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Abstract— Inspired by the early spatial learning of human
infants, we describe progress toward enabling a robotic learning
agent to learn the structure of peri-personal space — the
space immediately around the agent within which reaching and
grasping take place — with minimal prior spatial knowledge.

We propose the PPS Graph representation for early knowl-
edge of peri-personal space, a model that produces behaviors
qualitatively consistent with early human motion, and that may
provide information on how humans learn manipulation skills
through its implementation in a computational system. Each
graph node represents a visual sense vector and a propriocep-
tive sense vector corresponding to the same state of the world,
but neither sense vector has a pre-existing interpretation in
terms of a 3D model of the environment. An edge linking two
nodes in the PPS Graph represents the feasibility of motion
between those two states.

Learning starts with “motor babbling”, random exploration
of the space of joint angle vectors, leading to the creation of
an initial PPS graph representing arm configurations in an
otherwise empty space. The next crucial step is recognizing an
unusual event, such as accidentally colliding with an object and
changing its position. Once a type of unusual event has been
identified, the goal for learning is to identify the prerequisites
for an action to achieve an event of that type.

We report the results of experiments on a physical Baxter
robot, both on a small Learning Graph and on a much larger
Sampled PPS Graph to demonstrate scalability. We show how
appropriate features can be extracted from uninterpreted visual
images, and that combining weakly informative features with
Naı̈ve Bayes allows our robot to plan and make reliable reaching
motions. We hypothesize that a similar approach will extend
these results to grasping and moving objects.

I. INTRODUCTION

Peri-Personal Space (PPS) is defined as the space immedi-
ately around the agent that it can affect with its manipulators.
The agent can sense this space initially via vision and
proprioception, and later, touch. The problem we address is
how an agent can learn from its own unguided experience to
represent and use the structure of peri-personal space.

Experts in computer vision [9] and robot manipulation
[15] have developed powerful methods for using precise
prior knowledge of the physical properties of a robot to
reconstruct the geometry of the environment and its manip-
ulators. Although these methods are useful, they shed little
light on how an intelligent agent with minimal externally
provided knowledge can acquire these skills. By contrast, a
newborn human baby starts with random undirected motions,
and learns within a few months to interact purposefully with
objects in its peri-personal space.
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(a) (b)
Fig. 1. (a) Our physical Baxter Research Robot, shown with foreground
objects within its peri-personal space. (b) Our model allows the agent
to plan and execute motions that cause persistent changes in a target
object (the yellow cylinder in this case), while avoiding the other objects.
Through a series of experiments, we demonstrate that the agent learns visual
prerequisites for reliable actions for reaching a target object. The endpoint of
a reach is planned by using a graph representation of peri-personal space to
map from the desired visual appearance to the configuration that produced
it. Reaches planned in this way successfully Bump the target object in 90%
of trials, demonstrating the success of our model for autonomous learning
of early manipulation skills with minimal assumptions.

A. Constraints from Developmental Psychology

The infant exhibits an impressive ability to adapt to its
changing body and sensory and motor capabilities. We look
to developmental research with human infants for clues about
effective representations for knowledge and effective learning
methods. Fortunately, learning to reach has been a focus of
developmental research for many decades [3], [7].

From birth to about 15 weeks, infants can respond to
visually perceived objects, but during this “pre-reaching”
phase, they cannot reliably achieve contact [3]. From pre-
reaching until about eight months of age, reaching move-
ments become increasingly successful, but remain jerky, with
successive submovements, some of which may represent
corrective submovements [19], and some of which reflect
underdamped oscillations on the way to an equilibrium point
[17].

Since Piaget [12] and before, it was generally believed
that reaching was visually guided by feedback about the
relation between the hand and the target object. However,
it has since become clear that [7, p.1], “from their earliest
attempts, infants can reach in the dark toward a glowing
target without seeing their hand [6].”

After eight months, motion becomes less jerky, a single
primary movement dominates the reach as it does in older
children and adults, and vision of the hand becomes in-
creasingly important for shaping the hand in anticipation of
contact and grasping the target object [3]. Many aspects of



the evolution of reaching motion control can be explained by
dynamical systems theory [17] and by optimal control and
reinforcement learning [4].

