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A function estimator MSQUID is presented for fitting and bounding noisy data that
are known to be monotonic. MSQUID augments a “backpropagation”neural network
model with a set of constraints which restricts the model to monotonic functions. Model
parameters are estimated using nonlinear, constrained optimization at little increase in
computation over standard neural networks. It is proven that MSQUID can estimate
any monotonic function and produces more accurate estimates than unconstrained op-
timization. These monotonic functions and their confidence bounds can be used in

many fault detection and diagnosis systems.

Introduction

System identification traditionally assumes that exact
equational forms are known and then estimates parameters.
In contrast, the recent extensive use of neural networks makes
(in the limit of large networks) no assumption of functional
form. Often, one has some intermediate level of knowledge,
such as monotonicity of a function. A reaction may be known
to increase with temperatures or a flow rate increase with
pressure even if the precise functional form is unknown.

In this article, we present MSQUID, a Monotonic Semi-
QUantitative system IDentification method for defining and
searching a model space composed of neural networks con-
strained to be monotonic functions. (MSQUID is based on
our earlier work first presented in Kay and Ungar (1993).) A
mimber of fault detection and diagnosis systems are based on
knowing the approximate bounds on the functions which con-
stitute the process models (Dvorak and Kuipers, 1989; Trave-
Massuyes and Milne, 1999; Vinson and Ungar, 1995). In ad-
dition to providing a general method for fitting functions us-
ing weak prior knowledge, MSQUID provides an automated
way of finding such bounds which does not require assuming
a parametric form. It also forms the basis for the SQUID
system (Key et al., 1999) that refines ODE model spaces.

Techniques for estimating a functional relationship be-
tween an output variable y and the input vector x typically
assume that there is some deterministic function g and some
random variate e such that y = g(x)+ €, where € is a nor-
mally distributed, mean zero random variable with variance
o? that represents measurement error and stochastic varia-

tions. The estimate is computed by using a parameterized fit-
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ting function f(x;@) (which defines a model space in terms
of the unknown 0) and then using regression analysis to de-
termine the values @ such that f(x;0) = g(x).

Traditional regression methods require knowledge of the
form of the estimation function f. For instance, we may know
that body weight is linearly related to amount of body fat. We
may then determine that f(weight;#) = weight 0 is an appro-
priate model. Neural network methods have been developed
for cases where no information about f is known. This may
be the case if f models a complex process whose physics are
poorly understood. Such networks are known to be capable
of representing any functional relationship given a large
enough network. In this article, we consider the case where
some intermediate level of knowledge about f is known. In
particular, we are interested in cases where we have knowl-
edge of the monotonicity of f in terms of the signs of (3f/dx,)
where x, € x. For example, we might know that outflow from
a tank monotonically increases with tank pressure. This type
of knowledge is prevalent in qualitative descriptions of sys-
tems, so it makes sense to take advantage of it.

Since the estimate is based on a finite set of data, it is not
possible for it to be exact. We therefore require our estimate
to have an associated confidence measure which takes into
account the uncertainty introduced by the finite sample size.
For our semiquantitative representation, we are therefore in-
terested in deriving an envelope that bounds all possible
functions that could have generated the data-stream with
some probability p.

This article describes MSQUID, a method for estimating
and computing bounding envelopes for multivariate functions
based on a set of data and knowledge of the monotonicity of
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the functional relationship. First, our method is described for
computing an estimate f(x;8)= g(x) based on a neural net-
work that is constrained to produce only monotonic func-

. tions. Second, our method is described for computing a
bounding envelope, which is based on linearizing the estima-

tion function and then using F statistics to compute a simul-
taneous confidence band. Third, several examples are pre-
sented of function fitting and its use in semiquantitative sim-
ulation using QSIM. Next, the performance of MSQUID is
analyzed with respect to the number of units in the hidden
layer, noise level, and complexity of the monotonic function.
Finally, we discuss related work in neural networks and non-
parametric analysis and describe some applications of this
metHod. ’

Bounded monotonic functions are a key element of the
semiquantitative representation used by simulators such as
Q2 (Kuipers and Berleant, 1988), Q3 (Berleant and Kuipers,
1997), and Nsim (Kay and Kuipers, 1993) which predict be-

- haviors from models that are incompletely specified. Bounded

functions are also used, among other places, in VLSI simula-
tion (Zukowski, 1986). To date, the bounds for such functions
have been derived in an ad hoc manner. The work described
in this article provides a systematic method for finding these
functional bounds. It is particularly appropriate for semi-
quantitative monitoring and diagnosis systems (Dvorak and
Kuipers, 1989; Rinner and Kuipers, 1999; TraveMassuyes and
Milne, 1999; Vinson and Ungar, 1995) for chemical plants or
devices such as turbine engines because process data is read-
ily available in such applications.

