
Sensor Map Discovery for Developing Robots

Jeremy Stober and Lewis Fishgold
Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712-0233

{stober,lewfish}@cs.utexas.edu

Benjamin Kuipers
Computer Science and Engineering

University of Michigan
2600 Hayward Street

Ann Arbor, Michigan 48109
kuipers@umich.edu

Abstract

Modern mobile robots navigate uncertain environments us-
ing complex compositions of camera, laser, and sonar sensor
data. Manual calibration of these sensors is a tedious pro-
cess that involves determining sensor behavior, geometry and
location through model specification and system identifica-
tion. Instead, we seek to automate the construction of sensor
model geometry by mining uninterpreted sensor streams for
regularities.
Manifold learning methods are powerful techniques for de-
riving sensor structure from streams of sensor data. In recent
years, the proliferation of manifold learning algorithms has
led to a variety of choices for autonomously generating mod-
els of sensor geometry. We present a series of comparisons
between different manifold learning methods for discovering
sensor geometry for the specific case of a mobile robot with a
variety of sensors. We also explore the effect of control laws
and sensor boundary size on the efficacy of manifold learning
approaches.
We find that ”motor babbling” control laws generate bet-
ter geometric sensor maps than mid-line or wall following
control laws and identify a novel method for distinguishing
boundary sensor elements. We also present a new learning
method, sensorimotor embedding, that takes advantage of the
controllable nature of robots to build sensor maps.

Introduction
Accurate sensor, motor, and world models are a crucial
component in the design of effective control laws for au-
tonomous robots. For robots undergoing autonomous devel-
opment, these models must be generated from data since no
external observer is available. We will focus on the sub-
problem of learning the position of each sensor element
within a sensor array in an unsupervised fashion.

We can view the problem of a robot situated in the world
as a dynamical system

xt = G(xt−1, µt−1) (1)
st = H(xt) (2)
νt = C(st) (3)
µt = M(νt) (4)

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where G is a function representing the effect robot motion
µ has on the state of the world x, H is a sensor model that
determines the observable state s, C is the motor control law
adopted by the robot, and M is the (possibly noisy) realiza-
tion of motor commands ν as actual motions µ. We denote
the composition M ◦ C ◦H by ψ. Then the state evolution
of the complete robot-world system is given by:

{G(xt, ψ(xt))}t∈T (5)

A roboticist faces many challenges in trying to define con-
trol laws that result in desirable trajectories of system evolu-
tion. We seek to reduce this burden through mechanisms that
allow robots to learn about themselves and the environment
from experience.

This leads to a related question: What can an agent dis-
cover from behind an interface of an unknown body (ψ)
in an unknown world (G) (Philipona et al. 2004)? Even
for the limited case of autonomously learning sensor ge-
ometry, progress has many potential applications to the
present and future science of robotics. For instance, as self-
reconfigurable robotic systems scale (and component parts
become smaller) so will the need for algorithms to robustly
and autonomously handle failure modes (in our case sensor
configuration failure modes) (Yim et al. 2007). In the limit
of this technology, we suspect that the self organizing pro-
cesses will only provide loose constraints on the geometry of
sensor arrays for resulting large scale robot systems. Knowl-
edge of exact geometry that we take for granted today will
have to be learned in the future.

Even with the current state of the art components, where
intrinsic sensor parameters are known, many robots are be-
spoke combinations of these components. We would like
to automate the process of identifying the relative locations
of sensor components on robots. Finally, sensor geometry
discovery is a unique problem for testing the properties of
manifold learning methods. Some of the typical properties
of problem instances include

• large numbers of sense elements of varying modality and
geometry

• many possible low dimensional target spaces (e.g. sensor
location, robot pose)

• a (physically constrained) controllable system.



The heterogeneous and high dimensional nature of sen-
sor traces from autonomous robots makes for a plentiful
source of data for which to perform comparative analysis
of existing manifold learning methods. From the develop-
mental robotics perspective, where the robot is expected to
learn as much as possible about the world from data alone,
manifold learning provides one valuable method for glean-
ing structure from the firehouse of data available to nascent
robot agents.

In addition, the controllable nature of autonomous robots
presents some interesting possibilities beyond typical appli-
cations of manifold learning, where the data collection is
normally a passive process. We will examine the effect of
robot policies on sensor reconstruction as well as introduce
a novel method of sensor model discovery that depends di-
rectly on robot controls.

