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We have developed a robust qualitative method for robot exploration, mapping, and navigation in large-scale spatial 
environments. Experiments with a simulated robot in a variety of complex 2D environments have demonstrated that our 
qualitative method can build an accurate map of a previously unknown environment in spite of substantial random and 
systematic sensorimotor error. 

Most current approaches to robot exploration and mapping analyze sensor input to build a geometrically precise map of the 
environment, then extract topological structure from the geometric description. Our approach recognizes and exploits 
qualitative properties of large-scale space before relatively error-prone geometrical properties. 

[sensorimotor ~ control] ~ topology ---, geometry 

At the control level, distinctive places and distinctive travel edges are identified based on the interaction between the robot's 
control strategies, its sensorimotor system, and the world. A distinctive place is defined as the local maximum of a 
distinctiveness measure appropriate to its immediate neighborhood, and is found by a hill-climbing control strategy. A 
distinctive travel edge, similarly, is defined by a suitable measure and a path-following control strategy. The topological 
network description is created by linking the distinctive places and travel edges. Metrical information is then incrementally 
assimilated into local geometric descriptions of places and edges, and finally merged into a global geometric map. Topological 
ambiguity arising from sensorily indistinguishable places can be resolved at, the topological level by the exploration strategy. 
With this representation, successful navigation is not critically dependent on the accuracy, or even the existence, of the 
geometrical description. 

We present examples demonstrating the process by which the robot explores and builds a map of a complex environment, 
including the effect of sensory errors. We also discuss new research directions that are suggested by this approach. 

Keywords: Distinctive place; Topological map; Cognitive map; Large-scale space; Robot exploration; Environmental map- 
ping; Spatial reasoning. 

1. Introduction and overview 

W e  h a v e  d e v e l o p e d  a r o b u s t  q u a l i t a t i v e  m e t h o d  

for  r o b o t  e x p l o r a t i o n ,  m a p p i n g ,  a n d  n a v i g a t i o n  in  
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soning Group is supported in part by NSF grants IRI- 
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grants NAG 2-507 and NAG 9-200. 

l a rge - sca l e  s p a t i a l  e n v i r o n m e n t s .  A n  e n v i r o n m e n t  

is large-scale i f  i ts  s p a t i a l  s t r u c t u r e  is a t  a s ign i f i -  

c a n t l y  l a r g e r  sca le  t h a n  t he  s e n s o r y  h o r i z o n  o f  t h e  
o b s e r v e r .  

E x p e r i m e n t s  w i t h  a s i m u l a t e d  r o b o t  i n  a v a r i e t y  

o f  2 - D  e n v i r o n m e n t s  h a v e  d e m o n s t r a t e d  t h a t  o u r  

m e t h o d  c a n  b u i l d  a n  a c c u r a t e  m a p  o f  a n  u n k n o w n  

e n v i r o n m e n t  in  sp i t e  o f  s u b s t a n t i a l  r a n d o m  a n d  

s y s t e m a t i c  s e n s o r i m o t o r  e r ro r .  

M o s t  c u r r e n t  a p p r o a c h e s  to  r o b o t  e x p l o r a t i o n  

a n d  m a p p i n g  a n a l y z e  s e n s o r  i n p u t  to  b u i l d  a geo-  
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metr ic  map of the environment ,  then extract  topo-  
logical s t ructure  from the geometr ic  descr ipt ion.  

sensors ~ geometry --* topology. 

In our  qual i ta t ive  method,  locat ion-specif ic  con- 
trol a lgor i thms are dynamica l ly  selected to control  
the robo t ' s  in terac t ion  with its environment .  These 
a lgor i thms def ine distinctive places and paths ,  

which are l inked to form a topological  ne twork  
descr ipt ion.  Final ly ,  geometr ic  knowledge  is as- 
s imi la ted  on to  the e lements  of the network (Fig.  
1): 

[ sensorimotor ~ control ] --* topology --* geometry.  

This re la t ionship  is an ins tance  of the spatial  

semantic  hierarchy def ined and  discussed by 
Kuipers  and Levit t  [25]. 
(1) The control level. Dist inct ive places and pa th  

are def ined in terms of the cont ro l  s trategies 
and sensory measures  (called distinctiveness 

measures,  or d-measures)  which suppor t  con- 
vergence to them from anywhere  within a lo- 
cal ne ighborhood.  A dis t inct ive place is de- 
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fined as the local ma x imum found by a hill- 
c l imbing  cont ro l  s t ra tegy,  given an ap-  
p ropr ia te  dis t inct iveness  measure.  A dis t inc-  
tive pa th  is def ined  by the dis t inct iveness  mea- 
sure and  cont ro l  s t ra tegy (e.g. fo l low-the-mid-  
line or  follow-left-wall) ,  which allows the robot  
to follow it. 

(2) The topological level. A topologica l  ne twork  
descr ip t ion  of the g lobal  env i ronment  is 
created before the g lobal  geometr ic  map,  by 
ident i fying and l inking dis t inct ive  places  and 
dis t inct ive  pa ths  in the envi ronment .  

(3) The geometric level. Once a topologica l  map  is 
in place, the geometr ic  map  can be incremen-  
tally c rea ted  by accumula t ing ,  first, local geo- 
metr ic  in format ion  abou t  places  and  paths ,  
then global  metr ica l  re la t ions  among  these ele- 
ments  within a c o m m o n  frame of  reference. 

