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Heterogeneous Control January 22, 1993 21 IntroductionMuch control theory is based on linear models. This works very well for steady state regulationat a �xed operating point. To make a control system that can operate over wide regions it ishowever necessary to introduce nonlinearities. There are several ways to do this. Linear feedbackcontrol can be combined with logic for switching between several linear feedback laws. Selectorsthat choose between di�erent control laws depending on signal levels can be introduced. Systems ofthese types are common in industry, where their design is based on engineering experience combinedwith extensive simulation. Classical control theory (e.g., [Franklin, et al, 1986]) provides a rich setof methods for local analysis of the individual control laws and for describing their behavior, buttheoretical analysis of combined laws has proved to be much more di�cult.Fuzzy logic control [Zadeh, 1973; Mamdani, 1974] is another approach to obtain nonlinearcontrol systems, especially in the presence of incomplete knowledge of the plant or even of theprecise control action appropriate to a given situation. In this approach the measured variables arerepresented as fuzzy variables. A representation of the control signal as a fuzzy variable is computedfrom the measurements using fuzzy logic. The fuzzy variable is converted to a real variable usingsome type of \defuzzi�cation." Again, design and validation of these control laws is based primarilyon experience and extensive simulation.In this paper, we take a new look at the problem of specifying, analyzing, and verifying thebehavior of nonlinear control laws, especially in the presence of incomplete knowledge. We focus ourattention on heterogeneous control laws, which are composed of classical (typically linear) controllaws de�ned over di�erent operating regions (possibly with fuzzy boundaries). The control signalfrom a heterogeneous controller is the average of the signals from the local control laws, eachweighted by the value of its operating region membership function. This approach to fuzzy controlwas pioneered by Takagi and Sugeno [1985] and Sugeno and Kang [1986].The analysis and veri�cation of a heterogeneous control law is complicated by the fact thatsuch a controller is normally designed to cope with incomplete knowledge of the structure of theplant, the boundaries of the operating regions, and even the desired control action. Qualitativesimulation [Kuipers, 1986, 1989] addresses this issue by making it possible to predict the behaviorsconsistent with qualitative knowledge about a dynamical system and its initial state. Speci�cally,given a qualitative di�erential equation (QDE) and a qualitative description of an initial state(QState(t0)), the QSIM algorithm predicts a set of possible behaviors,QDE ^QState(t0)! or(Beh1; : : :Behn);that is guaranteed to include a description of the solution to any ordinary di�erential equation andinitial state matching the qualitative description. Finally, using a model-checking algorithm forstatements in modal temporal logic [Emerson, 1990], we can automatically determine whether agiven speci�cation is guaranteed to hold within the predicted set of qualitative behaviors.The basic concepts of heterogeneous control will be introduced with a simple level controller fora water tank. We then discuss qualitative simulation and modal temporal logic, leading up to semi-automated proofs of propteries of the heterogeneous controller. Finally, we present a heterogeneouscontroller for a highly nonlinear chemical reactor [Economou, et al, 1986].



Heterogeneous Control January 22, 1993 32 Fuzzy Control and Other Heterogeneous MethodsFuzzy sets were originally developed by Zadeh [Zadeh, 1965; cf. Yager, et al, 1987] to formalizequalitative concepts without precise boundaries. For example, when describing values of a continu-ous scalar quantity such as the amount of water in a tank, there are no meaningful landmark valuesrepresenting the boundaries between low and normal, or between normal and high.Zadeh [1965] formalizes linguistic terms such as these as referring to fuzzy sets of numbers. Afuzzy set, S, within a domain, D, is represented by a membership function, s : D ! [0; 1]. Weinterpret the value of s(x), for x 2 D, as a measure of the appropriateness of describing x withthe descriptor S. Figure 2 includes three membership functions de�ning the appropriateness ofapplying the qualitative descriptors flow;medium; highg to quantitatively-de�ned levels.1Fuzzy control is a family of methods for expressing and applying control laws, using fuzzy setsto provide several bene�ts. First, they provide the ability to express and use incomplete knowledgeof the system being controlled and of the control law itself. Second, they allow one to specifya complex control law as the composition of simple components. Third, fuzzy set membershipfunctions provide smooth transitions from region to region.There are at least two distinct approaches to fuzzy control:� Fuzzy logic control determines the control action by a combination of fuzzy logic rules.� Heterogeneous control determines the control action as the weighted average of classical controllaws.A fuzzy logic controller [Zadeh, 1973; Mamdani, 1974; cf. Michie & Chambers, 1968] consists ofa collection of simple control laws whose inputs and outputs are both fuzzy values. For example,If water level is high; then set drain opening to wide;where high and wide are qualitative terms described by fuzzy sets over their quantitative domains.All controller rules are �red in parallel, and the recommended actions are combined according tofuzzy value combination rules, weighted (or bounded) by the degree of satisfaction of the antecedent.Some process of \defuzzi�cation" is required to convert the resulting fuzzy set description of anaction into a scalar value for a control variable.A heterogeneous controller decomposes the state space into multiple, possibly overlapping, op-erating regions. The domain of each operating region is characterized by a fuzzy set membershipfunction. This makes it possible to express smooth transitions between adjacent regions. Each op-erating region is associated with a qualitative description of the system state, e.g. the low, normal,or high level of water in a tank. The fuzzy set membership functions may be regarded as a measureof the appropriateness of applying a given qualitative description to the system state. It may beassumed that, for any given system state, the appropriateness measures sum to 1.0.Each region is associated with a control law. The control signal applied to the plant is a weightedaverage of the control signals for each region, where the weights are provided by the membershipfunctions of each region.1Appropriateness measure is technically synonymous with the terms membership function and possibility measureas used in the fuzzy research community. However, for our purposes, the English connotation of appropriatenessmeasure seems better to capture the relationship between a linguistic term and a scalar quantity.