This raises a key question [7, p.2]: “What remains unclear
is how looking at the object and bringing the hand to that
location occurs at first when infants perform their initial
intentional attempts to hit the target. What visuo-motor
mapping process allows this to happen?”

B. Robotic Models of Learning to Reach

Savastano and Nolfi [14] is the most comparable embodied
computational model of learning to reach and grasp. Using
a simulated model of the iCub robot, they demonstrate pre-
reaching, gross-reaching, and fine-reaching phases of learn-
ing and behavior. They describe their results as qualitatively
matching observations of children such as diminished use of
vision in the first two phases, and proximal-then-distal use
of the arm’s degrees of freedom.

Their learning mechanism is a recurrent neural network,
and the transitions from one phase to the next are represented
by adding certain links and changing certain parameters in
the network. This does result in qualitative changes in the
trajectories of the robot’s hand, but it begs the question about
how and why those changes take place.

Chinellato, et al, [5] describe an approach to mapping
peri-personal space based in the properties of certain brain
regions. They assume that all spatial regions are represented
in terms of Euclidean frames of reference, so peri-personal
space is learned by learning the parameters of built-in frames
of reference for eye, head, body, and arm.

Ugur, et al [18] demonstrate autonomous learning of
behavioral primitives and object affordances, and imitation
learning of complex actions. However, they start by assuming
that peri-personal space can be modeled as a 3D Euclidean
space, and that hand motions can be specified via starting,
midpoint, and endpoint coordinates. Our agent does not
assume a prior representation for peri-personal space, instead
building the abstract PPS Graph representation without spa-
tial assumptions and from uninformed experience.

C. Our Representation for Peri-Personal Space

We present initial results showing how the agent can learn
its own model of peri-personal space. In our hypothesized
model, a physically-embodied robot learning agent starts
with minimal knowledge of its sensors, its effectors, and its
environment. It learns a graph (the PPS Graph) which rep-
resents a correspondence between visual and proprioceptive
perception of the environment, including its own body.

Each node ni in the PPS Graph represents a state of the
arm in the environment, and is associated with the visual
sense vector pi = P (ni) and the proprioceptive sense vector
qi = Q(ni) observed at that state. The visual sense vector
P (ni) = 〈P (ni, 1), . . . , P (ni, C)〉 is the vector of images
P (ni, c) the robot receives from its cameras c ∈ {1, . . . , C}.
In our case, there are three fixed cameras (C = 3) and each
P (ni, c) is a low-resolution (160×120) full-color 2D image.
Visual systems such as mobile cameras mounted on the robot

or an RGB-D camera should also allow learning of analogous
features and behaviors, but are not tested in this work. The
proprioceptive sense vector qi = Q(ni) is the vector of joint
angles of the arm. We define the distance between nodes ni
and nj as the Euclidean distance between qi and qj .

While creating the graph, the agent also makes visual
observations of the motion along graph edges by taking
videos with each camera for the duration of the motion.
V (eij , c) is a video taken by camera c as the robot moves
from ni to nj . The frames of this video V (eij , c)(t) are
images indexed by frame t ∈ [0, length(V (eij , c))]. V (eij)
denotes the vector of videos, indexed by c.

We assume that the agent is able to use simple image
processing techniques to generate binary images correspond-
ing to important segments of images. Given an image Ic
of the form P (ni, c) or V (eij , c)(t), R(Ic, c) is a binary
image, specifying the segment of Ic corresponding to the
robot. Likewise, G(Ic, c) ⊆ R(Ic, c) is the gripper segment
in Ic. R(I) and G(I) denote vectors of binary images
corresponding to the vector of images I , indexed by c.

The agent is able to identify the region of the view of
camera c that the gripper sweeps through in its motion along
a given eij by processing V (eij , c) to find

G(eij , c) = ∪t [G(V (eij , c)(t))] , (1)

which is a binary image that corresponds to all pixels that
displayed the gripper in at least one frame of V (eij , c).
G(eij) refers to the vector of such binary images, indexed by
c. Note that G(eji) is not necessarily equal to G(eij), so eij
and eji must be represented as separate directed edges, and
not as a single undirected edge. If V (eij , c) does not exist
for some eij , G(eij , c) can be approximated by the convex
hull of G(ni, c) ∪G(nj , c).