Computing the Estimate

Computing the estimate of g requires that we make some
assumptions about the nature of deterministic and stochastic
portions of the model. We assume that the relationship be-
tween y and x is y=g(x)+ e where € is a normally dis-

_tributed random variable with mean 0 and variance o2, Other .

assumptions, such as different noise probability distributions
or multiplicative rather than additive noise coupling could be
made. The above model, however, is fairly general and it per-
mits us to use powerful regression techniques for the compu-
tation of the estimate and its envelope. For situations where
variance is not uniform, we can use!variance stabilization
techniques to transform the problem so that it has a constant
variance.

In traditional regression analysis, the modeler supplies a
function f(x;0) together with a dataset to a least-squares al-
gorithm which determines the optimal values for @ so that
f(x; 0) = g(x). The estimated value of y is then §= f(x;8).
In our case, however, the only information available about f
is the signs of its n partial derivatives (3f/9x,) where x, € x,
so no explicit equation for f can be assumed. One way to
work without an explicit form for f is to use a neural net
function estimator. Figure 1 illustrates a network for deter-
mining J given a set of inputs x. The network has three lay-
ers. The input layer contains one node for each element x,
and one bias node set to a constant value of 1. The hidden
layer consists of a set of n, nodes which are connected to
each input variable as well as to the bias input. The output
layer consists of -a single node which is connected to all the
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Figure 1. Neural net-based function estimator.

This three-layer ‘net computes the function § =
o E 7 dwoy g0 Eln wigg s+ Wign a1 D1+ Wopn, 41

hidden nodes as well as to another bias value which is fixed
at 1. (The bias terms permit the estimation function to shift
the center of the sigmoid.) All nodes use sigmoidal basis
functions and all connections are weighted. In our notation,
Wy;,j; fepresents the connection from input x; to hidden node
Jj and wy;;; represents the connection from hidden node j to
the output layer. (The weight wy, . ; represents the con-
nection to the input bias and the weight w,y, .1, represents
the connection from the hidden layer bias node to the output
node.) This network represents the function

5"\ = G-(S + wo[n,,+1,1])

M n
s=X [Wau,n" ( L W+ Witn+1,n)J

j=1

i==

where o (x) is the sigmoidal function (1 - e™*)A1+ ™). We
can compute the weights by solving the nonlinear least squares
problem

H}jﬂ Z ()’i'}"\i)z
i

where ;= f(x;w) and w is a vector of all weights. Cybenko
(1989) and others have shown that with a large enough num-
ber of hidden units, any continuous function may be approxi-
mated by a network of this form.

One drawback of using this estimation function is that it
can over-fit the given data. This results in the estimate fol-
lowing the random variate € as well as the deterministic part
of the model which means that we get a poor approximation
of g. Many regularization methods can be used to reduce
overfitting at, of course, the cost of introducing bias. We
therefore reduce the scope of possible functions to include
only monotonic functions. To do this, note that if f is mono-
tonically increasing in x,, then (9f/9x,) must be positive. By
constraining the weights, we can force this derivative to posi-
tive for all x, insuring that the resulting function is mono-
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tonic. The derivative in question is

af as

——=G(s+W R

(?xk ( ofn,+ 1,1]) ¢9Xk
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Tk j=1 i=1 .

Since & is positive for all values of its domain, (8f/dx,) will
be positive if (9s/dx;) is positive. This will be the case if, for
each k in[1...n,}

VicjenWorinn Witk 1 2 0. ¢y

If partial derivative is negative, then the inequality is re-
versed. While this result holds for any k, for the remainder
of this article we restrict our interest to single input models
(that is, k=1). The Appendix contains a proof that a net-
work constrained in this manner is capable of representing
any monotonic function.

