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Abstract—Fast and high-fidelity dynamic model is very
useful for planning, control, and estimation. Here, we present
a fixed-time-step, discrete-time dynamic model of differential-
drive vehicle with friction for reliable velocity prediction, which
is fast, stable, and easy to calibrate.

Unlike existing methods which are predominantly formulated
in the continuous-time domain (very often ignoring dry friction)
that require numerical solver for digital implementation, our
model is formulated directly in a fixed-time-step discrete-
time setting, which greatly simplifies the implementation and
minimizes computational cost. We also explicitly take into
account friction, using the stable formulation developed by
Kikuuwe [1]. Friction model, while non-trivial to implement, is
necessary for predicting wheel locks and velocity steady-states
which occur in real physical systems.

In this paper, we present our dynamic model and evaluate
it on a physical platform, a commercially-available electric
powered wheelchair. We show that our model, which can run
over 10° times faster than real-time on a typical laptop, can
accurately predict linear and angular velocities without drift.
The calibration of our model requires only a time-series of
wheel speed measurements (via encoders) and command inputs,
making it readily deployable to physical mobile robots.

I. INTRODUCTION

Fast and reliable vehicle models can be very useful for
real-time motion planning and control. This is especially true
for autonomous navigation, where the reliability and speed
of the model are crucial for planning a feasible trajectory in
real-time, where hundreds or thousand trajectories may have
to be simulated and evaluated on-line each second to react
to rapidly changing environment (e.g. [2]). For such appli-
cations, the model needs to be very fast (at least 10° times
faster than real-time), accurate, and reliable. In particular, in
needs to be able to predict non-linear phenomena such as
wheel-locks and velocity steady-states induced by friction.

Kinematic models are simple and fast, but do not account
for dynamics which is necessary for making accurate pre-
diction. Also, while the kinematics of the wheeled mobile
robots are well documented and understood, it is difficult to
find a full dynamic model of a wheeled mobile robot with
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Fig. 1. We calibrate and evaluate our dynamic model with a powered
wheelchair, and show that it allows very fast (over 10° times faster than
real-time) and reliable long-term prediction of vehicle velocities. The vehicle
(~ 120 kg) has two drive wheels powered by two electric motors, four castor
wheels, and a joystick input device.

friction that satisfies our requirements. Existing dynamic
models are predominantly formulated in the continuous-time
domain, assume torque input, are often too slow [3], and also
very often ignore dry friction. Seegmiller’s recent thesis [4]
provides an excellent literature review over the topic. (Also
see [5], [6]).

Friction dynamics are very important for predicting veloc-
ity steady-states induced by friction under constant input and
constant friction, and also for predicting wheel-locks when
generated torque cannot overcome static friction. However,
Coulumb friction and impact dynamics are fundamentally
discontinuous phenomena [7] which are notoriously difficult
to model, and it is well known that naive continuous-time
simulations with friction and impact can become numerically
unstable. The best general approach (in 3D) to date in
the continuous domain [5] employs numerical force-balance
optimization, and achieves 103 times real-time in speed, with
excellent agreement with real data.

Other classical approaches are usually formulated via
Newton-Euler [8], [9], Lagrangian [10], [11], [12], [13], and
more recently, the unified Newton-Euler-Lagrangian [6], but
these approaches in general do not provide an explicit model
for friction, nor a comparison with real data. There are 2D-
dynamic models with wheel slip and tire friction [14], [15],
[16], but they also do not have real-data evaluation and
the equations quickly becomes cumbersome. Also, many of
the physics-driven models require explicit measurements of
mass, inertia, and friction parameters which can be difficult
to obtain.

This paper presents a closed-form, fixed-time-step, dis-
crete-time dynamic model for differential-drive mobile
robots with friction, which is numerically stable and velocity
estimate never diverge (i.e. no asymptotic drift). Our model
assumes a 2D uniform surface and no-slip condition; and
consists of an input device (e.g. joystick controller), two



load-motor-wheel units with friction, and unicycle kinemat-
ics. The dynamics of the system is described as a grey-box
model with jerk input. For handling friction, we incorporate
a numerically stable closed-form solution proposed in [1],
which is an excellent reference for different friction models
for discrete-time systems but is not yet well known to vehicle
modeling community.

We show that our model is fast and reliable, and is easy to
calibrate and implement. Calibration of the model parameters
only requires time-series of wheel speed measurements and
commanded inputs. We evaluate our model against real data
collected from a Quantum6000 electric powered wheelchair
from Pride Mobility (Fig. 1), and show that it allows very
fast (at least 10° times real-time on a typical laptop) and
highly reliable long-term velocity predictions.