Our  approach ,  based  on the spat ia l  semant ic  
hierarchy,  provides  a coherent  f r amework  for ex- 
p lo i t ing  the s t rengths  of  a variety of  powerful  
spat ia l  reasoning me thods  while min imiz ing  the 
robo t ' s  vulnerabi l i ty  to their weaknesses.  
• Cumulat ive  location error is essent ial ly  elim- 

ina ted  while t ravel ing among  dis t inct ive  places  
in the topologica l  ne twork  by  a l te rna t ing  be- 
tween pa th- fo l lowing  and hi l l -c l imbing cont ro l  
a lgori thms.  

• Feedback-guided motion control can draw on the 
full range of control  a lgor i thms and perfor-  
mance  analysis  methods  in the fields of  cont ro l  
engineer ing and cont ro l  theory  (e.g. [8]) to 
mi t igate  the effects of sensor  and m o t o r  uncer-  
ta inty on naviga t ion  abil i ty.  

• Successful  navigation is not dependent  on geomet-  
ric accuracy, since the cont ro l  and  topo logy  
levels do not  depend  on the geometr ic  descr ip-  
tion. However ,  when geometr ic  in fo rma t ion  is 
avai lable,  it can be used to op t imize  rou te -p lan-  
n i n g  or to resolve topologica l  ambigui t ies .  

• Geometric sensor fusion methods [6,11,33,40] can 
be na tura l ly  incorpora ted  as me thods  for acquir-  
ing local geometr ic  descr ip t ions  of places  and 
pa ths  in the topologica l  network.  (A global  geo- 
metr ic  descr ip t ion  can be der ived  by  g lobal  re- 
laxa t ion  of  local metr ical  re la t ions  into a single 
frame of  reference.) 

• Indist inguishable places - i.e. p laces  with ident i-  
cal local sensory character is t ics  - can be ident i -  
fied correctly,  except  in the most  pa tho log ica l  
environments ,  using a topologica l  match ing  pro-  
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Fig. 1. The levels of spatial representation. 
A layered structure isolates the different inference methods, and allows each level to establish the assumptions required by higher 
levels. 
• (Control) When traveling between distinctive places, cumulative error is eliminated by alternating path-following with hill-climbing 

control strategies. 
• (Topology) Elimination of cumulative error legitimizes the abstraction from a continuous physical world to a discrete topological 

network description. 
• (Geometry) Geometric information is acquired about the places and paths, here in the form of a generalized cylinder description, 

including path length, shape, and envelope profile. 

cedure  to test hypotheses  abou t  the places '  
neighbors .  

In  the r ema inde r  of  the paper ,  Sect ion 2 reviews 
o ther  app roaches  to spat ia l  exp lora t ion  and  map-  
learning.  Sect ion 3 presents  our  hierarchical  repre-  
sen ta t ion  and  its use in detai l .  Sect ion 4 descr ibes  
the specific ins tance  of  the hierarchical  approach ,  
the N X  robot ,  that  we have used in our  research.  
Sect ion 5 demons t r a t e s  the pe r fo rmance  of  N X  as 
it explores  a complex,  large-scale  envi ronment ,  

defines dis t inct ive  p laces  and  paths ,  l inks them 
into  a topologica l  ne twork  descr ip t ion ,  and  accu- 
mulates  an accura te  geometr ica l  desc r ip t ion  f rom 
metr ica l  anno ta t ions  on  the topolog ica l  map .  

2. Background 

M a n y  researchers  have s tud ied  spa t ia l  represen-  
ta t ion  methods  and  exp lo ra t ion  s t rategies:  the 
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robot exploration and map-learning problem. Since 
the goal of most approaches is a purely metrically 
accurate map, they are often brittle in the face of 
low mechanical accuracy and sensory errors 
[3,22,27]. However, humans perform well at spa- 
tial learning and spatial problem-solving in spite 
of sensory and processing limitations and fre- 
quently-incomplete knowledge [20,21]. We intro- 
duce the background of our qualitative method to 
the robot exploration and map-learning problem, 
and review the literature briefly. 

2.1. Studies of the cognitive map 

Many scientists [29,35,39] have observed that a 
cognitive map is organized into successive layers, 
and suggested that the central element of a useful 
and powerful description of the large-scale en- 
vironment is a topological description. A layered 
model consists of the identification and recogni- 
tion of landmarks and places from local sensory 
information; control knowledge of routes (proce- 
dures for getting from one place to another); a 
topological model of connectivity, order, and con- 
tainment; and metrical descriptions of shape, dis- 
tance, direction, orientation, and local and global 
coordinate systems. It appears that the layered 
structure of the cognitive map is responsible for 
humans '  robust performance in large-scale space. 
Our approach attempts to apply these methods to 
the problem of robot exploration and map-learn- 
ing. 

The central description of environments in our 
qualitative approach is a topological model as in 
the T O U R  model [19]. The model consists of a set 
of nodes and arcs, where nodes represent distinc- 
tively recognizable places in the environment, and 
arcs represent travel paths connecting them. The 
nodes and arcs are defined procedurally in terms 
of the sensorimotor control capabilities of the 
robot. Metrical information is added on top of the 
topological model. 