Discovering Sensor Geometry
A crucial step in developing a sensor model from data is
discovering the sensor geometry. For a given sensor si, de-
note the time-series of sensor readings for si by Si. Given a
metric δ for comparing sensor time series, we can construct
a matrix ∆ whose entries are sensor time-series differences
δ(Si, Sj) for each pair of sensors i and j.

If we view the sensor time-series Si as points in a high
dimensional space, we can apply a manifold learning tech-
nique to find a low dimensional embedding that preserves
the inter-point distances of ∆. Since sensor traces Si are in-
exact proxies for sensor element positions, we want our em-
bedding method to be robust to noise. For this problem do-
main, we can vary the metric used to compare sensor time-
series Si, or vary the embedding technique. We adopt the
standard Euclidean metric in the results below, and concen-
trate our effort on comparing the results of different embed-
ding methods.

Comparing Manifold Learning Methods
We begin by comparing the reconstructions using Procrustes
analysis (Seber 1984). This method of comparison first per-
forms a linear transformation of each reconstruction consist-
ing of any of a translation, orthogonal rotation, reflection,
and scaling to best match the ground truth data. We then
measure the remaining sum of squared errors between the
transformed reconstruction and our ground truth data. Intu-
itively, this method of analysis allows us to limit our eval-
uation to differences in shape between reconstructed sensor
maps and ground truth information (Figure 3). Though used
here only for comparison with low-dimensional ground truth
data, Procrustes analysis can be used for manifold alignment
of two differing high dimensional datasets, as in (Wang and
Mahadevan 2008).

We performed a series of experiments to compare the per-
formance of six manifold learning algorithms on data gener-
ated by six different sensors. We evaluated

• Classical Multidimensional Scaling (MDS) (Kruskal and
Wish 1978)

• Isomap (Tenenbaum, Silva, and Langford 2000)

• Locally Linear Embedding (LLE) (Roweis and Saul
2000)

• Hessian LLE (HLLE) (Donoho and Grimes 2003)

• Laplacian Eigenmaps (Laplacian) (Belkin and Niyogi
2003)

• FastMVU (Weinberger et al. 2007)

For all methods, we used the implementations of these al-
gorithms provided in a freely available MATLAB Dimen-
sionality Reduction Toolkit (van der Maaten 2007). Unless
noted, the parameters for each algorithm were the default
ones provided by the toolkit. In particular, we used a default
neighborhood size of 12. In the datasets, each point rep-
resents a sensor element, and the number of dimensions is
equal to the number of measurements made by each sensor
element. We tested six datasets as follows.

• (Real Lasers) - A planar laser rangefinder mounted on a
real mobile robot was used to collect range measurements
at 180 one degree intervals along a semi-circle.

• (Sim. Lasers) - A planar laser rangefinder mounted on
a simulated mobile robot was used to collect range mea-
surements at 360 one degree intervals.

• (Sim. Lasers w/ Noise) - The simulated laser dataset
was corrupted with Gaussian noise with mean=0 and vari-
ance=5. The values of each sensor ranged between 0 and
10, so this noise is quite substantial.

• (Half-Lasers) - A contiguous set of 180 sensors was
deleted from the laser dataset to simulate a bank of sen-
sors arranged in a semicircle.

• (Roving Eye) - A 10x10 “roving eye” of sensors arranged
in a grid was scanned across an image containing a natural
scene.

• (Sim. Sonar) - A set of 16 simulated sonar sensors ar-
ranged uniformly in a ring around a mobile robot were
used to collect range measurements. Note that the seman-
tics of sonar range sensors differ from laser range sensors
in that sonar responds to obstructions in a cone region,
whereas lasers are point estimates.

Figure 1 shows the environments and platforms used to
collect each dataset.

The results of our comparison (Table 2) do not indi-
cate that a single approach generates the best reconstruc-
tion across all data sets. Classical MDS performed best in
both scenarios involving 180◦ laser rangefinders. As we see
in Figure 3 with a Laplacian eigenmap reconstruction, the
non-linear methods produce reconstructions that have more
pronounced bowing than the ground truth data, resulting
in a high residual error after Procrustes analysis. For full
360◦ laser rangefinders, both with and without noise, non-
linear methods produced better reconstructions than classi-
cal MDS. Some of these methods, HLLE in particular, took
longer to process, which may be an issue given the resource
and time constraints of a developing robot (See Table 1).