This set of additional constraints on weights causes the

-network to produce only monotonic functions. We may deter-
mine an estimate # for the weights by solving the problem

. a2
min Y. (¥~ )
LA
subject to V) < j < Wiy War,n = 0- )

These n, constraints transform the least squares problem
into a constrained nonlinear optimization problem. While
more difficult to solve than the unconstrained problem, there
are still a number of methods based on numerical methods.
In our work we use the OPT algorithm (Biegler, 1985: Biegler
and Cuthrell, 1985).

To compute the estimate, we need to find the best value
for n,. We determine n, by repeatedly solving the optimiza-
tion problem for increasing values of n,, starting at 1 and
continuing until there is no improvement in the sample stan-
dard error P

A

A2
Zi(}’i“‘}’i)
n—p

where the p=n,~n, in the denominator accounts for re-
ducing the degrees. of freedom by one for each hidden unit
since each hidden unit adds a constraint to the optimization
problem.

Since this type of regression method is strongly susceptible
to scaling problems, we prescale the data so that each inde-
pendent variable falls in the range [0,1] and the dependent
variable falls within the range [0,0.8]. (The upper value is less
than 1.0 so that the output sigmoid does not saturate.) For
monotonically decreasing functions, we perform a further
transformation that maps each y value.to 0.8 — y thus mak-
ing it a monotonically increasing function.

Figure 2 shows the result of using the above method to
estimate a fit to a data-stream derived from a quadratic func-
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Figure 2. Fitting a neural net estimator to a data stream
of 100 points.

The data was generated by adding noise with a variance of 4
10 the curve y = x2+5 (shown as a dashed line). The esti-
mated function is shown as a solid line. There are two hid-
den nodes.

tion with noise from a normal distribution with ¢ 2 = 4. Note
that the estimate is in fact monotonic and does not follow the
noise.

Computing the Envelope

The estimate computed in the previous section is affected

‘ by the sample dataset. Since this dataset is of finite size, the

estimate generated from it will not be precisely correct. In
this section, we describe our method for bounding our esti-
mate with an envelope that captures the uncertainty intro-
duced by using a finite set of data.

The typical confidence estimate used in regression analysis
is the confidence interval, which is defined at a point x as
P(f(x)—b, < g(x) < flx)+b)=1-« where b, depends on
x. The confidence interval is a point probability measure since
it expresses the uncertainty of the estimated value f(x) at a
single point x in the domain. Since we wish our envelope to
bound all possible functions, we require that our confidence
interval holds simultaneously at all points in the domain. This
measure (called a confidence band) can be easily computed
for linear regresSion models. Since our model is nonlinear,
we use a linearization of f to form an approximate confi-
dence band.

Assume that we have a linear model fx;8)= x’B where
B is a parameter vector of length p and that B is our esti-
mate of the parameters. If we represent the data-stream as a
matrix [¥]X] where the ith row represents a single sample
data-point (y;, x;), it can be shown (Bates and Watts, 1988)
that the 1— @ confidence band for f is

2B + sypF(a;p,n—p) 1R

where 52 is the sample standard error (| Y — X B 1D /n-p),
F is the a quantile of the F-statistic with p and n— p de-
grees of freedom, and ‘R is the square portion of the QR

AIChE Journal



decomposition of the array of sample inputs

se-ofs)

Geometrically, the columns of X form a p-dimensional lin-
ear subspace called the expectation surface in which the solu-
tion must lie. The least square computation finds the point
on the expectation surface that is closest to Y.

To use this result, we must linearize the nonlinear problem
as follows. Note that the entry x,, of X is (ax,f/z?,Bp). Using
this, we linearize our estimator by defining a matrix ¥ such
that v,,= df(x,;#)/dw, and a vector v such that u,=
(of(x;w)/dw,. The énvelope is then defined by

f(xW) £ sypF(a;p,n—p) 1v'R; |

where

o8]

The linearization can be viewed as defining a plane which is
tangent to the true expectation surface (which is not a linear
subspace) at %. Assuming that # is close to the exact value
for w, the linearization will hold near this point on the plane.

Because the linearization is only an approximation, this es-
timate does not provide an exact 1— a confidence band for
f. However, the result is approximately correct and depends
on the degree of nonlinearity of the expectation surface (Bates
and Watts, 1988).