2.2. Traditional approaches to robot exploration 

Traditional spatial representation methods for 
known environments, and corresponding ap- 
proaches to the robot exploration and map-learn- 
ing problem in unknown environments, are based 
on the accumulation of accurate geometrical de- 
scriptions of the environment. These methods in- 

clude Configuration Space [28], Generalized Cones 
[2], Voronoi Diagrams [15,30,31,38,44], the Grid 
Model [12,32,33], the Segment Model [7,42], the 
Vertex Model [17], the Convex Polygon Model 
[6,14,26], the Graph Model [15,34,36,42,44], and 
the Polygonal Region Model [30]. Some re- 
searchers (e.g. [16,18]) use several of these meth- 
ods together. 

Traditionally, sensor fusion methods such as 
those of [11,32,40] are used to integrate sensor 
input directly into one of the above geometrical 
representations. Within our framework, the same 
methods can be used, after the topological map 
has been created, to acquire accurate local metri- 
cal information about the places and paths of the 
topological structure. These can then be integrated 
into a relatively accurate global metrical map. 

Because of low mechanical accuracy and 
sensory errors, it is often difficult to get accurate 
metrical information in large-scale space [3,6]. 
Some of the traditional methods perform reasona- 
bly well where environments are small enough to 
observe most important features from a single 
position. The problem is more difficult in large- 
scale space, as discussed by Brooks [3], Kuipers 
and Byun [231, and Levitt et al. [271. A major goal 
of the qualitative approach reported in this paper 
is to overcome the fragility of purely metrical 
methods. 

Several researchers use various types of graph 
model or topological model to represent the con- 
nectivity of the environment. Laumond [26] and 
Chatila and Laumond [6] build a topological model 
from the geometric model and then derive a 
semantic model, e.g. identifying ' rooms '  and 'cor- 
ridors', from the topological model. Their ap- 
proach uses the topological description to repre- 
sent map information at higher levels of abstrac- 
tion. However, there is no use of the topological 
model to cope with metrical inaccuracy. Turchan 
and Wong [421 use an 'a t t r ibuted graph'  to repre- 
sent the world, in which line segments and their 
attributes become vertices, and relations between 
adjacent line segments are represented by the arcs. 
This graph is completed by integrating local 
sensory information from several different loca- 
tions. Their method is proposed as a way of find- 
ing a correct segment model for a large-scale en- 
vironment with an error-free assumption, but it is 
vulnerable to errors. With the same error-free as- 
sumption, Oommen et al. [34] use a visibility 
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graph, where vertices represent observable or actu- 
ally visited meaningful points in the environment, 
and arcs show the connectivity of vertices for 
travel. 

Our qualitative approach to exploration and 
mapping is quite consistent with the layered 'sub- 
sumption architecture' proposed by Brooks [4]. It 
is possible to view our procedural level as corre- 
sponding to Brooks' Level 2, 'Explore', and our 
topological and metrical levels as corresponding to 
Brooks' Level 3, 'Build maps'. We believe, how- 
ever, that the structure of the exploration and 
mapping process is most clearly captured by the 
relationships between the three representations in 
the spatial semantic hierarchy. 

Another qualitative method for place definition 
and navigation based on visual landmark recogni- 
tion has been proposed by Levitt et al. [27]. They 
discuss the weakness of traditional navigation 
techniques and demonstrate successful exploration 
and navigation using a coordinate-free model of 
visual landmark memory, without an accurate map 
or metrical information. Their definition of place 
is based on regions, with virtual boundaries de- 
fined by line-segments connecting remote land- 
marks, whereas our definition of place is based on 
distinctiveness of a location within its neighbor- 
hood. Their methods are most appropriate in en- 
vironments where remote point-like landmarks are 
easily observable. 

Little of the literature discussing movement 
control strategy explicitly relates it to the topo- 
logical model. Most researchers have used a goal- 
directed movement control strategy within a global 
Euclidean coordinate frame: repeat until reaching 
a goal (x, y),  'Try  to go straight to the place, and 
if there is an obstacle in the way, move around 
until there is a possibly straight path to the goal'. 
Kadonoff  et al. [16] use several local navigation 
strategies to avoid unexpected obstacles along a 
path without exact knowledge of the robot's posi- 
tion in a known world. Several different sensors 
and strategies are used to perform local naviga- 
tion: Obstacle Avoider, Path Follower, Beacon 
Tracker, Wall Follower, Aisle Centerer, and Vec- 
tor Summer. At any given time an arbiter using a 
production system dynamically selects the strategy 
to follow, a control structure quite similar to our 
procedural level. However, local navigation 
strategy information is neither used in describing 
the world nor saved for later use. Furthermore, 

unlike our emphasis on exploration of unknown 
environments, Kadonoff  et al. [16] assume that a 
reasonably accurate world model already exists, 
and that beacons are available for periodically 
updating the robot's position. 

In the machine learning community, Rivest and 
Schapire [37] have presented an approach for un- 
supervised learning in deterministic environments, 
a generalization of map learning. They use an 
extended version of our 'rehearsal procedure',  
which was initially developed in response to a 
problem posed by Rivest in 1984. 

3. Building the hierarchical map 

The central element of our hierarchical model 
is the topological network description, in which 
nodes correspond to distinctive places and arcs 
correspond to travel paths. We discuss in detail 
how to define distinctive places and travel paths, 
and their descriptions at the control and metrical 
levels. We also present a basic exploration strategy 
for building the topological model, and discuss 
certain implications of our approach. 