II. DYNAMIC MODEL OF THE
DIFFERENTIAL-DRIVE VEHICLE

In this section, we describe our grey-box model (Fig. 2)
for a differential-drive vehicle (an electric wheelchair). State
vector for the robot is written as

q=[s"5% 5" 51T (1)
where s® and s* are the displacement of the right and the left
wheel, respectively. Note that under the no-slip assumption
there exists a bijective relation between the linear and angular
velocities [vw]” and the wheel velocities [sg,s.]” (see (19)),
thus [sR §R s& 55T ~ [v,v, 0, @]

We will show that the dynamics of the system can be
closely approximated by a difference equation (3) which is
parametrized by 7 positive constants, ¢y, ¢, @, B, v, W,l,
where ¢; are parameters for the input device, «, 3,7, are
motor and friction parameters, and / is a length of axle
between the two wheels. Formally, we write

1 = f(qrwe) 2
= f(quuk;clchaaﬁv%ual)

where g, = q(1;) is the state of the vehicle at time #, and
e =u(ty) = [u{ ,ut]” are forward and lateral commands to

the system during the time interval [t ;1) .

A. Motor Dynamics with Friction

This subsection describes our model for the load-motor-
wheel subsystem. This model assumes a DC motor connected
to a wheel under a constant unknown load on a planar uni-
form surface. Dropping superscripts R (right) and L (left) for
simplicity, we have the following state-space representation
for each wheel in our discrete-time model for the load-motor-
wheel subsystem,

Sk+1 1 h Sk h L 0
] =L 2] ] oo [
(3)
where s, S, §x are displacement, speed, motor-generated
acceleration of the wheel at time #; g,(-) is acceleration
due to external force, which we limit to mechanical friction
in this work; and V is the (voltage) input to each motor

Load-motor-
wheel | 5 .
u Mlnpu.t V;h;cle q
apping Load-motor- | ody
wheel
Fig. 2. Cartoon diagram of the model. Native control input to the system

u maps to input signals for two load-motor-wheel subsystems with friction.
For load-motor-wheel subsystem, we assume only the input command and
wheel speeds are measurable. See text for details.

unit. The state vector for each motor model is [s; )7, and
h =ty — 1t is the fixed time interval. The positive constants
o, B and 7 are coefficients for the input gain, velocity- and
current-induced energy loss for the system, respectively. See
Sect. II-B for derivation.

We implement a Coulomb friction model for acceleration
due to load-induced mechanical friction g,(-):

0 if ()| < p
8r(St, 8k 1) = { sgn(fi(-))t  otherwise 4)
which is adapted from Kikuuwe [1], where
L Sk
R (Sk,8k) = —E (5

h

and the positive constant i is a parameter for the maximum
Coulomb friction-induced acceleration. Note that the friction
parameter U is a function of load and surface condition.

The key feature of (4)-(5) is that the speed drops exactly to
zero in a single step if |fi(-)| < . This removes the need for
special event detection and/or additional constraint-enforcing
numerical optimizations near zero speed, which ensures
numerical stability but can be expensive. See Kikuuwe [1]
for an excellent reference, and extensions to other (more
sophisticated) discrete-time friction models.

Note that this formulation is highly modular in the sense
that any external acceleration (e.g. due to slope) can be added
along with the friction term in g,(-), thus extension to 3D
(e.g. angled surfaces) should be straightforward.

B. Derivation of Discrete-time Motor Dynamics

Our model is formulated directly in discrete-time setting
from first principles. For DC Motor, we have Newton’s Law

Jo=—bp+1 (6)

where ¢ is angular speed of the motor.
Motor torque 7 is proportional to current,

T=Ki (7)
which gives
J. b.
S b 3
i= 6+ 0 ®)
We also have Kirchhoff’s Law,

di .
v:Ld—;+Ri+K¢ ©)



Substituting, we get

1 di R
ZV - 5 L 7¢
= Kdtd) *¢+ [ o+ — ¢]+ ¢
J d . b Rb K.
= E$¢+[K+ﬁ}¢+[ﬁ+ L]‘P (10

Converting this to discrete-time format, with Euler approx-
imation for differentiation,

d. 1. .
3?5 [P — 0
where subscript denote the k-th time-step, we can now write

1 J1 " b Rb

V= Kh[¢k+1 O] + [K+ﬁ]¢k+[u< T

which becomes, after consolidation of coefficients and rear-
rangement,

(1)

]¢k (12)

Okt = G — Y0 — BhO + ahVy (13)
where a, 3, and y are positive constants.
Finally, with Euler integration of velocity, we have
Qi1 = G+ Ny (14)

Combining (13)-(14) in matrix form, we have

den] _[ 1 ho[é 0
Bl Sl 2] [S]w 09

which converted to (3) via incorporation of the friction model
(4) and conversion of the angular displacement ¢ to linear
displacement s.