Heterogeneous Control January 22, 1993 4The idea of combining simple linear feedback units with operations such as average, min, max,etc, is widely used industrially. The intent of this paper is to provide a mathematical basis for thelocal and global analysis of these systems. The heterogeneous control approach decomposes thedesign of a controller into two relatively independent decisions: (1) the speci�cation of natural,qualitatively distinct operating regions, and (2) the speci�cation of a control law for each region.The weighted sum combination method provides smooth transitions from one region to another,and facilitates local and global analysis.Heterogeneous control is also related to gain scheduling. There are however some di�erences.In gain scheduling a speci�c control law is selected for a given operating region and the parametersof the controller are changed with the region. In heterogeneous control the values of the controlsignal for di�erent regions are computed and averaged.Sliding control [Utkin, 1977, 1991; Slotine & Li, 1991] is another method for constructingnonlinear controllers by combining the e�ects of simpler controllers. In its pure form, the slidingcontrol law changes discontinuously at a boundary, possibly leading to rapid \chattering" betweenthe two control surfaces but yielding extremely good (\perfect") tracking of disturbances. To avoidchattering, the discontinuity can be smoothed by taking a weighted average of the two control lawsin a narrow band near the boundary, at some cost in tracking error. Essentially, this replaces \crisp"by \fuzzy" operating regions for two classical control laws, and thus is in the spirit of heterogeneousfuzzy control. However, the design philosophy behind fuzzy control typically treats overlap regionsas transitory, existing primarily to provide smooth transitions between pure control regions. Incontrast, sliding control works exactly by exploiting the joint action of two control laws to con�nethe system to a very small overlap region. Cross-fertilization between these two approaches shouldbe of value.



Heterogeneous Control January 22, 1993 5q ux u � p(x)PP����BB
_x = f(x; u) = q � u � p(x):Figure 1: The water tank3 A Heterogeneous Controller for the Water Tank3.1 The Water TankConsider control of the amount x of water in a tank, where the inow rate q may vary, and thearea u of the drain opening is the control variable. The function p(x) is a monotonically increasingfunction of x whose exact form is not known to the designer. In this case, p(x) is approximatelyproportional to the square root of the pressure, whose relation to x depends on the geometry ofthe tank. x = amount in tankq = inow into tanku = drain areap(x) = inuence of pressure at drainThe dynamic behavior of the system is described by:_x = f(x; u) = q � u � p(x):3.2 Overlapping Operating RegionsThe system has separate control laws in three operating regions, Low, Normal, and High, withoverlapping appropriateness measures, as shown in �gure 2.For an implemented controller, the operating region appropriateness measures must be speci�edas real-valued functions of a real variable. However, for purposes of analysis, the appropriatenessmeasures l(x), n(x), and h(x), for the three operating regions need not be completely speci�ed. All
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x s xFigure 2: Three operating regions and their appropriateness measures.that is known is that they rise or fall smoothly and monotonically between their plateaus, wherethe boundaries of the plateaus are characterized by the landmark values, a, b, c, and d. They arenormalized, so that l(x) + n(x) + h(x) = 1. Note that there is a \pure" region over each interval[0; a], [b; c], and [d;1), and overlapping regions on (a; b) and (c; d). We assume that the setpointxs is in (b; c).Because we specify the appropriateness measures qualitatively, and depend only on properties ofthe qualitative class, the conclusions we derive apply to every member of the class. The remainingdegrees of freedom are available to the designer to meet other implementation requirements.3.3 Heterogeneous Control LawsThe control laws for the three regions are:x 2 Low ) ul(x) = 0x 2 Normal ) un(x) = k(x� xs) + usx 2 High ) uh(x) = umaxwhere 0 � u � umax, and the bias term us is adjusted to give the desired set point xs for a nominalinow qs. We are assuming for this example that the state variable x is directly observable, ratherthan separating out measurements, y = g(x; u).The global heterogenous control law is the average of the individual control laws, weighted bythe appropriateness measures of their regions:u(x) = l(x) � 0 + n(x) � [k(x� xs) + us] + h(x) � umaxThe design goal for the controller is a simple discrete abstraction: the system will move from theHigh or Low region into the Normal region, and reach equilibrium there. Our qualitative analysis,described below, helps us identify the additional constraints necessary to provide this guarantee.Figure 3 summarizes the heterogeneous controller for the water tank.