A place corresponding to a node must be lo- 
cally distinctive within its immediate neighbor- 
hood by some criterion definable in terms of 
sensory input. We introduce locally meaningful 
distinctiveness measures defined on a subset of the 
sensory features, by which some property can be 
maximized at a distinctive place. We define the 
signature of a distinctive place to be the subset of 
features, the distinctiveness measures, and the fea- 
ture values, which are maximized at the place. A 
hill-climbing search is used to identify and recog- 
nize a distinctive place when a robot is in its 
neighborhood. 

When returning to a known distinctive place, 
the robot is guided by the known signature. Travel 
paths corresponding to arcs are defined by local 
control strategies which describe how a robot can 
follow the link connecting two distinctive places. 
This local control strategy depends on the local 
environment. For example, in one environment, 
following the midline of a corridor may be rea- 
sonable; in another environment, maintaining a 
certain distance from a single boundary on one 
side is appropriate; in a third, moving toward a 
certain remote landmark is the best strategy. 
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The components in the topological model - the 
places and paths - are described at the control 
level in terms of control strategies and locally 
meaningful distinctiveness measures. Each compo- 
nent may also have local geometric information. 
This information and potentially derivable global 
metrical relations are the metrical level descrip- 
tions in the map. 
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Fig. 2. A distinctive place. (a) A simple environment.  (b) A 
distinctiveness measure (no sensory error). (c) A hill-climbing 

search. 

Fig. 3. A travel path. (a) Executing a local control strategy 
within a simple environment.  (b) A distinctiveness measure  (10 

percent sensory error). 

3.1. Distinctive places 

The robot needs to identify distinctive places 
(DPs) in order to define the nodes of the 
network-structured topological model• Intuitively, 
if we consider the geometry of a simple 2-D local 
neighborhood in Fig. 2a, we can argue that the 
dashed lines represent points that are in some 
sense distinctive, and that the most distinctive 
points occur where the lines intersect, near the 
center• 

However, the robot has only local, egocentric, 
sensorimotor access to the environment, i We need 
to determine which sensory characteristics provide 
the distinguishing features by which a place be- 
comes locally distinctive, in order to formulate 
locally meaningful distinctiveness measures. 

We hypothesize that any reasonably rich 
sensory system will support distinctiveness mea- 
sures that can be defined in terms of low level 

1 I.e. the robot  is a situated agent in the sense of Suchman  [41] 
and Agre and Ch ap man  [1]. 
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sensory input. For a given sensorimotor system, 
we can specify the features to be maximized by 
corresponding distinctiveness measures. Fig. 2b 
shows the values, over a neighborhood, of a dis- 
tinctiveness measure defined by a geometric fea- 
ture, Equal-Distances-to-Near-Objects. The fea- 
ture is specific to the sensory-motor system of this 
particular robot, but the notion of distinctive 
places is general. 

Once the robot recognizes that it is in the 
neighborhood of a distinctive place, it applies a 
hill-climbing control strategy to move to the point 
where some distinctiveness measure has its local 
maximum value. Fig. 2c shows the result of the 
hill-climbing search with the same robot instance. 
Note here that it is not necessary for a place to be 
globally distinctive; it is only necessary to be 
distinguished from other points in its immediate 
neighborhood. 

When connecting paths from or to a distinctive 
place are found, the place is described topologi- 
cally in the model in terms of connecting paths 
and adjacent places. Metrical information from 
sensory devices is also used to describe a distinc- 
tive place, with information such as the distance 
and direction to nearby objects, the directions to 
true and false open space, the shape and apparent 
extent of nearby objects, etc. Metrical information 
is continuously accumulated during exploration 

and navigation, and averaged to minimize metrical 
error. 

3.2. Distinctive travel paths 

Just as a place is defined as a zero-dimensional 
local maximum, the paths followed during ex- 
ploration are defined by some distinctiveness 
criterion that is sufficient to specify a one-dimen- 
sional set of points. Fig. 3 shows the values of a 
distinctiveness measure in a corridor-like portion 
of the environment, and the result of performing 
the corresponding local control strategy, Follow 
the Midline. 

With our current set of control strategies, the 
robot will follow the midline of a corridor, or walk 
along the edge of a large space, but will not 
venture into the interior of a large space, where 
the points have no qualitatively distinctive char- 
acteristics, at least to its limited-range sensory 
apparatus. 

Travel paths connecting two distinctive places 
are defined in terms of local control strategies 
(LCS). Once a place has been identified, the robot 
selects an appropriate local control strategy for 
moving into an apparently open direction. While 
following a path with the chosen strategy, the 
robot continues to analyze its sensory input for 
evidence of new distinctive features. Once the next 

~ ,N Change d-measures 

 .daDP # -',, 

Overlap-nbhd k ~  ., , , /  

Choose a LCS Moving toward 
~,," . ~ , ~ -  ~,. an open spa~e~ 

"~ Change LCS 

Fig. 4. A state-event diagram for the exploration strategy. 
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distinctive place has been identified and defined, 
the path connecting the two places is defined 
procedurally in terms of the LCS required to 
follow it. The knowledge used for selecting and 
performing the proper LCS is dependent on the 
robot 's  sensorimotor system. 

Besides connectivity information, locally-ob- 
servable metrical information is accumulated to 
describe the geometric features of a path, such as 
length, lateral width, curvature, net change in 
orientation, etc. Metrical information is continu- 
ously accumulated during exploration and naviga- 
tion, and averaged to minimize metrical error. 