We use the LINPACK subroutine DQRDC to compute the
QR decomposition of V. This method performs the decom-
‘position using pivoting so that R, is both upper triangular
and has diagonal elements whose magnitude decreases going
down the diagonal. With this form, we can easily recognize
the case where the linearized matrix ¥ may not have full
rank (that is, only g < p columns are linearly independent).
This in turn means that R, has zeros in all diagonals past
column-g. In such cases, the product vTR;1 may not have a
solution. To handle this problem, we simply reduce the size

B

i

Figure 3. Reducing the size of a confidence band using
monotonicity information.

If we know that the underlying function is moﬁotonically in-
creasing, we can rule out the shaded areas of the figure as
part of the envelope.
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of R, by using only the upper left g X g corner. We must
then also reduce the size of v so that it does not contain
partials with respect to w; where > ¢. This is justified, since
if ¥ forms a p-dimensional basis for the linearized expecta-
tion surface, and its rank is only g, then the w; where i>gq
may be ignored since their value is arbitrary.

The confidence band is designed to cover all possible curves
that fit the data with a probability of 1~ «. With traditicnal
regression, this confidence band is the most precise descrip-
tion we can achieve given the general form of f. Using mono-
tonicity information, however, we can further refine our pre-
diction to derive a tighter envelope by ruling out portions of
the curves that could not be monotonic. Consider the confi-
dence band shown in Figure 3. If we know that the underly-
ing function is monotonic we may remove the shaded regions
from the prediction since no monotonic function within the
confidence band could pass through these regions. Note that
this final step could not be performed if we used point confi-
dence intervals.

Examples

This section consists of several simple examples of function
and one a real-world application of using MSQUID to esti-
mate stream-flow given level. It also briefly describes the use
of MSQUID to learn SemiQuantitative Differential Equa-
tions (SQDEs) from data.

Simple Examples

We have applied our envelope method to noisy datasets
whose underlying functions are linear, quadratic, square root,
exponential, and have sign changes in the second derivative.
In order to give a feeling for the form of the envelopes gener-
ated, we present several of these test cases. A complete sum-
mary is provided in the next section. Each result is for a uni-
variate monotonically increasing model function f(x). Figure
4 shows the estimate and envelope for a set of 100 samples
drawn from the function y = 0.5x +5 with additive noise with
variance 4. Note that the envelope expands at the ends since
there is less data there to constrain the estimate. The en-
velopes here are pointwise estimates and hence are not con-
strained to be monotonic. Simultaneous confidence bounds
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Figure 4. 95% envelope (solid lines) for the linear func-
tion y = 0.5x +5 (dashed line). :

The estimator has 3 hidden nodes. Sample variance is 4.520.
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Figure 5. 95% envelope (solid lines) for the quadratic
function y = x? +5 (dashed line).

The estimator has two hidden nodes. Sample variance is
4.227.

could be used and monotonicity imposed on them as illus-
trated in Figure 3. ’
The second example shown in Figure 5 is that of a quadratic
function with noise of variance 4. This dataset demonstrates
the effect of nonuniform sampling. In areas where there is
little data, the envelope bulges outward to compensate. Note
also that the upper portion of the envelope is narrowest at
the far end of the plot. This is due to bias in the estimation
function which assumes that the curve will “heel over” just
past the end of the dataset. For this reason, the computed
envelope is valid only over the range of the given data.

Application: Determining Stream Flow vs. Level
Curves :

The control of reservoir levels is of great importance to
water management authorities. Part of the task is determin-
ing the amount of inflow into a watershed from the different
streams that feed it. These measurements are particularly im-
portant during flood conditions so that potential reservoir
overflow can be predicted (and prevented) well in advance of
its actual occurrence. s ’ '

Unfortunately, measuring the flow of a stream is a manual
and time-consuming task involving the lowering of a flow
gauge into the stream at various points on a cross-section of
the stream. On the other hand, the measurement of level is
quite easy, and is often automatically sampled by data acqui-
sition equipment that immediately relays the information back
to a central office. Thus, an experimentally determined curve
that relates level to flow would provide a means for quickly
ascertaining stream-flow given only level.

