zwt = (zα, zd)

T . Given the
camera pose ut = (xct , y

c
t , θ

c
t )
T at frame t, the predicted

measurement ẑwt = h(µ̂wt , ut) is obtained by

ẑwt =

[
α̂t − θct

d̂t − cos α̂txt − sin α̂tyt

]
or

ẑwt =

[
α̂t − θct + π

−d̂t + cos α̂txt + sin α̂tyt

]
.

(13)

Once the parameters of the walls are refined, we refine
the location of each occluding endpoint that is visible in
the current frame. The ground-plane map location of the
endpoint at frame t is represented as µet = (xt, yt)

T . Given
the refined parameters of its associated wall with µwt =
(αt, dt) and uncertainty Σwt , the state prediction function for

the endpoint location µ̂et = g(µet−1, µ
w
t ) projects the point

µet−1 onto the wall and the process noise Qt is,

Qt = FtΣ
wall
t FTt (14)

where Ft = ∂g(µe,µw)
∂µw

∣∣
µw=µw

t
. By projecting the endpoint

onto the image space and matching with point features
extracted along the ground wall boundary, we collect a mea-
surement of the endpoint which is represented in the ground
map space zet = (zx, zy)T . The predicted measurement of
the endpoint is computed by,

ẑt = h(µ̂et , , ut)

=

[
(xt − xct) cos θct − (yt − yct ) sin θct
(xt − xct) sin θct + (yt − yct ) cos θct

]
.

(15)

The location of a dihedral endpoint is updated by finding
the intersection of the two associated walls with their refined
parameters. For an indefinite endpoint, we update its location
based on the robot pose and its field of view.

E. Hypothesis Evaluation

Given a set of hypotheses, M = {M1,M2, ...,MN}, the
posterior distribution over the hypotheses at frame t can be
expressed by Bayes rule,

p
(
M i|O1,O2, ...,Ot

)
∝ p

(
M i|O1, ...,Ot−1

)
p
(
Ot|M i

)
∝ p

(
M i
) ∏
j=1...t

p
(
Oj |M i

)
(16)

where Ot is a set of feature correspondences that the robot
observed at frame t. In order to keep the number of hy-
potheses N tractable, hypotheses with posterior probabilities
lower than a threshold ( 0.1N ) are removed.

The likelihood function p
(
Ot|M i

)
is defined by the

ability of hypothesis M i to explain the motion of a set of
observable features Ot at frame t. To compute the likelihood,
we extract a set of point feature correspondences Ot =
{ot1, ot2, ..., otnt

} between frame t and frame t − tw in the
image space, where tw is automatically adjusted to ensure
that the number of the point features exceeds a threshold.
Any feature matching or tracking methods can be used but
in this paper, KLT [23] tracking is used because it is more
efficient than SIFT [17] and SURF [2]. Since point features
may lose track or go out of sight from time to time, new
point features are extracted as they become visible in order
to preserve enough observations.

Given the camera pose and hypothesis M i, we predict
the location L̂i(otj) of a previously observed feature point
otj to the current frame by reconstructing its 3D location
in the world coordinate (Section II-B), and then project the
feature point onto frame t. The likelihood of an individual
point correspondence otj at image location Li(otj) is modeled
by a normal distribution with mean at the predicted image
location L̂i(otj) in frame t. Since the likelihood only depends
on the distances between Li(otj) and L̂i(otj), the individual
likelihood is equivalent to modeling the prediction error
between the two with a zero mean normal distribution with
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Fig. 3. Examples of the hypotheses generated by our method. (Best viewed in color.) The ground wall boundaries are plotted as red. Color dots represent
dihedral endpoints (blue) and occluding endpoints (green). (b) and (c) are children hypotheses generated from (a). (d) is their posterior probability at the
current time frame.

Dataset L

Dataset T 1

Dataset T 2

Dataset +

Fig. 4. Our datasets. Dataset L contains three L-intersections. In this
dataset, the robot traveled through two long corridors connected by two
adjacent L-intersections and finally turned at the last intersection. In dataset
Dataset T 1, the robot traveled from the major corridor and turned at a
T-intersection, whereas in Dataset T 2, the robot traveled from the minor
corridor and turned at a T-intersection. Dataset + has one +-intersection,
and the robot traveled through the intersection without turning.

variance σ (σ = 20 in our experiments). By combining
the likelihoods from individual points, the likelihood of
hypothesis M i at time step t is,

p
(
Ot|M i

)
∝

n∏
j=0

exp
−||L̂i(otj)− Li(otj)||2

2σ2
. (17)

Since we have no motion information to evaluate about the
correctness of the hypotheses generated in the initial frame,
their prior probability p

(
M i
)

in (16) is uniformly distributed
over all the hypotheses. A child hypothesis that is added to
the set at frame t has a prior probability equal to the posterior
probability of its parent hypothesis at frame t− 1.