D. Properties of the PPS Graph Representation

In the pre-reaching phase, the PPS graph is learned by
defining nodes for the simultaneous visual and proprioceptive
input sense vectors for a collection of states, visited during
exploration including “motor babbling.” The initial and final
states of each motion are represented as nodes in the PPS
graph. A directed edge eij connecting two nodes ni and nj
represents a feasible motion between them, and is associated
with the vector of binary images G(eij) representing the
space swept by the gripper (eqn. (1)).

When an object is seen in peri-personal space, edges are
retrieved from the PPS graph where G(eij) overlaps with
the segment corresponding to that object in each of the
current camera images. These edges and their endpoint nodes
provide the proprioceptive vectors associated with states of
the arm most likely to interact with that object. A path in
the PPS graph, starting at the current arm pose and ending
by sweeping through one of these matching edges, defines a
trajectory for moving the arm to reach that object.

a) Generality: Our knowledge representation is de-
signed to make weak assumptions about the nature of the
sensors, effectors, and environment, in order to be general
across significantly different sensory and motor systems,



human and robotic. Specifically, we represent peri-personal
space with a graph rather than a 3D Euclidean space.

To demonstrate this generality, we implemented a version
of our framework with a multi-monocular visual perceptual
system. Multiple cameras are preferred to a single camera to
better distinguish occlusions from true intersections, avoid-
ing overly conservative motion around obstacles and poor
accuracy in reaching targets. The system is not given the
relative poses of the cameras, and does not use the images
to reconstruct the 3D structure of the scene.

We assume that the perceptual system can discriminate
between background and foreground elements of images.
During the pre-reaching phase, the background is initially
static and neutral, with the arm being the only foreground
object. Later, distinctively colored objects are placed in the
environment, and are perceived as part of the foreground.

b) Focusing on Unusual Events: In our model, learning
the map of peri-personal space is driven by the detection
of unusual events, and the process of learning reliable
preconditions for the actions that cause those unusual events.

During the pre-reaching phase, the only recognizable
change is the motion of the arm. Everything else in the scene
remains static, and thus is reliably predictable. However, it
will sometimes happen that the arm (often the gripper) will
contact an object, and the vision system will recognize an
unusual event: a previously static object has moved.

On defining the event of moving an object, the learning
agent is driven by intrinsic motivation [1] to learn to predict
reliably when this event will take place, and thus to be able
to cause the event to happen. This motivates a reinforcement
learning process to learn the prerequisites for acting to cause
this event. We call this action a reach, and this is the gross
reaching phase of learning.

During the gross reaching phase, another unusual event
is to grasp an object, which means to temporarily bind the
object to the hand, so the object moves along with the hand.

The palmar reflex [8] makes this grasping action merely
unusual, rather than astronomically rare, so the agent can
experience enough examples to support learning of prerequi-
sites. The phase where the prerequisites for the grasp action
are being learned is called the fine reaching phase. (This
paper focuses on the pre-reaching and gross reaching phases,
and leaves the fine reaching phase for future work.)

c) Learning Prerequisites for Unusual Events: To de-
tect the motion of an object, we need perceptual features that
can be defined over the raw pixels of the vector of images.
We assume the ability to individuate different objects, and the
ability to measure the overlap between images of different
objects, or images of the same object at different times, by
computing the intersection over union (IOU) feature:

IOU(A,B) = |A ∩B|/|A ∪B| (2)

where A and B are the sets of pixels in the images of the
two objects, and |S| is the number of pixels for a set S.

If object A is unchanged from time t to t′, we expect that
IOU(A(t), A(t′)) ≈ 1. Likewise, if IOU(A(t), A(t′)) � 1
we recognize that a change has taken place.