One difficulty with producing such a curve is that finding a
parametric model for a particular stream can be difficult since
the shape of the stream-bed cross-section (which depends on
effects such as silting, vegetation, and physical obstructions)
must be accounted for. Typical solutions to this problem are
(1) to use a hand-drawn curve (which is time-consuming and
requires expertise) or (2) to use a logarithmic approximation
under the belief that “everything looks like a line on log-log
paper” (which often results in too simplistic a modeD.
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Figure 6. MSQUID to fit the flow vs. level data for the
Bay City gaging station.
The standard error is 907. While the fit is reasonably good,

it appears to miss the center of the main cluster between
levels 4 and 15 and falls below the points near level = 20.

While it is difficult to find a good parametric model, the
knowledge that flow is a monotonic function of level makes
constructing the stream-flow versus level curve an ideal appli-
cation for MSQUID. To test MSQUID on this task, we col-
lected stream-flow versus level datasets compiled by the
Lower Colorado River Authority (LCRA) for three streams
in the Austin area and fit them using MSQUID with three
hidden units. Figure 6 shows the results of fitting the data for
the Bay City gaging station. The standard error is 907, and an
analysis of the residuals shows that 95% of the data falls
within two standard errors of the estimate, indicating a rea-
sonable fit.

On more careful examination, however, we see that the fit
could be improved especially at levels below 10 (where the
curve passes above much of the data) and near level =20
(where the curve passes below the data). The reason why
MSQUID has produced a curve with a poor fit in these. re-
gions is because the data is mot sampled uniformly in the
dependent variable. Instead, the data is clustered about par-
ticular values of level. Clustering can lead to a bad fit be-
cause local properties of the data may be swamped by the
effect of far-away clusters. Clustering is particularly common .
in stream-flow data since most measurements are made at
«normal” water levels whereas it takes floods and droughts to
produce data for high and low levels.

One way to overcome this fitting error is to treat each clus-
ter as a separate fitting problem and to run MSQUID on
each region separately. One can then interpolate between the
clusters using a function that maintains monotonicity. (This
approach is in essence with what someone using a French
Curve would do—fit each cluster and then interpolate
smoothly between them.) Figure 7 demonstrates the resulting
fit using such a method. The Bay City measurements can be
split into three clusters representing the large mass of points
in [4, 15] together with two “arms” which contain points to
the left and right of the main cluster. Fitting each of these
clusters separately yields a standard deviation of 690 result-
ing in a 25% better fit. (To ensure a minimum number of
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Figure 7. Clustering version of MSQUID to fit the same
data as in Figure 6.

By using different MSQUID functions for the central clus-
ter and its arms, the fit is improved. The standard error in
this case is 690.

points in a cluster, we “borrow” points from the main cluster
as needed. This also improves the interpolation between clus-
ters).

Application: SQDE Learning

One of the motivations for developing MSQUID is as a
basis for learning semiquantitative models. Qualitative Pro-
cess Theory, as implemented in simulators such as QSIM
(Kuipers, 1986, 1994) give a formal language for describing
the monotonic relations MSQUID requires. Simulators such
as SQSIM (Kay, 1998) support simulations based on qualita-
tive models augmented with numerical information about the
monotonic functions and parameters. Normally, these numer-
ical envelopes are ad hoc in that they are hand-derived by
the modeler. By applying the MSQUID envelope method to
a data stream from the system, we can construct these en-
velopes in a more principled way. See Kay et al. (1999) for
examples.’ :

‘;
Analysis

Experiments comparing MSQUID and UNCMND
(Kahaner, Moler, and Nash, 1989), a fast, readily available,
unconstrained optimizer, using the same neural network
structure confirm what one would expect: when three hidden
nodes are sufficient to approximate the data, MSQUID gives
equally accurate models with 3 and 8 hidden nodes, while
unconstrained optimization overfits. For noisy data, this ef-
fect can be dramatic.

Discussion
Related work

This work is related to several approaches to function esti-
mation using neural networks. Cybenko (1989), among many
others, has shown that any continuous function can be repre-
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sented with a neural net that is similar to one that we use.
With our method, we assume g priori that the true function is
monotonic. This assumption restricts our attention to a
smaller class of functions which means that less data is needed
to compute a reasonable estimate, Additionally, we compute
a confidence measure on our estimate in the form of an enve-
lope.