Heterogeneous Control January 22, 1993 7The water tank: _x = q � u � p(x); p 2M0+q : the ow into the tank (exogenous)x : the level in the tank (sensed)u : the drain opening (controlled)The operating regions and their appropriateness measures:
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a b c d
x s xThe local control laws: x 2 Low ) ul(x) = 0x 2 Normal ) un(x) = k(x� xs) + usx 2 High ) uh(x) = umaxThe global control law: u(x) = l(x)ul(x) + n(x)un(x) + h(x)uh(x):The discrete abstraction: Low �! Normal  � High :Figure 3: A heterogenous controller for the water tank.
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0.00 5.00 10.00 15.00 20.00u(x) and un(x) x(t)(a) (b)Figure 4: Comparison between P and HC controllers.(a) The heterogeneous control law u(x), and the proportional controller un(x) are identical in the Normalregion.(b) The behaviors, x(t), of the P- and HC-controllers, starting with the tank empty or full, with constantq at the nominal rate, so that steady state is at the setpoint.3.4 Simulation ResultsBy numerical simulation, we can illustrate the performance of this heterogeneous controller on awater tank, in comparison with a proportional controller.The capacity of the tank is 1000 liters of water. The nominal inow rate is 100 liters/minute.The setpoint, xs, is 700 liters. The o�set us in the Normal control law un is set so that the steadystate is at the setpoint when inow is nominal. The gain k is set so that un(0) = 0. The proportionalcontroller simply uses un as the global control law. The comparison is for illustration only, since theproportional controller has an unrealistically low gain. With a higher gain, however, the physicallimits on the valve make the proportional controller behave like a heterogeneous controller, butwithout smooth transitions or explicit design and validation.The operating regions for the heterogeneous (HC) controller are speci�ed as in �gure 3, witha = 600, b = 650, c = 750, d = 800, and umax = 50.Figure 4(a) compares the two control laws u(x) and un(x). Figure 4(b) contrasts the behaviorof the two controllers at constant nominal inow, starting from the initial states x(t0) = 0 andx(t0) = 1000. Figure 5 shows the responses of the two controllers to random variation in inowbetween zero, nominal, and twice nominal.
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u uu u--? ?1(b)2(a)1(a) 2(b)Local GlobalBehaviorControl LawFigure 6: Two approaches to analyzing a heterogeneous controller.4 Methods for Providing GuaranteesWe want to prove that the heterogeneous controller brings the system back to theNormal operatingregion under some range of disturbances, and that an equilibrium in the region is obtained forconstant disturbances. More importantly, we want to determine any quantitative constraints onthe design of the controller (e.g. the value for umax), and the range of possible disturbances on qthat the controller can handle.There are two methods for doing this (�gure 6), which are elaborated on below.1. (a) Determine the qualitative behavior of the system within each operating region.(b) Combine the qualitative descriptions.2. (a) Combine the local laws into a global law using the weighted average combination rule.(b) Determine the qualitative behavior of the global system.First, however, we must introduce the ordinal, landmark-based methods of qualitative repre-sentation and the QSIM algorithm for qualitative simulation [Kuipers, 1986, 1989].Qualitative categories may be described by fuzzy set membership functions where they lackmeaningful boundaries, or by ordinal relations with landmark values where precise boundaries aremeaningful. By using the landmark-based representation to describe a restricted class of fuzzy setmembership functions, we can combine the performance bene�ts of smooth fuzzy-set transitionswith the analytic power of landmark-based qualitative simulation.4.1 Landmark-Based RepresentationQualitative categories may be de�ned by landmark values: precise boundary points separatingqualitatively distinct regions of a continuum. For example, angles in a triangle can be described inthe following qualitative terms:Zero � � � � � � Right � � � � � � Straight(acute) (obtuse)



Heterogeneous Control January 22, 1993 11A value can be described qualitatively either as equal to a landmark value or in an open intervalbounded by two landmark values, even when numerical information is unavailable. It is often easierto obtain and justify the qualitative description of a quantity than its numerical value, particularlywhen knowledge is incomplete. Human perception, memory, and similarity judgments often reectunderlying landmark-based qualitative representations [Goldmeier, 1972]. Fortunately, landmark-based descriptions support qualitative simulation, to derive qualitative descriptions of the possiblebehaviors of a system from a qualitative description of its structure [Kuipers, 1986, 1989].An ordinary di�erential equation describes a system in terms of a set of variables which varycontinuously over time, along with constraints among those variables such as addition, multipli-cation, and di�erentiation. A qualitative di�erential equation (QDE) describes a system in muchthe same terms, except that (1) the values of variables are described qualitatively, and (2) certainfunctional relationships between variables may be incompletely known. For example, air resistanceon a moving body increases monotonically with velocity, and ow of water through an ori�ce in-creases monotonically with pressure. Both of these relations are non-linear, but useful qualitativeconclusions can be drawn purely from monotonicity. It is useful to de�ne the classM+ of monotonicfunctions, and the class S+ of monotonic functions with saturation.� A reasonable function is a continuously di�erentiable function de�ned on a closed interval(including the extended real number line <� = [�1;+1]), with only isolated critical points,and derivatives continuous at the endpoints of the domain. (See Kuipers [1986].)� M+ is the set of reasonable functions f such that f 0 > 0 on the interior of its domain. Ina QDE, we may write M+(pressure; outflow) or outflow = M+(pressure) to mean thatthere is some f 2 M+ such that outflow = f(pressure). M+0 is the subset of M+ such thatf(0) = 0, and M� is the set of f such that �f 2M+.� S+ is the set of reasonable functions f such that, for speci�ed pairs of landmark values (x1; y1)and (x2; y2),{ f(x) = y1 for all x � x1,{ f(x) = y2 for all x � x2,{ f 0(x) > 0 for all x1 < x < x2.The turning points (x1; y1) and (x2; y2) must be speci�ed as landmark values whenever theS+ constraint is used. The subset of S+ with turning points at (a; c) and (b; d) is calledS+(a;c);(b;d). S� is the set of f such that �f 2 S+.The qualitative structure of the appropriateness measures in Figure 2 can be expressed in termsof the S+ constraint by introducing the two functions,s1(x) 2 S+(a;0);(b;1) s2(x) 2 S+(c;0);(d;1)such that l(x) = 1� s1(x)n(x) = s1(x)(1� s2(x))h(x) = s2(x)