II. EXPERIMENTS
We generate sets of potential features and learn which ones

accurately predict the change in the object. Over the course
of the experiments presented in this paper, the agent learns to
use these predictive features to generate reliable actions that
allow purposeful repetition of the same type of change. Our
goal is to demonstrate that the agent gains an understanding
of its peri-personal space by building and using the PPS
Graph. We evaluate this goal indirectly by testing the ability
of the agent to perform reaching and avoidance tasks. Since
maximizing success rates is not our primary focus, we choose
not to compare our agent’s performance against that of
state-of-the-art, information-rich methods. Similarly, we do
not attempt to solve the tasks with a motion planner or
additional data, as this would weaken the parallels between
our approach and the development of peri-personal space
understanding and manipulation skills in humans.

A. Experiment 1 - Sampling to Build a Dense PPS Graph

We first determine whether a graph of reasonable size pro-
vides sufficiently dense coverage of peri-personal space. The
goal is to obtain a dense set of nodes that is a representative
sampling of the feasible points in the agent’s configuration
space, connected by directed edges representing feasible
moves between nodes, so that the graph with these elements,
the “Sampled PPS Graph”, will support reaching.

This graph would ideally be created while motor babbling,
making random changes to the joint angle vector, and
sensing infeasible points by detecting collisions with self
or the environment while preventing damage to the robot.
Unfortunately, our physical robot (Fig. 1) lacks touch sensors
and could damage itself. So, during graph creation only, we
use the MoveIt! Motion Planner [16] with geometric models
of the robot and the environment, to test randomly generated
points in the robot’s configuration space for feasibility. This
safety check is no longer needed or used after this process of
graph creation. Once the PPS Graph is completed, the agent
operates under the assumption that all moves along its edges
are feasible, and does not have access to any motion planner
or geometric models for Experiments 2-6.

Each new node ni is defined by a joint angle vector qi =
Q(ni), randomly generated and checked for feasibility. Once
the robot reaches that state, it collects the visual sensory
vector P (ni). No foreground objects are present while the
graph is built so that each stored P (ni) contains only the
robot and static neutral background. This facilitates the
identification of foreground objects in later visual percepts.

Since nodes are feasible by construction, we assume that
relatively short edges represent feasible motions using linear
interpolation. Therefore, to create the set of edges, each
node is connected to its five nearest neighbors in joint
configuration space. Additional edges are added as necessary
to ensure the graph is symmetric. Each edge is annotated with
G(eij), which is found by the convex hull approximation
due to the large number of videos that would otherwise be
required. The resulting Sampled PPS Graph is visualized
spatially in Fig. 2. Creating it requires approximately 10



(a) (b)

(c) (d)
Fig. 2. (a) The Sampled PPS Graph with 1001 nodes and 6460
directed edges, with nodes plotted according to the 3D positon
of the end-effector. The agent only has access to a topological
abstraction of this structure. (b)-(d) 2D projections of the Sampled
PPS Graph. Note that the random configuration space sampling
procedure has produced a dense, well-covering structure, especially
in the region most natural to sweep the arm through.

(a) (b)
Fig. 3. The Learning Graph: (a) The topology of the abstract
model used by the agent. (b) The metrical structure of the graph,
illustrated by plotting the 3D end-effector positions at each node.
This structure is not available to the agent.

hours on the physical robot (Fig. 1). The graph appears
qualitatively to have the density and coverage to support
reaching in PPS. Experiment 6 will assess quantitatively
whether the graph supports reaching.

B. Creating the Learning Graph

Our model relies on the observation of unusual events
to motivate learning, but in the large state space of the
Sampled PPS Graph, such events could be prohibitively rare.
(Note that human infants learn to reach over several months,
and thousands of arm motions.) To demonstrate the learning
process with an accelerated pace, we provided the agent with
a smaller Learning Graph for use in Experiments 2-5.

The Learning Graph has 9 nodes generated by manually
guiding the robot arm to safe poses and recording each qi
and pi. These poses place the gripper in a near-planar region
parallel to and slightly above a table on which objects will
be placed, which was also done to increase the occurrence
of unusual events. A set of 40 feasible edges were defined
manually, and each G(eij) is determined from videos. The
Learning Graph is shown in Fig. 3.