FastMVU produced reconstructions with differing errors
on different runs, indicating some variability in the search
for local reconstruction refinements. Maximum variance



Figure 1: The environments used to collect data for recon-
struction comparison. We used Player/Stage to collect our
simulated laser and sonar data in the environment shown on
the left. The image used to collect roving eye data is shown
in the top right. The Pioneer robot used to collect physical
sensor data is shown in the bottom right. In each case the
data was collected using a random exploration policy.

unfolding methods alone produced unfeasible semi-definite
program sizes.

In cases where sensors have a large boundary, such as
the roving eye sensor, HLLE generates a better reconstruc-
tion. In particular, HLLE reconstructions seem to handle
sensor configurations with large boundaries. Given the trade
offs involved, this suggests that a method of identifying the
relative size of a sensor array’s boundary prior to apply-
ing HLLE may be useful. A method for identifying sensor
boundaries may have other uses as well. For example, sen-
sor boundaries are likely places for sensor augmentation.
We will discuss a method for identifying sensor boundary
elements in the next section.

Applying Isomap to half-laser datasets did not result in
accurate reconstructions. For simply connected manifolds
like the half laser arrays, using geodesic distances results in
a correct one dimensional reconstruction. Unfortunately, us-
ing geodesic distances does not preserve enough information
about the semi-circular shape of the laser arrays for correct
two dimensional reconstructions.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
LLE

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
HessianLLE

Figure 2: A comparison of LLE (left) and HLLE (right)
reconstructions for the roving eye dataset. HLLE requires
more running time, but produces a more accurate reconstruc-
tion, and does not show warping around the boundary of the
sensor array.

Method Time (s)
Classical MDS 1.21

Isomap 3.33
LLE 1.26

HLLE 131.46
Laplacian 1.04
FastMVU 4.47

Table 1: Running time comparison between methods on the
simulated 360◦ laser rangefinder dataset.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Procrustes Analysis of Laplacian Reconstruction

Ground Truth
Reconstruction
Transformed

Figure 3: We use Procrustes analysis to correct for scale,
rotation, and translation errors between the reconstruction
and the ground truth data. This allows us to measure the
shape discrepancy between reconstructions and ground truth
as the remaining mean squared error after correcting for
scale, rotation, and translation. In this example, the trans-
formed laplacian reconstruction is considerably more bowed
than the ground truth data, and points near the boundary are
compressed, leading to high remaining error after Procrustes
analysis.

Identifying Boundary Sensor Elements
We adopt a method originally used for detecting outliers pre-
sented in (Choi and Choi 2007) to detect sense elements near
sensor boundaries. First, we compute all shortest geodesic
paths as in the initial steps of Isomap. Next, we compute the
network flow for each edge εk as

η(εk) =
∑
i

∑
j

θ(εk, i, j) (6)

where

θ(εk, i, j) =
{

1 if εk ∈ path(i, j)
0 otherwise

(7)

Here each path(i, j) is the shortest geodesic path between
nodes i and j. Intuitively, we are counting the number of
times each edge is included in a shortest path. The network



Method Real Lasers Sim. Lasers Sim. Half-Lasers Sim. Lasers w/ Noise Roving Eye Sim. Sonar
Classical MDS 0.0086 0.0599 0.0612 0.0871 0.1591 0.0714

Isomap 0.1322 0.0094 0.174 0.0454 0.0362 0.27
LLE 0.1409 0.0027 0.1433 0.0611 0.0373 0.0688

HLLE 0.1454 0.0035 0.1427 0.0343 0.0144 0.8221
Laplacian 0.1479 0.0006 0.1464 0.0146 0.0666 0.0777
FastMVU 0.0309 0.4766 0.2235 0.1216 0.1114 0.3242

Table 2: A comparison of manifold learning methods. All errors are the Procrustes distances between sensor geometry recon-
structions and ground truth data.

flow of a node vl is defined as the sum of the network flows
of all the node’s incident edges, which we denote by Evl

f(vi) =
∑
εk∈Evl

η(εk) (8)

In (Choi and Choi 2007), the authors use the network flow
of a node to identify “short circuit” nodes that connect two
disparate parts of a manifold surface. These short circuit
nodes are a bottle neck for shortest paths, and so would
have higher than normal network flows. Removing these
nodes, characterized as network flow outliers, results in bet-
ter Isomap embeddings if the outliers are a result of noise,
and not part of the underlying manifold structure.