The VI-NET method (Leonard et al., 1992) also uses a
neural network for computing estimates of general functions.
It is notable in that it provides a confidence measure on its
estimate and can determine when it is being asked to extrap-
olate. By using radial basis functions instead to sigmoidal
ones, it is able to handle different variances across the func-
tion. This is especially -useful in applications where there is
no a priori information about g. Because it allows noncon-
stant variances, it would be difficult to get a VI-NET to re-
turn simultaneous confidence bands, which are important
since we wish to bound all curves that could have generated
the data-stream. In contrast, our approach can only handle
fixed-variance problems, but since variance will often track
either x or y, we can make monotonicity assumptions about
o? if it should prove necessary. Under such circumstances,
variance stabilization techniques (Draper and Smith, 1981)
should prove useful in fixing the variance.

Other researchers have also computed prediction intervals
for neural networks, typically assuming constant variance (de
Veaux et al, 1999). As in VI-NET, this work does not make
any assumptions about the monotonicity of the functions.
Closer in spirit is the extensive work on hybrid networks
(Psichogios and Ungar, 1992; de Veauz et al., 1999), in which
neural networks are embedded into- algebraic or differential
equations. Hybrid Nets, like MSQUID, use prior knowledge
to constrain the space of functions being estimated. They dif-
fer in the form of constraint being used. It might, in fact, be
desirable to use both forms of constraint together.

This work is also related to monotonic function estimation
(Joerding and Meador, 1991; Hellerstein, 1990; Kruskal,

" 1964), particularly the NIMF estimator (Hellerstein, 1990)

which also determines envelopes for multivariate monotonic
functions. NIMF allows for a more general noise model (zero
mean, symmetrically distributed) and uses a nonparametric
statistical method for determining point confidence bounds.
These bounds, however, are much weaker than those derived
with methods that first compute an estimate. This is not sur-
prising, since we are assuming more about the noise than
NIMF does. Finally, NIMF produces point bounds only, and
it is unclear how these bounds could be made into confidence
bands of reasonable width.

Conclusions

This article has described a method for computing en-
velopes for functions described solely by monotonicity infor-
mation and a stream of data. It improves over existing meth-
ods for function estimation by providing a simultaneous con-
fidence band that encloses all functions that could have gen-
erated the data-stream. Using monotonicity information pro-
vides several benefits to function estimation:

e Less data are required to obtain a reasonably precise
model.
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Figure 8. Example of overfitting with an unconstrained
optimizer.

e Problems with overfitting are reduced.

e When combined with simultaneous confidence bands,
portions of the band can be eliminated, thus further improv-
ing mode] precision.

While the class of monotonic functions may seem restric-
tive for modeling continuous systems, we can represent many
nonmonotonic functions as compositions of monotonic ones.
For example, in a system of two cascaded tanks, the level of
water in the lower tank is typically a nonmonotonic function
of time. The flow into the lower tank, however, is the compo-
sition of a monotonically increasing function of the amount
of water in the upper tank and a monotonically decreasing
function of the water in the lower tank. By using semiquanti-
tative simulation methods, we can represent this composition
and thus simulate systems with nonmonotonic behaviors.

Use of low order polynomials provide a potential alterna-
tive to MSQUID for single dimensional problems such as we
have mostly used to illustrate the method. Unfortunately, even
quadratics violate monotonicity, and as can be seen looking
at the fit in Figure 8 (actually a neural net fit to a monotonic
model plus noise), a quadratic can give a deceptively good fit
to data which is monotonic if it contains substantial noise.
One could extend the concept of MSQUID to use higher or-
der polynomials (cubic, quartic, quintic), with monotonicity
constraints. This should work reasonably well for low dimen-
sional problems although it will not scale well to higher di-
mensional problems.