(a) (b) (c)

(d) (e) (f)
Fig. 4. (a)-(c): The visual observations before each phase of forward-back-
forward traversal of e4,7 made to facilitate detection of persistent events, or
“Bumps”. Intuitively, the block has been knocked over since its appearance
is significantly different in (a) and (c), despite the same gripper appearance.
(d)-(f): The sequence Ok(n4, 3) · · ·O′k(n7, 3) · · ·O′′k (n4, 3). Using the
threshold learned in Experiment 2, the agent can identify that a Bump
occurred since IOU(Ok(n4, 3), O′′k (n4, 3)) < a3, so A3, a sufficient
condition for a Bump, is true.

The results of Experiments 2-5 demonstrate that the agent
learns to predict and perform reliable reaches in the Learning
Graph. It is also important that knowledge gained from expe-
rience in the Learning Graph generalizes to allow reaching
with similar skill in more representative PPS Graphs. We
quantitatively support this generalization with a comparison
of results from Experiments 5 and 6.

C. Identifying Foreground Objects

When the agent moves along graph edges in the open
workspace, the world is static (except for the robot arm), and
for each new visual observation P ′(ni) made at ni, P ′(ni) ≈
P (ni), the stored observation. However, when a distinctive
object is added to the workspace, P ′(ni) 6≈ P (ni), with
changes insufficiently explained by noise. The new appear-
ance of the workspace is explained by segmenting connected
components of significantly changed pixels in corresponding
camera images as a set of K ≥ 1 foreground objects. These
objects may be either targets, which are desirable to Bump,
or obstacles, which are not. When K > 1, the objects are
placed in the environment and observed separately before
being observed in the environment concurrently.

The robot must efficiently distinguish moves that displace
an object and moves that merely change the object’s appear-
ance by occlusion, using only its visual percepts. Therefore,
a move along an edge eij is performed with a forward-back-
forward pattern, starting at ni and traveling to nj , then back
to ni, and forward to nj again. Let the notation Ok(ni, c)
denote the binary image of object k, as seen from camera c
when the robot is in state ni. The forward-back portion of
the motion pattern for eij would then yield the sequence

Ok(ni, c) · · ·O′k(nj , c) · · ·O′′k(ni, c) (3)

for each object k and camera c. An example of this sequence
of observations and the resulting sequence of binary images
is given in Fig. 4.



Intuitively, we can make the required discriminations using
the IOU feature (Equation 2):

IOU(Ok(ni, c), O
′
k(nj , c)) ≈ 1 ⇒ No change (4)

IOU(Ok(ni, c), O
′
k(nj , c))� 1 ⇒ Change (5)

This comparison determines the type of a sensed change:

IOU(Ok(ni, c), O
′′
k(ni, c)) ≈ 1 ⇒ Transient (6)

IOU(Ok(ni, c), O
′′
k(ni, c))� 1 ⇒ Persistent (7)

Experiments 2 and 3 make these distinctions operational,
and determine what evidence best indicates the occurrence
of a persistent event. Experiment 5 demonstrates how to use
perceptual features to predict which motions will reliably
cause a persistent event.

D. Experiment 2 - Identifying Unusual Events with a Fore-
ground Object during Random Motion in the Learning Graph

With a single object in the environment (i.e. K = 1), the
agent follows 72 random edges (216 moves) in the Learning
Graph, recording each Ok(n, c). In this work, the agent
focuses on the relationship between Ok(ni, c) and O′′k(ni, c),
where differences indicate a persistent change. Differences
between Ok(ni, c) and O′k(nj , c) that do not exist between
Ok(ni, c) and O′′k(ni, c) are transient changes, often occlu-
sions or shadows from different gripper placement. Since
O′k(nj , c) is not processed, changes that occur during the
“back” portion of the movement along eji and during the
“forward” motion are indistinguishable to the agent. Event
detection is limited in granularity to each edge (three moves),
and occurs after the agent observes O′′k(ni, c).