3.3. The basic exploration strategy 

We can summarize the exploration strategy by 
a simple state-event diagram (Fig. 4). The basic 
strategy cycles through the states in a clockwise 
sequence: (a) from a place, move into an open 
direction; (b) select a control strategy and follow a 
path; (c) detect a neighborhood, select a d-mea- 
sure, and begin hill-climbing; (d) reach a local 
maximum that defines being at another distinctive 
place. The topological model is built as a side-ef- 
fect of motion through this transition graph. 

The other transitions in the graph handle ex- 
ceptional cases, such as places that have overlap- 
ping neighborhoods so they are not separated by 
paths, and incorrect recognition of a neighbor- 
hood or choice of hill-climbing or path-following 
control strategy. 

In pathological cases, if the robot leaves a 
distinctive place but cannot select an LCS, it can 
wander around until the available sensory infor- 
mation becomes sufficiently adequate to de- 
termine either a distinctive place or a local control 
strategy. This is similar to the relation between 
'Explore '  and 'Wander '  processes in Brooks' [4] 
subsumption architecture. In terms of the state- 
event diagram in Fig. 4, control leaves this graph, 
and may return to either the hill-climbing or the 
path-following state. 

an open region, it is not necessary for the robot to 
be located at the same (x, y)  coordinates in an 
absolute coordinate frame. 

The local control strategy taking the robot along 
a path from one place to another need not bring it 
precisely to the destination place. As long as it 
reliably brings the robot into the neighborhood of 
the place, hill-climbing will eliminate the error 
acquired during travel. It is not necessary for the 
robot to return to the same ( x , y )  position each 
time, as long as the behavior of the hill-climbing 
and path-following control strategies remains in 
correspondence with the topological map. 

Thus, in a sufficiently well-behaved environ- 
ment, by building a topological model based on an 
alternation of distinctive places and travel paths, 
our strategy effectively eliminates the problem of 
cumulative position error. 

3.5. The position referencing problem 

While a robot explores a given environment, it 
needs to know its current position in the map. 
This is the single most important  task in the robot 
exploration and map-learning problem. In tradi- 
tional approaches, the current position is repre- 
sented by (x, y)  in a global coordinate frame. As 
discussed in Section 2, it is not easy to maintain 
correct coordinates for the current position. 

In our method, the current position is described 
at two levels: topological and metrical. At the 
topological level, the current position is described 
by either a distinctive place, or by a pair repre- 
senting a path and a direction. At the metrical 
level, when the robot is at a distinctive place, the 
current local sensory information and its current 
orientation are given. When it is on a path, the 
robot 's  current position may be described in terms 
of the place it is coming from, the distance it has 
travelled, lateral distance information, and its cur- 
rent orientation. 

3. 6. The exploration agenda 

3.4. Robust against errors 

Although the robot is subject to sensory and 
movement errors, hill-climbing search based on 
continuous sensory feedback will bring it very 
near to a distinctive place. As long as the dis- 
tinctiveness measures are defined and convex over 

During exploration, the robot uses an explora- 
tion agenda to keep information about  where and 
in which direction it should explore further to 
complete the map. If (Place1, Direction1) is in the 
exploration agenda, it means that a robot has 
previously visited Place1 and left it in some direc- 
tion(s) other than Direction1. Therefore, in order 
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to delete (Placel,  Direction1) from the exploration 
agenda, the robot should either (a) visit Placel 
and leave in the direction Directionl, or (b) return 
to Placel from the direction opposite to Directionl. 

In general, directions are defined with respect 
to local coordinate frames at each place. Matching 
directions between visits to a place may require 
inference involving the sensory characteristics of 
the place and the estimated change of heading 
during travel. The particular robot instance we use 
in our experiments has an absolute compass, which 
simplifies this matching step. 

When the robot reaches a place during explora- 
tion, the exploration agenda can be either empty 
or non-empty. If the exploration agenda is empty, 
it means that there is no known place with direc- 
tions which require further exploration. Therefore 
the current place must be new, unless a robot has 
intentionally returned to a previously known place 
through a known path. If the exploration agenda 
is not empty, the current place could be one of the 
places saved in the exploration agenda. This is 
only possible when the current place's metrical 
description is similar to that of a place saved in 
the exploration agenda, and the difference be- 
tween the current orientation and the direction 
saved on the agenda is approximately 180 degrees. 

The ordering on the exploration agenda con- 
trois the overall behavior of the robot, but is 
largely independent of our navigation and map- 
ping approach. It is easy to define priority schemes 
which tend to minimize the number of 'loose ends' 
on the exploration agenda, for example by giving 

priority to the sharpest turn from the current 
place that leads to an unexplored direction. 

Alternatively, exploration and mapping can be 
treated as a background process, in which an 
unrelated goal-oriented process in the foreground 
controls the overt behavior of the robot by 
manipulating the order on the exploration agenda. 

3. 7. The rehearsal procedure 

When a robot reaches a place during the ex- 
ploration, the identification of the place is the 
most important task. If the place has been visited 
before and the robot comes back to that place, the 
robot should recognize it. A new place must be 
recognized as new, even if it is very similar to one 
of the previously visited places. Place matching is 
done using global topological constraints as well 
as local metrical comparison. 

The current and stored place descriptions are 
first compared metrically, allowing a certain 
amount of looseness of match to provide robust- 
ness in the face of small variations in sensory 
input. If there is any possibility of a false positive 
match, the topological matching process is ini- 
tiated. The rehearsal procedure is activated, and 
uses the topological model and control knowledge 
of paths and nearby distinctive places to test the 
hypothesis that the current place is equal to a 
previously known place. 