C. Steady-state Analysis

The load-motor-wheel subsystem (3) is a double integrator,
since Voltage input adds to acceleration, and acceleration
adds to velocity. It is well known that dynamic models, which
are integrators, can drift. We provide straightforward steady-
state analysis of our model and show that our model predicts
velocity steady-states where motor torque is canceled by fric-
tion and wheel locks where motor torque cannot overcome
friction.

As we will see in Sect. III-B, this matches well with the
observed behavior of the vehicle. Our velocity estimate does
not drift, due to the friction and energy loss terms.

Suppose the load-motor-wheel subsystem (3) is in steady
state so that § = s. and §} = §. for "k under some constant
input V... To begin, assume the vehicle is moving forward
at constant speed, i.e. §,5 >0 and |f1(-)| > u, then we have,
from (3)-(4):

which means the steady-state speed is a function of constant
input, and when in steady state the constant motor accelera-
tion is canceled out by constant friction, as expected.
Performing this analysis for all cases, we can write the
steady-state velocity as a function of steady-state input as

FVo—t iV
Soo = %m+% if Vi, < — £ (18)
0 otherwise
where — =% < Voo < ” ¥ is the friction-induced deadband, i.e.

wheel locks due to frlctlon

Simple dynamic/kinematic models without dry friction,
which are usually double integrators, simply cannot predict
this deadband. This has important implications for predicting
vehicle motion, especially when it operates at low speed
including start and stop. This is extremely important for
safety.

D. Differentially Driven Vehicle Body

For the motion of differential-drive vehicles on 2D plane
under no-slip condition, we can write

o] =1 4

where v and ® are linear and angular velocity of the rigid
body, [ is the length of the axle between the two drive wheels
which is assumed to be known, and s® and s are the speed
of the right and the left wheel.

19)

E. Input Mapping

The native command input to our system (Fig. 1) is
forward-backward (uk) and left-right (uk) joystick positions
which is updated at the start of every time interval [, ;1 1).
Empirically, we have found the following non-linear model
for joystick-input-to-motor-input mapping work well for our

system

- ]t

Vi 1 —gu(u])| ug
where VkR and VkL are the voltage inputs to the right and the
left motors. Since voltage input to DC-motors controls the

derivative of motor torque, Voltage can be described as a jerk
input to the system.

(20)

gu(u]) = c1(1—calul|) @1)

is a non-linear scaling factor for the lateral joystick position
which models interaction between forward-backward and
left-right joystick commands, where c¢; and ¢, are non-
zero positive constants that parameterize this mapping. Eq.
(21) models that the magnitude of lateral input (rotational
command) is scaled down linearly as the magnitude of
the forward input increases, which is often the case in
commercially available platforms.

! Although outside the scope of this paper, Eq. (18) immediately suggests a
model-based feedforward control as it maps control input to desired steady-
state velocity. This mapping can easily be inverted after collapsing nullspace
(Vo =0 if 5., = 0), and can also be combined with weak feedback for faster
convergence. See [2] for an example.



III. MODEL CALIBRATION AND EVALUATION
A. Data Collection and Model Calibration

We calibrate six model parameters § = [c1,¢2, @, 3,7, U]
(the length of the axle / is measured directly) via solving an
error-minimization problem over an ensemble of M trajec-
tories (time-series) of measurements, where each trajectory
contains N data points of speed measurements [#, ®]7 and
recorded control inputs u = [u/,u’]T. Specifically, we have

M kj+N
minimize L:Z( Z ([P =Vi| +col@y—a5])) (22)
¢ j=1 i=kj+1
subject to  gir1 = f(Gi,uir C,1) (23)
. . d_ d._
i, = 7y Oy, 7 g 0 @)

where hat (*) represents an estimate, tilde (%) represents a
measurement, ¢ is a weight (we have ¢, = 1), f(+,-) is the
dynamics of the system, and gy is the state at start time #; of
each series of measurements. Namely, from M selected data
points, we simulate the vehicle state for N steps in the future
using each initial estimate gy;,(j = 1...M), and compute
absolute error in velocity space using total of M x N samples.
We perform numerical differentiation of each measurement
using 5-point differencing to compute the derivatives.

We have collected wheel speed measurements (via en-
coders) and native command inputs (joystick commands)
from our wheelchair robot (Fig. 1). Our training data (Fig.
3-5, Fig. 11-12), consists of 37.5 minutes (2250 seconds)
of driving data from various test runs under standard step,
sinusoid, and random command signals of varying magni-
tude. It contains total of 37500 samples with sampling time
of 0.06 sec. From the collected measurements, we have ex-
tracted uniformly spaced M = 3800 (overlapping) trajectory
segments of length N =50 (3 seconds) for calibration.