We hypothesize that boundary nodes should have lower
network flows than interior manifold points. In practice
however, many interior manifold points also have low net-
work flows. Being on the interior of the manifold does not
mean that a node is necessarily connected to an edge that
is included in many shortest paths. We observe, however,
that interior points are almost always within some neighbor-
hood of a node with high network flow, so instead of using
network flow of a node as our boundary criteria, we use net-
work neighborhood flow by summing the network flows for
each nodes’ original neighborhood Nvl

n(vl) =
∑

vi∈Nvl

f(vi) (9)

In Figure 4 we show the results of this computation for 180◦
laser rangefinder and 360◦ sonar rangefinder traces taken
from a physical robot. The laser rangefinder arrangement
has two boundary points. We note that neighborhood net-
works flows reach a minimum in neighborhoods of these two
boundary regions. The sonar arrangement has no boundary
points, and the resulting neighborhood flows show no dis-
cernible pattern indicating a boundary.

Policies and Reconstruction Error
Unlike passive sensor networks, autonomous robots are con-
trolled systems. We need to consider the effect of the con-
trolling policy on sensor reconstruction. In autonomous
mental development, motor babbling is often used as the ini-
tial behavior for the robot. This is often justified as a plausi-
ble initial policy by explicitly comparing motor babbling to
theories of infant development (Olsson, Nehaniv, and Polani
2006).

0 20 40 60 80 100 120 140 160 180
0.0

0.2

0.4

0.6

0.8

1.0
Neighborhood Normalized Flows for 180° Laser Rangefinders

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0
Neighborhood Normalized Flows for 360° Sonar Rangefinders

Figure 4: For the sonar sensors (right) whose placement
approximates a manifold without boundary, the normalized
neighborhood flows show no discernible pattern. For the
laser rangefinders (left), whose arrangement contains two
boundaries, the normalized neighborhood flows are smaller
for boundary regions. All sensor data is from a physical Pio-
neer robot trace recorded using a random exploration policy
in a square environment.

However, we would like to verify that random exploration
as a policy choice leads to reconstructions that are at least
as good as any other choice of controlling policy. Doing
so would indicate that the apparent randomness of motor
(Demiris and Dearden 2005) or body (Meltzoff and Moore
1997) babbling is also justified as a behavior that generates
good reconstructions, not just as a behavior that mimics bi-
ological development.

To test the hypothesis that motor babbling leads to good
reconstructions, we collected sensor traces from a simulated
robot controlled by three different policies. We then com-
pared the reconstructed sensor geometries using Procrustes
analysis as above. We generated each reconstruction using
classical MDS. We used two deterministic policies of vary-
ing complexity, and a random policy as in the previously
examined sensor traces. The robot paths that resulted from
each policy, along with the reconstructions, are shown in
Figure 5.

Even in the sparse environment we simulated, a random
policy generated a sensor trace which resulted in a more ac-
curate sensor map reconstruction than either deterministic
policy. Even for the deterministic policies, the policy that
generated the more complex path resulted in a better recon-
struction.

From the results, we conclude that controlling policies on
a mobile robot need to induce a certain amount of variation



in the sensor stream in order for manifold learning methods
to find good sensor reconstructions. This runs counter to the
goal of many controlling policies, which often explicitly try
to maintain invariance among certain sensor properties (e.g.
a mid line controller attempts to maintain equal left and right
sensor readings). This suggests that for robots undergo-
ing autonomous mental development, once a robot achieves
a level of development beyond motor babbling, manifold
learning methods are less effective. In particular, without
explicit changes in control, manifold learning methods may
not serve as a tool for identifying or diagnosing changes to
sensor geometry after initial sensor map discovery.

Sensorimotor Embedding
Though the control policy of an autonomous robot effects
the manifold learning methods described above, the controls
themselves provide considerable additional information that
we would like autonomous agents to exploit in the construc-
tion of sensor maps. We consider one method of doing
so, sensorimotor embedding, which learns to associate with
each sense element in a sensor map, a distinguished control
signal that brings about a desirable change in sensory ex-
perience. We then interpret the learned control signals as
locations for each sense element.