The robot constructs routes between the known 
place and adjacent DPs. It then tries to follow the 
routes and return to the current place. If the 

- P 2  E1 

P3 

Fig. 5. An environment requiring the rehearsal procedure. 
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Fig. 6. (a) NX in its environment;  (b) NX's sensory image. 

routes performed as predicted, then the current 
place matches the previously known one, and the 
current place has been identified. If not, then the 
current place must be a new place with the same 
sensory description as the old one. 

Fig. 5 shows an environment in which topologi- 
cal matching is necessary, and demonstrates the 
rehearsal procedure. 
(1) The robot starts at S. 
(2) It finds a DP P1 and follows a path El.  
(3) When it leaves P1, it puts (P1 Dir2) in the 

exploration agenda. 
(4) It finds P2, follows E2, and finds P3. 
(5) It follows E3 and gets to a place P? where the 

local sensory information is very similar to 
that of P1. P? may be P1 or a different DP. 

(6) It sets up a hypothesis: If P? is P1, then 
following E1 (i.e. the path hypothesised to be 
E1 ) will bring it to P2. 

(7) Then it tests this hypothesis by traveling along 
the planned route. 

(8) However, it reaches a place P5 at which the 
local sensory information is quite different 
from that at P2. 

(9) Therefore it concludes that the hypothesis was 
incorrect, and P? is a new place P4. 

For any fixed search radius of this topological 
match, it is possible to construct an environment 
that will nonetheless yield a false positive match. 
In the current implementation, to guarantee 
termination even in pathological environments, the 

rehearsal procedure is not called recursively to test 
for a successful prediction; only local sensory 
characteristics are considered. However, if there is 
a reference place that is marked so as to be 
globally unique (e.g., 'home ' ) ,  a version of the 
rehearsal procedure can be constructed to 
eliminate false positive matches. These and several 
more sophisticated properties of the rehearsal pro- 
cedure have been proved by Dudek et al. [10]. 

4. A robot instance: NX 

We believe that our exploration and mapping 
approach is supported by any robot with suffi- 
ciently rich sensory input, which takes sufficiently 
small steps through its environment. We demon- 
strate our method as applied to a specific instance 
of such a robot. 

4.1. The N X  robot simulator 

The robot NX exists in a two-dimensional 
simulated environment. The simulator is written 
in Common Lisp on the Symbolics 3600. Although 
we use this specific robot to test our qualitative 
method, our approach does not depend critically 
on the choice of sensors and movement  actuators. 

NX has sixteen sonar-type distance sensors 
covering 360 degrees with equal angle difference 
between adjacent sensors, two tractor-type chains 
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for movement,  and an absolute compass for global 
orientation. Thus the input to NX is a vector of 
time-varying, real-valued functions 

[$1( / ) ,  S2(t ) . . . . .  S16(t), Compass(t)] 

represented by (S,0). 
Fig. 6a shows NX's  range-sensors, when it is 

near place P l l  in Fig. 8. Figure 6(b) shows the 16 
range-sensor readings as observed by NX at that 
instant. The middle line represents the direction 
straight ahead of the robot. The length of each 
line represents the perceived distance in each di- 
rection. For the aid of the researchers, an 'x '  or 'o '  
indicates the true distance. The 'x '  indicates that 
the perceived distance reflects a random error, and 
the 'o '  indicates that the perceived distance re- 
flects a systematic error due to specular reflection. 
This error simulation is based on Walter [43], 
Flynn [13], and Drumheller [9]. 

4.2. Coping with sensory errors 

The first step in handling errors is a spatial 
smoothing operation. Basically, NX attempts to fit 
sensory information to a hyperbolic shape (e.g., 
one made by six sensors on the left side of Fig. 
6b). This operation smoothes out random errors, 
and can also ignore the false open space reading 
that appears in the middle sensor in Fig. 6b. 
However, the second false open space reading, in 
the middle of the right side of Fig. 6b, still re- 
mains. NX considers this to represent a free space 
to explore between two objects on the right side. 

The second step is a temporal smoothing oper- 
ation, applied to sensory information accumulated 
over several small steps. In some cases, the second 
false open space in the figure can be eliminated by 
this operation. 

The third step tests hypotheses about where 
objects are and where open spaces are. NX tries to 
check the hypothesis by moving near each open 
space, and determining whether its sensory image 
behaves as expected. A false open space will dis- 
appear or move when NX approaches it. By this 
method, the second false open space is completely 
eliminated from the description of the current 
surroundings. Readers can see the trace of the 
hypothesis-testing operation in Fig. 8. 

In addition to random and systematic sensory 
errors, we simulate a five percent random error of 
movement control in Fig. 8. This can result in 

incorrect metrical information being accumulated 
about paths. Since all metrical information is local 
until it is propagated into a global metrical map, 
this does not affect the first two levels of descrip- 
tion of the model. The effects of such errors are 
eliminated by the accumulation of information 
from several traversals. Systematic motor  control 
errors should also be correctable by this method. 

4.3. Distinctioeness measures for N X  

To specify the domain-specific aspects of a 
navigation and mapping strategy for NX, within 
the framework we have described, we need to 
specify the distinctiveness measures, the local con- 
trol strategies, the criterion for the event Detect- 
Neighborhood (Fig. 4), and the rules for selecting 
a distinctiveness measure or a local control strategy 
given the current sensory surroundings. 