Heterogeneous Control January 22, 1993 12This qualitative description expresses a state of incomplete knowledge about the operating regionsand their boundaries. We represent our knowledge of the system, the operating regions, and thelocal control laws, as a qualitative di�erential equation.QSIM [Kuipers, 1986, 1989] allows us to specify a qualitative di�erential equation (QDE) anda description of an initial state (QState(t0)), and predicts a set of possible behaviors, such thatQDE ^QState(t0)! or(Beh1; : : :Behn):The inference done by QSIM is sound, so the set of behaviors fBeh1; : : :Behng includes allpossible behaviors of systems described by QDE and QState(t0).Each behavior Behi is a sequence of qualitative states representing alternating time-points andqualitatively uniform time-intervals:QState(t0); QState(t0; t1); QState(t1); : : :QState(tk�1; tk); QState(tk):The set of behaviors is represented by a tree of qualitative states linked by successor relations,so each time-point state QState(ti) is followed by all possible immediately succeeding time-intervalstates QState(ti; ti+1), and each time-interval state QState(ti; ti+1) is followed by all possible im-mediately succeeding time-point states QState(ti+1).2 This tree of states can be viewed as abranching-time description of a set of possible futures.The tree of possible behaviors of a qualitatively described system can be a powerful analyticaltool. In particular, if a qualitative property (e.g. stability or zero-o�set) holds on every branchof the tree, it must hold for every behavior of every fully-speci�ed instance of the system. Theimportance of the qualitative level of description is that the tree of behaviors for a given QDE maybe �nite, whereas the corresponding set of ordinary di�erential equations and their solutions isin�nite.4.2 QSIM and Temporal LogicIn order to state and prove properties of a continuous dynamic system, we use QSIM to create asymbolic description of the set of all possible behaviors in the form of a tree of qualitative states,then state the desired properties as propositions in a modal temporal logic, and �nally check thatthe propositions are true of the tree of states.Temporal and modal logics have been developed for expressing and inferring properties of time-varying systems [Emerson, 1990]. They have primarily been applied to discrete-time rather thancontinuous-time models of the world, such as might arise in veri�cation of computing systems.However, as we have seen, QSIM provides a discrete tree of qualitative states that describes thebehaviors of a continuous system. Therefore, we de�ne a modal temporal logic (an instance ofComputational Tree Logic (CTL) [Emerson, 1990]) customized for application to QSIM behaviortrees.Following Emerson [1990], we de�ne:� A temporal structure is M = hS;R; Li, where{ S is a set of states;2Provisions exist in QSIM for identifying and representing cycles and other repeated states, so the behavior treemay actually be a transition graph.



Heterogeneous Control January 22, 1993 13{ R is a binary successor relation de�ned on S � S;{ L is a labelling, associating with each state s 2 S a set of atomic propositions.� The behavior tree resulting from QSIM simulation of QDE and QState(t0) can be viewedas a temporal structure M = hS;R; Li, where S is the set of states in the tree, R is theunion of the QSIM successor and transition relations, and L labels states in S with atomicpropositions as follows.{ status(s; tag), where s is a state, and tag is one of fquiescent; stable; unstable; transitiong.The proposition is true of a state s in M if tag is an element of s.status (an elementof the qualitative state description).{ qval(s; v; qmag; qdir), where s is a state, v is a variable appearing in QDE, qmag is alandmark or interval de�ned by a pair of landmarks in the quantity space for v, and qdiris one of finc; std; decg representing the sign of the derivative of v. The proposition istrue of a state s in M if the value of v in s satis�es the description hqmag; qdiri.� State formulae and path formulae are built up from atomic propositions. A path is a sequenceof states in M linked by the successor relation R.� State formulae have the following syntax and semantics.{ (S1) Each atomic proposition is a state formula. Its truth conditions have already beende�ned.{ (S2) If p; q are state formulae, then so are p ^ q, p _ q, :p, and p ! q, with the usualrules de�ning the truth values of composed expressions.{ (S3) If p is a path formula, then (necessarily p) is a state formula, which is true of astate s in M if p is true of every path starting at s. Similarly, (possibly p) is a stateformula, which is true of a state s in M if p is true of any path starting at s.� Path formulae have the following syntax and semantics.{ (P0) If p; q are state formulae, then (until p q) is a path formula, which is true of apath if q is true for some state in the path, and p is true of every previous state in thatpath. Similarly, (next p) is a path formula, which is true of p if it is true of the pathstarting with the second element of p.{ We can de�ne the useful forms (eventually p) as (until true p), and (always p)as (not (eventually (not p))).Basically, CTL allows a path quanti�er (possibly or necessarily) to be followed by a singletemporal operator (until, next, always, or eventually).� An extended language, CTL*, allows arbitrary boolean combinations or nestings of the tem-poral operators. It can be de�ned by replacing (P0) with the following syntax and semanticsfor path formulae.{ (P1) Each state formula is also a path formula, and is true of the path if it is true of the�rst state in the path.