III. EVALUATION

We tested our approach on four video datasets 4 with
resolution 965×400 in various indoor environments, such as
L-intersections, T-intersections and +-intersections (Fig. 4).
The videos were collected by a camera that was mounted
on a wheeled robot with near zero tilt and roll angle with
respect to the ground plane. For all datasets, the robot pose
at each frame is provided. 5

Examples of the hypotheses generated from our system
are shown in Fig. 3. Fig. 5 demonstrates our method for

4Datasets available at http://www.eecs.umich.edu/˜gstsai/
release/Umich_indoor_corridor_2012_dataset.html.

5We use an occupancy grid mapping algorithm with a laser range finder
to obtain the robot pose. In fact, any method can be used to provide the
robot pose. For example, wheel odometry or visual odometry.
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Fig. 5. Examples of our continual, incremental generate-and-test framework
on L-intersection. (Best viewed in color). A set of simple hypotheses
(where each wall intersects with its adjacent walls) were generated from
the first frame of the video. (Frame 50) The Bayesian filter converged to
three simple hypotheses. The other two hypotheses have the same side walls
but a different planar equation for the end wall from the one shown. (Frame
120) Hypotheses with low probability were removed and good hypotheses
generated children hypotheses to describe the scene in more detail. (Frame
200) and (Frame 245) Our Bayesian filter continues to evaluate all the
hypotheses and gradually converges to the best hypothesis. At the end, the
robot has a single current model of the surrounding environment even though
much of it is not in view. Theses four frames are marked on the posterior
probability time evaluation plot in Fig. 8.

transforming a current environmental-structure hypothesis
into children hypotheses and shows how the Bayesian filter
converges to the best hypothesis. We have presented our
results for different structures of the environment in Fig.
6. Sometimes due to the lack of features and motion, the
Bayesian filter might converge to a bad hypothesis as shown
in Fig. 7, but our system is still able to use the information
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Fig. 6. Examples of our framework in different environments. (Best viewed
in color). Notice that in Dataset +, we not only identify the planes but we
model them as three walls where each wall has an opening. The second
best hypothesis in Dataset + has a similar structure except with a different
equation for the wall (wall 3) that is visible from the openings. In Dataset
T 1, our method models the right side as one wall with two endpoints that
creates the opening.
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1 100

Fig. 7. An example when the Bayesian filter failed to identify the best
hypothesis. (Best viewed in color.) This scene corresponds to frame 734 to
frame 837 in Fig. 8. Due to the lack of observed point features and motion,
our Bayesian filter might converge to a bad hypothesis (frame 760). In fact,
in this dataset, the robot did not accumulate enough information to identify
the best hypothesis before the end wall went out of view. However, our
system is still able to use the information of the current scene (the left
wall) to generate a set of new hypotheses to describe the local environment
in the next scene (frame 843).

of the current scene to generate a set of new hypotheses to
describe the local environment in the next scene. However,
if the ground-wall boundaries are blocked by objects, our
method might fail because the best hypothesis might not be
generated in the first place. Thus, our future work is to extend
this framework to handle cluttered environments.

For each test video, we manually labeled the ground truth
classification of the planes (i.e. the walls, ground and ceiling
plane) for all pixels every 10 frames in order to evaluate our
results quantitatively. In each frame, we define the accuracy
of a hypothesis being the percentage of the pixels that have
the correct classification in the frame. Since the ceiling plane
is not included in our hypotheses, we skipped the ceiling
pixels in our evaluation. Two types of quantitative accuracy
are reported for each dataset. MAP hypothesis accuracy is

the accuracy of the hypothesis of the maximum posterior
probability at each frame. Weighted accuracy is the weighted
average accuracy of all the existing hypotheses at each
evaluated frame where the weight of each hypothesis is
equal to its posterior probability. Our quantitative results
are reported in Fig. 9. Fig. 8 shows the performance of our
Bayesian filtering framework at each time frame.

IV. CONCLUSION

We present a useful representation of an indoor environ-
ment that describes the environment by a set of meaningful
planes — the ground plane and a set of planar walls that
are perpendicular to the ground plane but not necessarily
to each other. By analyzing 2D image features, a set of
hypotheses about the 3D structure of the local environment
can be generated. We use a Bayesian filtering framework to
evaluate the set of hypotheses using information accumulated
through motion and remove hypotheses with low posterior
probability. Since many details of the environment, such as
openings and intersections, are not visible in the image from
a distance, we propose a continual, incremental process for
transforming a current environmental-structure hypothesis
into children hypotheses describing the same environment in
more detail. In addition to introducing qualitative structural
improvements through new children hypotheses, we use the
information in current observations to refine the quantitative
precision of existing hypotheses. Our experimental results
suggest that our method is capable of accurately modeling
a variety of indoor environments, including L-intersections,
T-intersections and +-intersections. Since our method only
relies on simple geometric and probabilistic inferences, our
method runs in real-time, and it avoids the need for extensive
prior training or the Manhattan-world assumption, which
makes it practical and efficient for a navigating robot.
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