To apply this method, however, requires that we specify a
reward signal that distinguishes desirable changes in sensory
experience. Deciding what constitutes a desirable sensory
change is difficult in general (particularly in the absence of
sensor geometry) but we consider a particular sensor geome-
try where such a reward signal is easy to specify, a foveated
retina. In a foveated retina, the density of sense elements
is low around the periphery of the sensor and increases to-
wards a maximum at the center, or fovea, of the sensor. In
addition, the foveated retina can move, or saccade, around
a scene. For this sensor geometry, we can specify a reward
signal that tries to maximize the total activity of the sen-
sor elements. Such a maximum is achievable by moving
any visible activation to the fovea, where the sensor density
is greatest. Our implementation of a “roving eye” foveated
sensor is shown in Figure 6.

Formally, we require that each sense element implements
an activation function δ : I×S → [0, 1]. In our experiments
using a “roving eye” fovea, each sense element observes an
image patch Ik. δ(Ik, s) is the total brightness of the pixels
in the image patch Ik observed by the kth-sensor element
given the current retina position s, normalized to [0, 1] as a
fraction of the maximum possible activation.

The activation over the entire retina is the sum of the ac-
tivations for each sensor element for the current retina state,

RI(s) =
∑
Ik∈I

δ(Ik, s) (10)

In our computational model, saccades result in 2D dis-
placements of the image on the retina or pan/tilt changes
for a physical camera. Each action or saccade a : S → S
is described by two-element vector denoting horizontal and
vertical motion and results in a single globally rigid trans-
formation of the image or scene.

If the sensor elements in the retina are of uniform size
and distribution, and they are exposed to input consisting
of a small spot of light against a uniform background, then
RI(s) would be approximately constant for all retinal states
s, regardless of where the spot of light falls. However, with
a foveated retina,RI(s) will have a dramatic maximum for
retina states that cause the spot of light to fall on the fovea,
due to the larger density of sensor elements there.

Using the total activation of all the sensor elements for
the current retina state, RI(s) in Equation 10 as the reward,
combined with saccade actions, we can define a simple re-
inforcement learning problem, the goal of which is to find a
policy, or choice of action, that maximizes retinal activation.

We factor the global learning problem into an individual
learning problem for each sensor element. The goal of each
sensor element is to learn a policy that greedily maximizes
the total retinal activation RI(s),

πk(s) = arga maxRI(a(s)) (11)

The problem is episodic and spans a pre- and post-saccadic
state. The collective policy π∗ for the entire retina is the
weighted average of the actions preferred by the individual
receptive fields,

π∗(s) =
1

RI(s)

∑
Ik∈I

δ(Ik, s) · πk(s) (12)

In this factored learning problem, the only information a
sensor element has about the state of the retina is the inten-
sity level for that sensor element’s visible patch Ik. If the in-
tensity is high (δ(Ik, s) is close to 1), then the policy πk(s)
will have a large impact on the global policy calculated in
Equation 12. In this case, we want the policy to suggest
an action πk(s) = a that maximizes the reward RI(a(s)).
The action that accomplishes this takes the activation that the
current sensor element sees and shifts it to the fovea, where
the density of sensor elements is higher.

If the intensity is low, then the policy for that sensor ele-
ment will have little impact on the policy for the entire retina
since δ(Ik, s) is close to zero. As a consequence, we can
treat πk(s) as a constant. So in the factored problem, each
sensor element only needs to estimate the optimal action and
observe its own intensity level.

After sufficient training, the action specified by πk will
approximate the saccade that moves an image-point from
sensor element k directly to the fovea. Consider the in-
verse −πk of the policy estimate for each sensor element.
This is the action that would move an image-point from the
fovea to the sensor element k. In other words, the inverse
of the policy is a position for the sensor element relative
to the fovea. Physically proximate sensor elements should
have similar saccade policies, and hence similar learned po-
sitions. Note that we have not used any knowledge of the
location of sensor elements within the fovea. In fact, that
knowledge has been learned by the training process, and is
encoded in the policy πk. Spatial knowledge that was im-
plicit in the anatomical structure of the retina becomes ex-
plicit in the policy.