Heterogeneous Control January 22, 1993 14{ (P2) If p; q are path formulae, then so are p ^ q, p _ q, :p, and p ! q, with the usualrules de�ning the truth values of composed expressions.{ (P3) If p; q are path formulae, then so is (until p q), which is true of a path x if q istrue of some su�x path xi of x, and p is true of every longer su�x path xj containingxi. Similarly, (next p) is a path formula, which is true of p if it is true of the pathstarting with the second element of p.� Based on the above de�nitions, we have written algorithms to check whether a state s in thetemporal structure M , derived from a QSIM behavioral prediction, satis�es a given temporallogic proposition P in CTL or CTL*.� Emerson [1990] provides the following complexity results for the slightly more di�cult modelchecking problem, which determines the satis�ability of P for every s in M .{ The model-checking problem for CTL is in deterministic polynomial time.{ The model-checking problem for CTL* is PSPACE-complete.Therefore, while CTL* is a more expressive language than CTL, model-checking for CTL* ispotentially vastly more computationally expensive. CTL appears to be su�ciently expressivefor our purposes.� Interesting statements are naturally expressible in modal temporal logic, and hence can beautomatically checked against a qualitative behavior tree. For example,{ (necessarily (always P)) means that P is true throughout the dynamic behavior ofthe system.{ (necessarily (eventually (and (status quiescent) (status stable)))) and(necessarily (always (implies (status stable) P))) together imply that the dy-namical system has a quasi-equilibrium view, and that P is true in that view.Figure 7 illustrates the checking of statements in CTL against a partial behavior tree producedby QSIM simulation of a simple non-linear PI controller.QSIM guarantees coverage of every possible behavior by the predictions in the behavior tree.However, its inference capabilities may not be powerful enough to refute every impossible behavior.Therefore, caution is required before concluding that a proposition is true of the behavior of adynamical system, given the fact that it is true of a QSIM behavior tree.� If (necessarily P) is true of the behavior tree, then it is true of every dynamical systemmatching the QDE and initial state description.� If (possibly P) is true of the behavior tree, it may not be true of corresponding dynamicalsystems, since P might have been true only of spurious behaviors in the tree.Fortunately, in all of our examples, we have needed only statements of the form (necessarily P),so their validity applies both to the QSIM behavior tree and to the dynamical systems being rea-soned about.
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17 (a)modal temporal logical QSIMnecessarily until and qvalpossibly next or statuseventually impliesalways not(b)Simulating KJA PI controller.Behavior tree rooted at S-0, with 1 initial states and 17 behaviors.Some behaviors don't terminate...Checking: (EVENTUALLY (STATUS QUIESCENT)).Validity = (NIL NIL T NIL T T T NIL T T T NIL T T T T T)....but all that terminate have zero error.Checking: (NECESSARILY (ALWAYS (IMPLIES (STATUS QUIESCENT) (QVAL E (0 STD))))).Validity = T.Every fixed point is stable.Checking: (NECESSARILY (ALWAYS (IMPLIES (STATUS QUIESCENT) (STATUS STABLE)))).Validity = T. (c)Figure 7: Qualitative behavior trees and temporal logic(a) The possible behaviors of a QDE model of a simpli�ed non-linear PI controller | _e + f(e) + R e = 0,where f 2M+ | are described by a tree of qualitative state descriptions.The tree grows { and time passes { from left to right, with each state linked to its possible directsuccessors. Filled and open circles represent time points and open intervals, respectively. A circleddot represents a �xed point, not necessarily stable. An ellipsis represents an incomplete branch of thetree.(b) The operators of modal temporal logic provide an appropriate language for querying and describing thebehavior tree.(c) For this model of a simple PI controller, we can conclude that every �xed-point is stable and representszero error. (There are methods in QSIM for eliminating the non-terminating behavior descriptions,but they are not yet integrated with the CTL validity-checker.)



Heterogeneous Control January 22, 1993 165 Guarantees for the Water Tank Controller5.1 Qualitative Combination of Local PropertiesFigure 8 summarizes a qualitative analysis of the water tank controller taking the �rst approachdescribed in �gure 6. The analysis begins by determining the direction of motion of the systemas speci�ed by each control law individually. The properties of the appropriateness measures arenot required. Then, in the regions of overlap, if the directions of change agree, the global law forthe heterogenous controller must give motion in the same direction. If the di�erent control lawsgive motion in opposite directions in the overlap regions, a deeper analysis combining qualitativesimulation with order-of-magnitude [Mavrovouniotis & Stephanopoulos, 1988] or semi-quantitativeconstraints [Kuipers & Berleant, 1988; Berleant & Kuipers, 1992; Kay & Kuipers, 1992] may beable to reduce ambiguity about the system's behavior.In order to guarantee that the directions of change agree on the overlap regions (a; b) and(c; d), and therefore that the system always ends up within the \pure" operating region (b; c) ofthe Normal controller, we need to impose constraints on (1) the range of inow perturbations tobe handled, and (2) the magnitude of the High response.1. From the Normal model: qb < q < qc (1)where qb (respectively, qc) is the value of q that results in steady state at x = b (respectively,x = c).2. From the High model: q < umax � p(c): (2)The individual steps of the analysis depicted in �gure 8(b) are accomplished by simulatingqualitative models of the water tank with each individual local controller, over the region whereits appropriateness measure is non-zero. With the constraints (1) and (2) incorporated into themodels, the predictions have the desired properties. As shown in Figure 9(top), QSIM simulationof the water tank with control law ul gives three qualitatively distinct behaviors; un gives 34; anduh gives 21.Once all possible behaviors have been determined, speci�cations in CTL of the desired propertiesof each local controller are checked for validity against the behavior tree. In �gure 9(bot), we seethat the CTL model-checker determines that each of the given speci�cations is a valid descriptionof the corresponding tree of possible behaviors.Finally, since the direction of motion of the global system is the average of the directions ofmotion of the local systems, with non-negative weights, the global system must show the desiredqualitative behavior: motion from any point in the state space to a stable �xed-point in the interval(b; c). Note that this conclusion does not depend on other constraints, in particular on the shapesof the appropriateness measures.5.2 Abstracting Behavior to a Transition GraphThese qualitative properties of the behavior of the system and its heterogeneous controller can beexpressed as a �nite transition graph in which the nodes correspond to the operating regions, and