A set of production rules is used to decide 
whether NX is in the neighborhood of a DP and 
what distinctive features can be maximized in that 
neighborhood. Each rule checks a set of assump- 
tions and suggests a distinctiveness measure. 

The individual distinctiveness measures are an 
open-ended, environment- and sensor-specific set 
of measures. For our current robot, the measures 
we can define include the following. 
• Extent of distance differences to near objects. 
• Extent and quality of symmetry across the center 

of the robot or a line. 
• Temporal discontinuity in one or more sensors, 

experienced over a small step. 
• Number  of directions of reasonable motion into 

open spaces around the robot. 
• Temporal change in number  of directions of 

motion provided by the distinct open spaces, 
experienced over a small step. 

• The point along a path that minimizes or maxi- 
mizes lateral distance readings. 

The current local control strategies for paths are: 
• Follow-the-Midline. 
• Move-along-Object-on-Right. 
• Move-along-Object-on-Left. 
• Blind-Step. 
As with the distinctiveness measures, a set of 
production rules selects a proper LCS depending 
on the current sensory information. Detailed de- 
scriptions of the measures, rules, and place and 
path structures are provided in [23,24]. 



58 B. Kutpers ,  )'. ;r~ Bvun  

(a) 

II 

E20 

E 1 3  

EI8 

El9 

IIIII 

E 4  

~ -  m J  
E23 

E6 

P7 

EB 

E2 

~3 

3 

E23 

E5 
E1 

le) 

>3 

E2 

P2 

iii 

IQ 
F 
I ~  • ~ 
I ~ 

PI8 

El9 5 El5 PI4 

z4 

El2 P12 ~ E l3  P13 

III 

PI6 p 

El 

. PIO ~ E 1 9  ~ L 

Fig. 7. The effect of r a n d o m  error on explorat ion.  (a) Zero  percent  r a n d o m  error. (b) Five percent  r a n d o m  error.  (c) Ten percent  

r andom error.  



A robot exploration and mapping strategy 59 

P4 

E23 

E3 
EF ~ • V ~ ~"  E21 

u 
Fig. 8. Exploration results with systematic and 10% random error. 

5. Exploration results 

We present a detailed example showing how 
NX explores and builds a map, using the environ- 
ment shown in Fig 8. (Thick black rectangles 
along the walls are considered surfaces which can 
cause systematic errors by specular reflection [9].) 

To demonstrate the effect of sensory errors, we 
also show the exploration results for three differ- 
ent random error rates: the error-free case (Fig. 
7a), five percent error (Fig. 7b), and ten percent 
error (Fig. 7c). N X  constructs the correct map 
successfully in all cases, but careful examination 
of Figs. 7 and 8 will reveal subtle differences. 

P5(Symm-Eq-3) 

E4(Midline) 

P4(Temp-Disc) 

E3(Left-Wall) 

P3(Symm-Eq-2) 

ES(Midline) 

i E23(Right-WalI) 

Left-Wa21) 
El(Left-Wall) 

P2(Symm-Eq-2) 

' P6(Symm-Eq-3) 

E6(MidUne) 

'P7(Temp-Disc) 

E7(Left-Wall) 

Pl(Temp-Disc) 

Fig. 9. Control and topological level information. 
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Fig. 10. Metrical level information. 

Fig. 9 shows (part of) the topological model 
with control annotations on the paths, and Fig. 10 
shows the metrical map of the environment in Fig. 
8. 

(1) NX starts its exploration from point S in 
figure 8, between places P1 and P8 and directed 
toward P1. It determines that it is not in the 
neighborhood of a place, chooses the Follow-the- 
midline LCS, and moves to P1. 

In the neighborhood of P1, it recognizes that 
there is a wide open-space in front, and that the 
angle between the directions to two near objects 
begins to change, after being roughly constant 
over a period. While executing the Follow-the- 
midline LCS, the angle to nearby objects was 180 
degrees. (In terms of number of sensors, the angle 
is N / 2  where N is the number of sensors.) As NX 
moves into the wide open-space near to P1, the 
angle becomes less than N / 2  after being constant 
over a period. 

This criterion is a more robust, continuous, 
implementation of the distinctiveness measure we 
originally defined as Temporal discontinuity. There 
is a large change of one sensor reading when NX 
moves a small amount near P1. No connectivity 
information is stored for P1 at this time. 

The metrical information extracted from the 
sensory image is also recorded, and is shown 
graphically in figure 10. Two 'O 's  with small dots 
inside around P1 indicate the distances and direc- 
tions to the nearest objects, and small dots show 
the rough shapes of nearby objects• 

(2) There are three directions to choose from 
P1. If there is no particular reason to choose any 
particular direction, NX chooses the direction 
which requires the least rotation• When NX finds 
P1, the rotation angle to the direction toward P2 
happens to be less than that toward P7 or P8. 
Therefore it rotates to the direction toward P2 and 
saves two other directions from P1 on the explora- 
tion agenda• 

(3) When NX leaves P1, it chooses Move- 
along-object-on-left, since it has selected a direc- 
tion for travel and there is a wide open-space on 
the right side. 

(4) While it moves, NX continuously checks for 
the possibility of reaching the neighborhood of a 
DP. It finds P2 where it locally maximizes the 
value of distinctiveness measure Symmetry- 
Equal-Distances to near objects• Control and met- 
rical features of P2 are recorded in its description, 
just as they were for P1. 
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(5) The control information about E1 (see Fig. 
9) indicates the control strategy used for the path. 
The topological description of E1 says that E1 
connects P1 to P2. Once E1 exists, the topological 
descriptions of P1 and P2 need to be changed to 
reflect the connectivity of the map. 