The agent measures the similarity between object silhou-
ettes before and after a move by IOU(Ok(ni, c), O

′′
k(ni, c)),

observing the set of values shown in the histograms in Fig. 5.
The distribution of IOU values for each camera is bimodal
with a clear separation between the rare and common clusters
of data points. ac ∈ [0, 1] for each c ∈ {1, 2, 3} is
selected as the threshold value of IOU(Ok(ni, c), Ok(ni, c))
with the same z-score for the normal distribution fit to
the rare cluster with IOU(Ok(ni, c), O

′′
k(ni, c)) � 1 and

the normal distribution fit to the common cluster with
IOU(Ok(ni, c), O

′′
k(ni, c)) ≈ 1. For each c ∈ {1, 2, 3},

Ac ≡ [IOU(Ok(ni, c), O
′′
k(ni, c)) < ac] . (8)

Ac is false in the special case Ok(ni, c) = O′′k(ni, c) = ∅,
where the IOU is undefined. The agent makes a second
pass through the IOU(Ok(ni, c), O

′′
k(ni, c)) data, identifying

a small number of persistent, unusual events, which we
will call “Bumps”, by the criterion A1 ∨ A2 ∨ A3, and a
larger number of common case observations, consisting of
nonevents and transient events that do not meet this criterion.

E. Experiment 3 - Learning the Reliability of Bump Predic-
tion with a Set of Positive Intersection Features

Observing a small set of Bumps in the previous experiment
motivates the agent to predict which move or moves in a
given situation are most likely to cause a Bump. For each eij

Fig. 5. Learning thresholds for event detection: The agent determines
IOU(Ok(ni, c), O

′′
k (ni, c)) for each camera c for moves along 72 random

edges. Creating histograms of these values shows well-separated high and
low clusters for the dataset of each c. Each plot marks the significant change
threshold ac, the IOU value with the same absolute value z-score for each
cluster’s normal distribution. These thresholds allow agent classification of
observed moves by the Bump ≡ A1 ∨ A2 ∨ A3 criterion, where Ac ≡[
IOU(Ok(ni, c), O

′′
k (ni, c)) < ac

]
.

that was traversed, and object k, the agent generates Boolean
intersection features

Bc ≡ [G(eij , c) ∩Ok(n(k), c) 6= ∅], (9)

where n(k) is the node where the agent had most recently
observed object k at the time of deciding whether to follow
eij . Since the agent followed individual edges randomly in
Experiment 2, n(k) = ni. Since G(eij , c) was observed
during the initial formation of the graph, and Ok(n(k), c)
is observed before a move is decided or performed, Bc can
be determined prior to a move, and B, the set of positive
Bc features, can be used to predict a Bump in advance.
Fig. 6 shows, for each possible B, the portion of resulting
observations that were classified as Bumps, yielding initial
estimates of the conditional probability, P0(Bump | B).

The agent’s current experience suggests that traversing any
edge with B = {B1, B2, B3} will always cause a Bump.
Further, P0(Bump | B) is much lower for any other B, so
{B1, B2, B3} is by far the most reliable predictor of a Bump
at this time. The agent continues to update these conditional
probability approximations P (Bump | B) from experience
gathered during Experiment 4 and additional practice, ending
with those recorded in the P1(Bump | B) column of Fig. 6.

F. Experiment 4 - Shortest Reaches in the Learning Graph

A reach is a traversal of one or more consecutive graph
edges that intends to cause a Bump with a target object on



B P0(Bump | B) P1(Bump | B)

∅ 0 = 0/2 0.214 = 6/28
{B1} 0.067 = 1/15 0.171 = 7/41
{B2} 0 = 0/19 0.096 = 9/94
{B3} 0 = 0/0 0 = 0/10
{B1, B2} 0.071 = 2/28 0.342 = 39/114
{B1, B3} 0 = 0/0 0.458 = 11/24
{B2, B3} 0 = 0/1 0.727 = 8/11
{B1, B2, B3} 1.0 = 7/7 0.840 = 137/163

Any 0.139 = 10/72 0.447 = 217/485
Fig. 6. The agent’s approximation of the conditional probability of a
persistent event, a ”Bump”, given a set B of positive intersection features
after 72 random moves in Experiment 2 (P0) and after an additional 413
moves during goal-oriented practice (P1). In both cases, the full set of
features B = {B1, B2, B3} gives the highest probability of a Bump.

the final move. It can fail if no Bump occurs, or have partial
success if the Bump occurs “accidentally” before the final
move. Full success requires that the Bump occurs on the final
move of the trajectory, with no previous accidental Bumps.