Heterogeneous Control January 22, 1993 17the directed edges correspond to transitions between regions.Low �! Normal  � Highwhere the double box signi�es that the Normal region includes a steady state, and so can persistinde�nitely, while the other regions can persist only for a �nite time.The abstraction relation is de�ned as follows:� The state of the system corresponds to a node of the transition graph if it is in the interiorof the corresponding \pure" operating region, where its appropriateness measure is equal to1.� There is a directed link between two nodes in the transition graph if the system state movesmonotonically from one node to the other (i.e., there is no quiescent state in the overlapregion between the two pure regions). During behavior corresponding to a directed link,the appropriateness measure of one region decreases monotonically, while the other increasesmonotonically.� THere may be no other behaviors that intersect the overlap regions.5.3 Human and Automated InferenceIt is important to be clear about which steps in the analysis are and are not automated. Qualitativesimulation of the controller models and CTL checking of the speci�cations are both automated.The speci�cations themselves are provided by the human analyst. The need for additional con-straints is determined automatically, since QSIM simulation produces a behavior tree for whichthe speci�cations are not valid. The constraints themselves are determined by the human analyst.Assembly of the local speci�cations into a guarantee for the heterogeneous controller is done by thehuman analyst.In principle, it should be possible to automate these steps as well, but this will require advancesto the state of the art in qualitative model-building, symbolic and algebraic manipulation, andtemporal logic theorem-proving.



Heterogeneous Control January 22, 1993 18� (a) Overlapping operating regions for the local laws.�����ZZZZZ �����ZZZZZl(x) n(x) h(x)Low Normal High� (b) Predict qualitative behaviors; require agreement where local laws overlap.- -- - q � �� �Low)Normal)High)� (c) Determine constraints to guarantee monotonic behavior in overlap regions.Low ) q > 0Normal ) qb < q < qcHigh ) q < umax � p(c)� (d) Abstract the control law to a �nite transition diagram.dl(x)dt < 0dn(x)dt > 0 dh(x)dt < 0dn(x)dt > 0Low Normal High- �Figure 8: Qualitative combination of properties of local laws.
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21Simulating controller U_l.Behavior tree rooted at S-0, with 3 initial states and 3 behaviors.Checking UPWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((NIL B) NIL))(QVAL X (NIL INC))))).Validity at S-0 = T.Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).Validity at S-0 = T.Simulating controller U_n.Behavior tree rooted at S-40, with 16 initial states and 34 behaviors.Checking UPWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((NIL B) NIL))(QVAL X (NIL INC))))).Validity at S-40 = T.Checking DOWNWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((C NIL) NIL))(QVAL X (NIL DEC))))).Validity at S-40 = T.Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).Validity at S-40 = T.Checking STABILITY: (NECESSARILY (EVENTUALLY (AND (QVAL X ((B C) STD))(STATUS QUIESCENT)(STATUS STABLE)))).Validity at S-40 = T.Simulating controller U_h.Behavior tree rooted at S-167, with 3 initial states and 21 behaviors.Checking DOWNWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((C NIL) NIL))(QVAL X (NIL DEC))))).Validity at S-167 = T.Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).Validity at S-167 = T. Figure 9: Local analysis of heterogeneous level-controllerQSIM behavior trees representing the possible behaviors of the water tank controlled by each local law,along with CTL statements implying qualitative agreement among the local laws and justifying the discreteabstraction in Figure 8.



Heterogeneous Control January 22, 1993 205.4 Qualitative Analysis of the Global Control LawFollowing the second path in �gure 6, a global analysis of the heterogeneous system is possiblewhen we can establish suitable relations among the individual control laws.Suppose we can establish that the global control law u(x) is a monotonic function of x. Thenthe closed-loop system can be described as_x = q � u(x) p(x) = q � f(x); for some f 2M+:Since this is a �rst-order system, the analysis is straight-forward. An equilibrium exists if q is inthe range of f . The solution is unique since f is monotone. The solution is stable because f 0 > 0,since f 2M+.It is necessary to introduce some compatibility conditions in order to avoid pathological behaviorof the system. To see this, consider the case where only two controllers are combined (e.g., theNormal and High controllers over the range (b;1) in the water-tank example). The control signalis then u(x) = n(x) un(x) + h(x) uh(x):It is natural to have controllers such thatdundx � 0 and duhdx � 0:Unfortunately, these conditions do not guarantee that u is monotone. To obtain this, some auxiliaryconditions are required.Consider u0 = n u0n + n0 un + h u0h + h0 uhn+ h = 1n0 + h0 = 0The problem is that n0 is negative. However, we can conclude:u0 = n u0n + h u0h + h0(uh � un)This assures us that u0 > 0, and hence that f(x) = u(x) p(x) is in M+, if we impose the naturalcondition un(x) � uh(x):This condition needs to hold only for x where the two regions overlap. The argument obviouslyextends to more complex heterogeneous controllers, such as the water tank, where no more thantwo regions overlap at any point.