Metrical information about E1 is also saved 
and is shown graphically in Fig. 10. NX records a 
sufficient amount of local metrical information, 
including leaving orientation, arriving orientation, 
delta orientation, travel history, distance, and 
lateral readings, so that a generalized cone de- 
scription of each travel path is derivable. This 
information becomes more accurate when more 
traversals are made for the path. 

(6) NX then follows E2 and finds P3. NX 
creates control, topological, and metrical descrip- 
tions for E2 and P3 as before. 

(7) NX then finds and describes E3, P4, E4, P5, 
E5, P6, E6 and P7. 

Notice that a place does not always need to be 
found at exactly the same physical location in the 
environment. We also see the trace of the hypothe- 
sis test of open-space around P6 and P7. 

(8) From P7, NX explores downward to P1 in 
Fig. 8 and finds a place which could be P1. The 
local sensory information at the place is very 
similar to that recorded at P1. In addition, the 
new place is being approached from a direction 
opposite to a direction saved in the exploration 
agenda when P1 was first seen. Therefore there is 
a good possibility that the current position is P1, 
which NX previously visited. 

NX performs the rehearsal procedure as fol- 
lows. 
• If the new place is really P1, then NX knows 

from the topological map that it can reach P2 
by following El.  

• It actually follows E1 and reaches P2 (or at least 
a place that appears identical to P2). 

• It concludes that the new place actually is P1. 
(9) The information saved in the exploration 

agenda for the direction from P1 toward P7 is 
deleted from the exploration agenda. 

At this point, the exploration agenda now has 
three elements, (at P4, direction toward P7), (at 
P7, direction toward P4), and (at P1, direction 
toward P8). NX selects the third element of the 
exploration agenda and follows E8 to discover P8. 

(10) The exploration process continues in much 
the same fashion. NX explores all areas of the 

environment, and finishes its exploration by 
traversing E23. At several points, the rehearsal 
procedure was invoked to determine whether a 
newly found place was the same as a previously 
seen place. 

We see that NX had a more difficult time in 
Fig. 8 than Fig. 7. Difficulties occurred when NX 
traversed between P18 and P19 and when NX 
performed the hill-climbing search for P17. In all 
four figures, NX shows a slightly different ex- 
ploration order. Since there is random sensor er- 
ror, the order of exploration is nondeterministic. 
NX continues its exploration until there is nothing 
in the exploration agenda and no more unexplored 
directions from the current place. 

Once NX finishes its exploration completely, it 
repeatedly selects a place randomly and navigates 
to that place. Its control and topological level 
descriptions of the environment are complete, so 
route- finding and navigation are straightforward. 
However, while NX is navigating, it accumulates 
more metrical information to increase the metrical 
accuracy of its description of paths and places. 

NX can also demonstrate the quality of its map 
by successfully orienting itself after being dropped 
at an unknown location within an already-ex- 
plored environment, using the rehearsal proce- 
dure. 

6. Summary 

It is very difficult to build a metrically accurate 
map within a global coordinate frame, through 
exploration in an unknown unstructured environ- 
ment. Instead, we use a hierarchical description of 
the spatial environment, in which a topological 
network description mediates between a control 
and a metrical level. Distinctive places and paths 
are defined by their properties at the control level, 
and serve as the nodes and arcs of the topological 
model. Each place and path can then accumulate 
local metrical information. Successful perfor- 
mance relying on the control and topological levels 
of the map is not vulnerable to errors at the 
metrical level, but can be improved as reliable 
metrical information becomes available. In suita- 
ble environments,  therefore, our  approach 
eliminates the cumulative metrical error problem 
of traditional approaches. 
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Robust performance in the face of sensory and 
motor errors is the result of a number of factors: 
the separation of semantic levels in the hierarchy, 
the robustness of control strategies for hill-climb- 
ing and path-following, the metrical matching with 
tolerance for place matching, and the rehearsal 
procedure for topological place-matching. 

However, we can construct pathological en- 
vironments where the current NX fails. The re- 
hearsal procedure does topological matching out 
to a fixed radius (currently only one path), and 
can be deceived by a sufficiently uniform environ- 
ment. The topological description may be ambigu- 
ous, due to sensory errors, or due to multiple 
topological models being nearly equally ap- 
propriate for a particular environment (a phenom- 
enon we call bifurcation). Extensions to the 
straight-forward graph model of  the topological 
description may be required to extend NX's capa- 
bilities from room-and-corridor environments like 
figures 7 and 8 to terrain-and-landmark environ- 
ments like those studied by Levitt et al. [27]. 

Dynamic  environments pose additional prob- 
lems of three distinct types. First, the robot is 
currently considered low-speed or friction- 
dominated: without explicit action, no motion takes 
place. A more realistic model would be high-speed 
or momentum-dominated, requiring a more sophis- 
ticated set of control strategies to move through 
the environment. Second, there may be other mov- 
ing agents ('pedestrians') moving either faster or 
slower than the robot within the same environ- 
ment, requiring improved obstacle-avoidance ca- 
pabilities. Third, the environment itself may 
change, as doors are opened or closed, or parked 
cars move around, requiring diagnosis to dis- 
criminate between fixed and changeable aspects of 
the environment. Research on these and other 
questions is under way. 
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