The reinforcement learning problem described above has
two unusual properties that constrain the choice of learning



algorithm. First, the action space is continuous (as opposed
to small and discrete). Second, the problem is episodic, and
each episode spans only one choice of action.

During learning, each sensor element maintains an es-
timate for πk, the current best action, and Rk, the cur-
rent maximum estimated reward after performing the cur-
rent best action. Initially, each πk is set to a random action,
and the reward estimate is initialized to zero.

At the beginning of each iteration or training, we ran-
domly reposition the retina. For exploration, some noise ε
is added to the current greedy policy. The retina agent exe-
cutes π∗(s) + ε, and measures the reward (R). Each individ-
ual sensor element’s reward estimate and current policy are
updated proportional to its state activation prior to the sac-
cade (δk = δ(Ik, s)) since the optimal policy π∗ is weighted
according to those activations. We use a moving average
learning rule to update both the reward estimate and current
policy. For each sensor element k, we update the reward as
follows

Rnewk = Roldk + δk · α · (R−Roldk ) (13)

If the reward received, R, is greater than our current reward
estimate, we move the current policy πk for that sensor ele-
ment closer to the global policy responsible for the increased
reward

πnewk = πoldk + δk · α · (π∗ − πoldk ) (14)

By varying the learning rate α, we can change how much
recent experience affects both the estimate of reward (Rk)
and the estimate of the optimal saccade (πk) itself. We eval-
uated this approach to learning sensor maps using a physical
pan/tilt camera and a simulated foveated retina. The camera
was exposed to a single bright point of light in an otherwise
dark room. The learned sensor element locations are shown
in Figure 7.

We note that unlike in our previous analysis of manifold
learning methods, the scale of the sensorimotor embedding
has meaning. Sensorimotor embedding does not just pro-
duce sensor array shapes, but a geometry that is grounded in
the properties of the controls. Though limited to situations
where reward is easily specified, this method of producing
sensor maps yields a more detailed, semantically meaning-
ful picture of sense element organization, since it is able to
exploit the controllable nature of the robot system.

Moreover, the found geometry is plastic, in the sense that
physical changes that impact the reward (such as some kind
of lesioning), will result in policy adjustments, and by ex-
tension adjustments to sensor geometry (Figure 8).

Related Work
In (Pierce and Kuipers 1997), the authors explored a method
for reconstructing sensor geometry and primary motor ef-
fects for a circular array of sonar sensors on a mobile robot
with a differential drive and a roving eye sensor traversing a
fixed image. The authors used classical MDS to generate the
desired sensor maps. In (Olsson, Nehaniv, and Polani 2006),
the authors adapt the work of (Pierce and Kuipers 1997) to
generate low dimensional sensor and motor models for the
AIBO robot, using an information theoretic distance metric.

In other work (Philipona, O’Regan, and Nadal 2003;
Stronger and Stone 2006), the learning focus is on the in-
teraction between sensor and motion models. In (Stronger
and Stone 2006), the sensor signal under consideration (and
by extension H) is already a low-dimensional (albeit uncal-
ibrated) representation of salient world state features. The
autonomous robot’s task is to develop an internally consis-
tent model of the effect of actions on sensors.

Sensor geometry reconstruction is a deeply studied prob-
lem in distributed sensor networks. For the reconstruction
problem on a mobile robot, all interpoint distances between
sensor streams, which serve as proxies for sensor element
positions, are known, though proxy distances may only be
effective over small neighborhoods of sense elements. In
distributed sensor networks, only a sparse subset of sensor
element distances are typically known.

Sparsity in distance information necessitates the use of
additional constraints for accurate low dimensional embed-
dings. Rigidity is one such constraint that has been explored
in several papers (Eren et al. 2004; Priyantha et al. 2003)
on distributed sensor networks, as well as in the manifold
learning literature (Singer 2008).

In addition, robust behavior with noise in the sensor dis-
tances, which is also a concern for our mobile robot sce-
nario, has been explored using various regularization tech-
niques, with many recent methods employing semi-definite
programming (Weinberger and Saul 2006).