Our method for deriving bounds for monotonic functions
also plays a key role in the construction of semiquantitative
models, especially for monitoring and diagnosis tasks where
process data are readily available. Because the precision of
the resulting envelopes is a function of the amount of data
used to compute them, the MSQUID bounding method pro-
vides a systematic way of shifting the precision of a semi-
quantitative model along a continuum from pure qualitative
to exact quantitative models. ‘
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Notation

n =number of observations
n, =dimension of x
n, =number of hidden units in the network
n,, =number of weights in the network (a total of (n, +2n, +1)
p =degrees of freedom (n,, — 1)
x, y =domain and range of the function [y = g(x)]
wy;, 5 = weight from x; to hidden unit j
Worj,1) = weight from hidden unit j to the output
w =vector of all weights
W =estimated weight vector
estimate of y
variance
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Appendix: MSQUID Can Produce Any Monotonic
Function

In this section, we show that the set of functions that
MSQUID can represent includes the set of all continuous
monotonic functions. For simplicity, we consider only the case
of a one dimensional monotonic function (that is, function is
y = f(x) where x is scalar). The proof would follow directly
from [?] except that, for reasons of computational efficiency,
our constraint that guarantees monotonicity is overly strong.
To see this, note that the derivative of y is

2o nh
Y
T 0@t W) _Zl Wotja@ (Wi st + Wiz.j1) Wi
j=
ny
B2 L Wi (W jit + Wiz.j)
j=
ik N
To ensure monotonicity, this sum must be greater than or
equal to zero. To simplify the fitting process, however,
MSQUID uses the constraint

. a2
min Y. (y; = 9)
LA
subject 10 V; o ; < Worj17" Wi, j1 = 0-

which requires only that each ferm of the equation must be
greater than or equal to zero. Intuitively therefore, MSQUID
requires that each sigmoid in the composition must be mono-
tonically increasing which is not the case of the more general
constraint. )

For clarity, the proof below uses a slightly different defini-
tion of the sigmoid function and the network does not in-
clude a sigmoid at the final output of the network.
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Figure A1l. Geometric view of the proof.

Theorem 1. Let o be sigmoidal function such that o(x) — 1
as x> and o(x) - 0 as x — — . Then given any f(x) which
is monotonic over some region I and € > 0 there is a finite sum
of the form y(x)=1LN a,0(b;x +c;) where Ya;b;>0 for
which |y(x)— f(xl < e forallx € L

Proof. lLet € =y + 8 where 8 and y are nonzero. Select
N by partitioning I such that V., . n flr, ) flx )<y,
that is, f is subdivided so that there is no more than vy differ-
ence between any two contiguous points. We prove that
MSQUID can still produce any continuous monotonic func-
tion as follows (refer to Figure Al):

Assume that at x, the value of f is f(xg). Let yo(x)=
f(xo). Now let dy = f(x;,.)— fx,). Define g,(x)=d, o{bx
—[x, +(h,/D]} where b is chosen so that g (x)< 8/N for
x < x;, and d; — g(x) < 8/N for x > x;. Then define y, . (x)
=y (x)+ g (x).

We wish to show that

8
9e(0) = FR < e + 7 (A

for all x €[x, x,]. Clearly this is true for k = 0. For k =1 we
have

()= £ = yo(x) + go(¥) = ()
=1yo(x0) = f(x0) + 8o(¥) + ex(x)
where ¢,(x)<d, for all x&€[x;,x;, ] The first two terms

inside the absolute value are identical while the third term is
less than 8/N and the final term is less than y. Thus

()~ F( <3+

If we assume that Eq. Al is true for k then for £ +1 we
have

Yier 1(x) = FC = 13(2) + 8e(x) = F(2)L.
We split this into two cases—x € [xg, x; ] and x €[x;, x4}
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For x €[xy, x;] we have g,(x) < 8/N and so

3 ) 8
52 + g0~ D Sk 4y + = (R D+ -

For x €lxg, Xpe1) let de =g+ gmu + 8ux Where 8
and g, , are each less than 8/N. These terms represent the
approximation error of the sigmoid over [xxp4)

)+ 8e(5) = FON = l(5) + s+ 81 8 — F() = il

=1y(x) = FOl+ e + 81+ 8m ~dl

where p, = yi(x)— y(x,) is the amount that y, increases
over the same interval. Note that this term must be less than

8/N. We know that g+ 8, — d, = — g, and therefore

5
1y(2) + ge(x) = FOO < kg +7 + L — 8.l

Now since u, < 8/N and g, < §/N the third term of the in-
equality must be smaller than &/N which proves the state
ment for k +1.

Letting k = N gives us that

8
()= FIs NG +y=e

“over 1. Setting ¥(x)= yy(x) and the proof is complete.
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