For easy calibration, we have allowed the data to contain
partial corruption due to unmodeled effects of castor wheels,
bumps on the ground, varying ground conditions and load,
which has motivated our choice of L1 norm in the cost
function (Eq. (22)), as the impact of the large deviations due
to those unmodeled effects are less pronounced compared to
usual L2 norm.

Our calibration problem (22)-(24) was solved with a
numerical optimizer, finincon, in MATLAB with an interior-
point algorithm. With the training set, it converged to
. =[0.4265,0.006491, 0.2315, 6.548, 4.073,0.1676]" after
160 iterations, with each iteration taking about 13 sec (total
35 min) on a 2.8 GHz i7 processor.

We want to emphasize that having the ensemble of short
simulations of N steps into the future was very important for
the convergence of the numerical optimizer. In fact, with too
short a simulation (N = 1, single-step prediction) or too long
a simulation (N > 1000) the optimizer was unable to find a
good solution. In general, the length of prediction N should
be long enough to capture the steady-state of the system, but
not too long to make error (which depends on the prediction
length) too sensitive to parameter change.

TABLE I
VELOCITY PREDICTION ERRORS WITH ROBOT-DRIVEN DATA

abs. err. std.

v (m/s) 0.045 0.059

o (rad/s) 0.075 0.11
TABLE II

VELOCITY PREDICTION ERRORS WITH HUMAN-DRIVEN DATA

abs. err. std.
v (m/s) 0.029 0.033
o (rad/s) 0.091 0.091

Note that calibration of our model requires only the time-
series of wheel speed measurements and joystick inputs.
This is important since for many practical applications where
wheel speeds and the native command inputs are often the
only available variables for measurements.

Fig. 3-5 shows selected subsets of the training data. (See
Appendix for the full training set.) Although this is not
part of our quantitative evaluation, we also show a long-
term simulation result for the full 2250 sec using the fitted
model parameters, the recorded control sequences, and only
the initial state estimate at ¢t = 0. Overall, the model is able
to capture the slightly underdamped transient responses, the
steady-states, and the wheel-locks due to friction very well,
and does not drift. Considering the calibration was done
using the collection of 3 second trajectories, we believe this
is an excellent result. See captions for details.

B. Model Evaluation

For quantitative evaluation, we compare the long-term
simulation from the model and the measured robot speed
from (1) 500 seconds of robot-controlled [2] driving (Fig.
6-8) and (2) 350 seconds of human-controlled driving (Fig.
9-10). In both cases, the initial state at ¢+ = 0 is recursively
propagated forward using the recorded command signal and
the model calibrated using the training set. The predictions
do not drift, and match the measurements very well.

The computational load for this forward simulation is min-
imal, due to the simplicity of the model. The simulation can
run at well over 10° times real-time in MATLAB, and over
10° times real-time in C++. Furthermore, implementation is
extremely simple as it does not require numerical solver.

IV. DISCUSSION AND CONCLUSION

In this paper, we present a discrete-time dynamic model
for differential-drive mobile robots, where friction is a key
component which allows accurate estimation of velocity
steady-states and wheel-locks observed in physical systems.

By combining fundamental electromechanics and a stable
discrete-time friction model [1], we have constructed a highly
expressive dynamic model of electrically powered vehicles
with minimal number of parameters (Sect. II). Our model
can be calibrated with only the speed measurements and
native control inputs via straightforward numerical opti-
mization (Sect. III.A.), which can predict robot speed with
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wheel locks (r = 1707,1721,1733, top, t = 1716,1727,1738, bottom) due to friction while the robot maneuvers under sinusoidal command input, which

results in interesting velocity curves in Fig.4 in [1700 1745]

high accuracy even in very long-term simulations. This is
due to the encoded steady-states in the model (Sect III.B)
which prevents the model from drifting asymptotically. We
have shown that our model, with complexity and speed
comparable to a simple kinematic model, can predict both
transient and steady-state velocity outputs of the dynamical
system with high accuracy (Sect. IV).

The model, however, is built on a limiting assumptions
(e.g. uniform planar surface, no-slip condition), and ignores
important source of disturbances such as castor wheels and
the passenger. We would like to extend this work for more
general case to handle those external variables in the near
future. In particular, we are interested in using convolutional
neural nets for modeling general dynamic systems.
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(magenta, bold), scaled command inputs (dotted black), and error (dotted red) are shown. The model is able to predict the robot speed for the entire
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APPENDIX

A. Full Training Set

Fig. 11-12 shows the entire data used for training the
model, along with the 2250-sec long simulation from our
model using the initial state at (# = 0) and the command
sequences u. See Sect. III-B for detailed analysis.
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