In (Bowling et al. 2007), the authors adapt a method of
semi-definite programming along with constraints inferred
from motion properties of a mobile robot to perform sub-
jective localization. This method, called action respecting
embedding, uses minimally interpreted action labels to iden-
tify low dimensional descriptions of the path of a roving eye
robot.

In general, efforts to employ semi-definite programming
methods to our datasets resulted in unfeasible computations,
though we were able to use more recent approaches that ad-
dress the scalability issues associated with the high cost of
performing semi-definite programming (Weinberger et al.
2007). We hope to extend sensorimotor embedding to lo-
calization tasks, replacing the discrete action labels used by
action respecting embedding with policies over continuous
action spaces.

Conclusions
We presented the results of comparing several manifold
learning methods for the problem of learning sensor maps
from robot sensor traces. These results show that no sin-
gle algorithm dominates all others across all of our test sets.
This complicates the choice of manifold learning method for
inclusion in a developmental architecture, since any choice
of method may result in poor sensor maps on some plat-
forms.

Any developmental system that is expected to learn to
control a variety of mobile robot platforms will have to uti-
lize a wide variety of manifold learning methods. A hetero-
geneous developmental system, with access to many differ-
ent algorithms, may be able to select the appropriate con-
struction method based on certain properties of the sensors,



such as boundary size. We gave one such method for com-
puting boundary size based on neighborhood network flow.

Moreover, we examined the effect of policy on sensor re-
construction, and found that motor babbling, in addition to
being a developmentally feasible policy, actually results in
better reconstructions than deterministic policies.

Finally, we considered a new approach to learning sen-
sor maps, sensorimotor embedding, that uses the geometry
of controls to infer the geometry of sensor elements. The
general approach of utilizing action spaces to better under-
stand sensor spaces follows the “seeing is acting” paradigm
of O’Regan and Noë (2001) . This method requires the spec-
ification of a reward signal, but unlike other approaches, pro-
duces sensor maps with meaningful scales that are robust to
physical sensor changes over time.

Acknowledgments
This work has taken place in the Intelligent Robotics Lab
at the Artificial Intelligence Laboratory, The University of
Texas at Austin. Research of the Intelligent Robotics lab is
supported in part by grants from the Texas Advanced Re-
search Program (3658-0170-2007), and from the National
Science Foundation (IIS-0413257, IIS-0713150, and IIS-
0750011).

References
Belkin, M., and Niyogi, P. 2003. Laplacian Eigenmaps for
Dimensionality Reduction and Data Representation. Neu-
ral Computation 15(6):1373–1396.
Bowling, M.; Wilkinson, D.; Ghodsi, A.; and Milstein, A.
2007. Subjective localization with action respecting em-
bedding. Robotics Research 190–202.
Choi, H., and Choi, S. 2007. Robust kernel isomap. Pattern
Recognition 40(3):853–862.
Demiris, Y., and Dearden, A. 2005. From motor babbling
to hierarchical learning by imitation: a robot developmen-
tal pathway. In Proceedings of the 5th International Work-
shop on Epigenetic Robotics, 31–37.
Donoho, D. L., and Grimes, C. 2003. Hessian eigenmaps:
Locally linear embedding, techniques for high-dimensional
data. Proceedings of the National Acadademy of Sciences
100(10):5591–5596.
Eren, T.; Goldenberg, D.; Whiteley, W.; Yang, Y.; Morse,
A.; Anderson, B.; and Belhumeur, P. 2004. Rigidity,
computation, and randomization in network localization.
Twenty-third Annual Joint Conference of the IEEE Com-
puter and Communication Societies (INFOCOM) 4(7–
11):2673–2684.
Kruskal, J., and Wish, M. 1978. Multidimensional Scaling.
Sage Publications.
Meltzoff, A. N., and Moore, K. M. 1997. Explaining facial
imitation: A theoretical model. Early Development and
Parenting 6(3–4):179–192.
Olsson, L.; Nehaniv, C.; and Polani, D. 2006. From un-
known sensors and actuators to actions grounded in senso-
rimotor perceptions. Connection Science 18(2):121–144.