Heterogeneous Control January 22, 1993 215.5 Integral ActionThe bias term in the proportional controller was introduced to make it possible for the controllerto keep the level at the set point. Integral action may be viewed as an automatic adjustment ofthe bias term [See Figure 2.2 in �Astr�om and H�agglund, 1988]. For a simple PI controller the biasis adjusted according to T dusdt + us = ke + usor T dusdt = up = ke (3)where up is the output of the PI controller, e is the error x� xs, k is the proportional gain, and Tis the integration time. For a composite controller like the one used in heterogeneous control, upshould be replaced by the output of the heterogeneous controller.Analysis of a controller with integral action is more complicated because the closed loop systemis described by a second order di�erential equation and a simple monotonicity argument like theone used previously does not apply directly.There were two alternative approaches to the qualitative analysis of the heterogeneous \propor-tional" controller. Similarly, there appear to be three basic approaches to analyzing the \integral"component of a heterogeneous controller.1. The bias term us is adjusted, at a slower time-scale, by a heterogeneous P-controller as afunction of the steady-state error, xs � x(1) as discussed below.2. Local control laws, even with integral action, can be analyzed qualitatively, and associatedwith overlapping operating regions in the phase plane. If the directions of ow in the overlapregions are compatible, the qualitative descriptions can be combined into a discrete transition-graph representing behavior in the phase plane [Sacks, 1990].3. The local laws may be combined into a global control law using the weighted average combi-nation rule, which may then be analyzed qualitatively.One possibility is to exploit the fact that integral action is a slow process. The idea of timescale separation introduced in [Kuipers, 1987] can then be applied. The full details will be givenelsewhere. Let us just outline the ideas of the reasoning. Provided that the integration time T issu�ciently small the closed loop system can be decomposed into a fast system, where the bias termis considered constant, and a slow system, where the fast system is considered as a static system.The previous analysis then applies to the fast system. It follows from this analysis that the levelgoes to an equilibrium which may be di�erent from the set point. At equilibrium the fast systemcan be described by up = �f(us) (4)where the function f belongs to M+. The slow system is described by (4) and (3), i.e.T dusdt = up = �f(us)Since f is monotone this equation has a unique stable equilibriumup = ke = 0which implies that the error e must be zero when the slow system reaches equilibrium.



Heterogeneous Control January 22, 1993 226 Example: A Nonlinear Chemical Reactor6.1 The SystemIn order to demonstrate heterogeneous control in a somewhat more realistic context, we consider asimple, but highly nonlinear chemical reactor: a reversible exothermic reactionA k*)k�1Rin which the extent of the reaction increases with reactor temperature at lower temperatures anddecreases at higher temperatures. This causes the gain of the plant (the dependence of the con-centration of R, which is the controlled variable, on the inlet temperature, Ti) to change sign as afunction of reactor temperature, making the reaction di�cult to control [Economou, et al., 1986].The process can be modeled by the following system of ordinary di�erential equations, whereAi and Ri represent the feed species concentrations of the reactant and the product, and the statevariables A, R and T represent the outlet species concentrations of the (unreacted) reactant andthe product, and the reactor's temperature, respectively. The system is manipulated by varyingthe inlet feed temperature Ti.� Reactant mass balance: dAdt = 1� (Ai � A)� k1A + k�1R (5)� Product mass balance: dRdt = 1� (Ri �R) + k1A � k�1R (6)� Energy balance: dTdt = ���HR�Cp � (k1A� k�1R) + 1� (Ti � T ) (7)where k1 = C1 exp(�Q1=RT ) and k�1 = C�1 exp(�Q�1=RT ).The equilibrium conversion from A to R is a function of temperature with a well-de�ned max-imum, as shown in �gure 10. We want to operate the system at the setpoint R = Rs when thatis physically possible given the input; otherwise, as close as possible to the maximum conversion.The problem, of course, is that the steady-state gain at the maximum is zero, so manipulation ofinlet feed temperature Ti has no e�ect on the system at that point.6.2 The ControllerWe will cope with the non-linearity of the system by de�ning three operating regions: Left andRight, having linear control laws with gains of opposite signs; and Dead, a region around the peakof the curve where control actions have no e�ect, so none is taken.The heterogeneous controller is described in �gure 11.
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300.00 400.00 500.00 600.00 700.00Figure 10: The equilibrium conversion from A to R is a non-monotonic U� function of temperature,with a well-de�ned maximum. (Corresponds with [Economou, et al, 1986], �gure 7.)6.3 The ProofA QSIM model was constructed corresponding to equations (5), (6), and (7), and the heterogeneouscontroller described in �gure 11. The model predicted the response of the system to a change inthe inlet reactant concentration, Ai.A certain amount of e�ort was required to �nd a level of abstraction at which the QSIM behaviorprediction was tractable. This included a quasi-equilibrium assumption: the controller assumes thatthe reaction is always near equilibrium. The set of possible behaviors is shown in �gure 12.In response to a change in inlet reactant concentration Ai, the desired behavior is that theoutput R returns to the setpoint Rs. In case of decreasing Ai this may be impossible, in which casethe system should move into the dead zone, T 2 [b; c]. Within the dead zone, no control action ispossible, so we cannot ensure that the system attains the absolute maximum conversion, but sincethe system's gain is very low in that region, it cannot be very far from the maximum.We express the desired behavior as the following CTL proposition, stating that the systemnecessarily moves to a stable quiescent state, either at zero error or in the dead zone.STABILITY: (:NECESSARILY (:EVENTUALLY (:AND (:STATUS QUIESCENT)(:STATUS STABLE)(:OR (:QVAL E (0 STD))(:QVAL TO (B STD))(:QVAL TO (C STD))(:QVAL TO ((B C) STD))))))Figure 12 shows the result of using QSIM and CTL to check the validity of this propositionon two scenarios, in which the system starts in equilibrium at optimal conversion and there is anupward or downward perturbation to the inlet reactant concentration Ai.To illustrate these conclusions by numerical simulation, Figure 13 shows the e�ect on R andT of temporary but substantial (�20%, �2%, and +10%) perturbations to Ai. The reaction ismodeled with the same numerical parameters used in [Economou, et al, 1986], and the heterogeneouscontroller uses the values kl = �1:5, kh = 3:0, a = 420:0, b = 438:4, c = 438:5, d = 445:0.
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The non-monotonic reactor:R : the outlet product concentration (controlled)Rs : the setpoint for RTi : the inlet temperature (manipulated)T : reactor temperature (determines appropriateness)The operating regions and their appropriateness measures:








JJJJJJJJJ 








JJJJJJJJJl(T ) d(T ) r(T )Left Dead Right10 a b c dT = reactor temperatureThe local control laws:T 2 Left ) ul(R) = kl(R�Rs) + ul; kl < 0T 2 Dead ) ud(R) = 0T 2 Right ) ur(R) = kr(R�Rs) + uh; kr > 0The global control law:u(T;R) = l(T )ul(R) + d(T )ud(R) + r(T )ur(R):Figure 11: A heterogenous controller for the non-monotonic reaction.
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23Behavior tree rooted at S-2,with 3 initial states and 5 behaviors.Validity at S-2 = T.Behavior tree rooted at S-26,with 1 initial states and 1 behaviors.Validity at S-26 = T.Behavior tree rooted at S-29,with 1 initial states and 3 behaviors.Validity at S-29 = T. Behavior tree rooted at S-2,with 9 initial states and 17 behaviors.Validity at S-2 = T.Behavior tree rooted at S-312,with 3 initial states and 3 behaviors.Validity at S-312 = T.Behavior tree rooted at S-322,with 3 initial states and 3 behaviors.Validity at S-322 = T.Figure 12: Under both perturbations, the desired stability property holds on all paths. The �nalstates on all paths are quiescent and stable. Either the system reaches its setpoint (E = R�Rs = 0)or the dead zone (To 2 [b; c]).
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0.00 50.00 100.00 150.00Figure 13: Temporary disturbance (from t = 0 to 20 min) of �20%, �2%, and +10% in Ai, theinlet reactant concentration. (kl = �1:5, kh = 3:0, a = 420:0, b = 438:4, c = 438:5, d = 445:0.)� �20%. Temperature at the beginning drops because Ai dropped. Then the controller brings thetemperature up, towards the peak, to increase conversion, i.e. keep R high. Of course it fails to keepR to the set point (there is simply not enough input to get that much output), but it keeps it as highas possible keeping conversion near the max. When the disturbance is over (t = 20), Ai returns to1.0, so T starts increasing for a while, till the controller lowers it to get back to the peak of the curve.Note that the total T variation is about 0.5 degree. (Similar to Figure 12 in [Economou, et al, 1986],but for a much larger disturbance).� �2%. Equivalent to Figure 12 in [Economou, et al, 1986].� +10%. Temperature is increased in order to lower R to Rs, in which it succeeds before t = 20, andafter t = 20 the controller drops T to bring the system back to the set point. The time-axis on thisgraph is extended to demonstrate that the temperature returns to nominal.



Heterogeneous Control January 22, 1993 277 ConclusionWe have demonstrated a method for composing heterogeneous control laws from simple classicalelements. We have also demonstrated a method for validating the composed laws, even in thepresence of incomplete knowledge, using qualitative simulation to predict the tree of all possiblebehaviors of the system and modal temporal logic to check that a desired guarantee holds for thattree.7.1 Relation to Fuzzy Logic ControlHeterogeneous control is a kind of fuzzy control. It shares many goals with, and draws muchinspiration from, fuzzy logic control [Zadeh, 1973; Mamdani, 1974; Kosko, 1992]. However, thereare important di�erences between heterogeneous and fuzzy logic control. Within the framework offuzzy logic control, it is di�cult to exploit, or even relate to, the methods or results of traditionalcontrol theory. Our approach uses landmark-based qualitative reasoning to combine the bene�tsof fuzzy control with the analysis methods of traditional control theory.Granularity. A fuzzy logic controller is typically speci�ed as a relatively �ne-grained set of (fuzzy)regions, with a constant (fuzzy) action associated with each region. In heterogeneous control,the design for a controller speci�es a smaller set of possibly overlapping operating regions,but with a classical control law associated with each region.The net result of these two di�erences is that a heterogeneous controller requires a simplerspeci�cation, while providing the higher-precision control characteristic of classical controllaws.Validation. The concepts underlying fuzzy logic control are relatively di�cult to map into theclassical framework, making it di�cult to exploit existing methods for providing guaranteesfor the properties of fuzzy logic controllers.In heterogeneous control, qualitative simulation can be used to analyze the local laws, and tocombine their properties to provide guarantees on the global laws.Ontology. Heterogeneous control does not treat \linguistic values" or \linguistic variables" asobjects in either the domain or range of functions. Rather, the fundamental objects inheterogeneous control are real-valued, continuously di�erentiable functions, and sets of suchfunctions de�ned by qualitative descriptions.Linguistic terms are treated simply as names for the operating regions of the mechanism. Thespeci�cations for the operating regions are evaluated by qualitative analysis methods.\Defuzzi�cation." The output of a fuzzy logic controller is an action with a fuzzy magnitude.The fuzzy magnitude must then be mapped to a real value for output. Since heterogeneouscontrol laws are algebraic combinations of classical control laws, they provide real, not fuzzy,outputs, so \defuzzi�cation" is not necessary.Generality. In the implementation of either a heterogeneous or a fuzzy logic controller, fuzzy setmembership functions must be represented as speci�c real-valued functions. However, theanalysis of a heterogeneous controller relies only on its qualitative description (e.g. S+, S�,
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