O’Regan, J., and Noë, A. 2001. A sensorimotor account
of vision and visual consciousness. Behavioral and Brain
Sciences 24(05):939–973.
Philipona, D.; O’Regan, J.; Nadal, J.; and Coenen, O.
2004. Perception of the structure of the physical world us-
ing unknown multimodal sensors and effectors. Advances
in Neural Information Processing Systems 16:945–952.
Philipona, D.; O’Regan, J.; and Nadal, J. 2003. Is There
Something Out There? Inferring Space from Sensorimotor
Dependencies. Neural Computation 15(9):2029–2049.
Pierce, D., and Kuipers, B. 1997. Map learning with unin-
terpreted sensors and effectors. Artificial Intelligence 92(1-
2):169–227.
Priyantha, N.; Balakrishnan, H.; Demaine, E.; and Teller,
S. 2003. Anchor-free distributed localization in sensor
networks. Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems 340–341.
Roweis, S., and Saul, L. 2000. Nonlinear Dimension-
ality Reduction by Locally Linear Embedding. Science
290(5500):2323–2326.
Seber, G. 1984. Multivariate observations. Wiley.
Singer, A. 2008. A remark on global positioning from
local distances. Proceedings of the National Academy of
Sciences 105(28):9507.
Stronger, D., and Stone, P. 2006. Towards autonomous sen-
sor and actuator model induction on a mobile robot. Con-
nection Science 18(2):97–119.
Tenenbaum, J.; Silva, V.; and Langford, J. 2000. A Global
Geometric Framework for Nonlinear Dimensionality Re-
duction. Science 290(5500):2319–2323.
van der Maaten, L. 2007. An Introduction to Dimensional-
ity Reduction Using Matlab. Technical Report MICC 07-
07, Maastricht University.
Wang, C., and Mahadevan, S. 2008. Manifold alignment
using Procrustes analysis. In Proceedings of the 25th In-
ternational Conference on Machine Learning, 1120–1127.
Weinberger, K., and Saul, L. 2006. An introduction to non-
linear dimensionality reduction by maximum variance un-
folding. In Proceedings of the Twenty First National Con-
ference on Artificial Intelligence.
Weinberger, K.; Sha, F.; Zhu, Q.; and Saul, L. 2007.
Graph laplacian regularization for largescale semidefinite
programming. Advances in Neural Information Processing
Systems 19:1489.
Yim, M.; Shen, W.-M.; Salemi, B.; Rus, D.; Moll, M.; Lip-
son, H.; Klavins, E.; and Chirikjian, G. S. 2007. Modular
self-reconfigurable robot systems. Robotics & Automation
Magazine, IEEE 14(1):43–52.



Simple

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
−0.10

−0.05

0.00

0.05

0.10

0.15

Avoidance

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Random

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Ground Truth Comparison

Policy Error
Simple 0.5092

Avoidance 0.2742
Random 0.2015

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Figure 5: As we vary the policy from complex to simple, the
quality of the reconstruction of 16 simulated sonar sensors
decreases. The robot path during each trace is shown on the
left. The reconstruction is shown on the right. The last row
shows the Procrustes distances for each policy as compared
to the ground truth shown on the bottom right. We used
classical MDS to generate all the reconstructions.

Figure 6: Our implementation of the fovea consists of over-
lapping layers of receptive fields. As the layer resolution in-
creases, the extent of each receptive field decreases, and the
number of bits necessary to describe the layer state remains
constant.

−800 −600 −400 −200 0 200 400 600 800
−1000

−800

−600

−400

−200

0

200

400

600

800

Figure 7: With sensorimotor embedding each sensor ele-
ment learns a policy that centers local activation at the fovea
resulting in greater post-saccade reward. The plot shows the
corresponding action space coordinates of each sensor ele-
ment in a foveated retina. Though the retina was simulated,
the underlying images and saccades were generated using a
pan/tilt camera. Note that the density of sensor elements is
higher near the fovea.

0 1000 2000 3000 4000 5000

0
5
0

1
0

0
1
5
0

2
0
0

2
5
0

3
0
0

Lesioning at T=2000

Timestep

M
e
a
n
 A

ct
iv

a
tio

n

Simple
Robust

Figure 8: As a result of lesioning, a retina adapts its pol-
icy to favor saccades to regions just outside the damaged
region (see subfigure), providing higher post-saccadic acti-
vation in the case of lesioning than the previous optimal sac-
cades directly to the fovea. We note that this increases the
position error relative to the ground truth, but provides a co-
ordinate system consistent with the sensorimotor properties
of the damaged retina.