The agent is sequentially presented with 100 single-object
environments (K = 1), using one of four objects with
varying size and shape (shown in Fig. 1) in 25 trials each.
The object is placed at random (x, y) coordinates in the
43cm x 30cm grid enclosed by the projection of the Learning
Graph onto the table’s surface, and a random orientation θ
between 0 and 2π. The robot begins each trial at n1, which
has no initial occlusions of the object. The agent plans the
full trajectory to reach to this target before leaving n1, so
n(k) = n1 in the determination of each Bc. The set of candi-
date final edges E∗ with feature set argmaxB P (Bump | B)
is generated, with the procedure visualized in Fig. 7. If
E∗ = ∅, sets of edges with B yielding progressively lower
P (Bump | B) are included until E∗ 6= ∅. The agent gives
each edge in the Learning Graph a uniform cost, and searches
the graph using Dijkstra’s algorithm to find the lowest cost
path ending with an edge in E∗. The agent traverses each
edge of this trajectory with the forward-back-forward pattern,
checking for Bumps and updating P (Bump | B).

The success rates of these reaches are presented in Fig. 8.
In a majority (65%) of trials, deliberate Bumps are caused
by executing these trajectories. Attempting reaches allows
the agent to gain more experience, and hence to gain more
information about Bump prerequisites. In particular, the up-
dates to P (Bump | {B1, B2, B3}) show that {B1, B2, B3}
is still the most reliable predictor, but that {B1, B2, B3} is
not sufficient to guarantee a Bump (see Fig. 6). Reaches with
B = {B1, B2, B3} fail especially often when the object is
large, and with very small intersection regions near the object
boundary. The failure cases of Experiment 4 motivate the
generation of more features to predict more accurately the
probability of a Bump using a specific edge in E∗.

(a)

(b)

(c)

Fig. 7. The process for determining whether an edge eij is a member of
E∗, the set of candidate final edges for a reach trajectory. (a) The agent
records P ′(n1), the current visual state of the environment with the object
present. The object silhouette in each P ′(n1, c) is identified as the largest
connected component of pixels with appearances significantly changed from
their appearance in P (n1, c). (b) The agent recalls each G(eij , c), the
region of the video frames from camera c the gripper passes through while
moving from ni to nj . G(eij) is visualized here in white, superimposed
with P (ni) and P (nj). (c) The truth of each intersection feature Bc is
determined by whether the object silhouette (shown here in color) and
G(eij , c) intersect for each c. All are true, so B = {B1, B2, B3}, and
eij is included in E∗ because this maximizes P (Bump | B).

G. Generation of Additional Features for Trajectory Plan-
ning with Naı̈ve Bayes

Experiment 4 shows that P (Bump | {B1, B2, B3}) 6= 1,
and that no set of features B can guarantee a Bump. It
becomes desirable for the agent to differentiate edges in
E∗ that lead to deliberate Bumps from those that will not.
The agent has records of Ok(n(k), c) and the final edge
G(eij) for each of the 100 attempted reaches, of which 67
were perceived by the agent as fully successful and 33 were
perceived as partial success or failure.

To attempt to improve its prediction of successful reaches,
the agent creates 21 new feature values that capture addi-
tional properties of the intersection region, such as its size
and centrality in the silhouettes. For each edge eij and object
k, the agent generates the following features Dfc, which are
computed from O = Ok(n(k), c) and G = G(eij , c):

D1,c = |O ∩G|
D2,c = |O ∩G|/|O|
D3,c = |O ∩G|/|G|
D4,c = IOU(O,G) = |O ∩G|/|O ∪G|
D5,c = argmins[erode(O, square(s)) ∩G = ∅]
D6,c = argmins[erode(G, square(s)) ∩O = ∅]
D7,c = argmins[erode(O, square(s))

∩ erode(G, square(s)) = ∅]
(10)

Given two binary images O and G, these are natural re-
lational features that can be generated automatically without
prior knowledge of the domain. These features can serve
as predictors since they are constructed from information
gathered without first having to perform a motion.



Full Partial Either
Classifier Success Success Success

Agent Perception 67% 16% 83%
Ground Truth 65% 8% 73%

Fig. 8. The success rate of reaches in Experiment 4, planned using
simple intersection features in environments with one target over 100
trials, as determined by agent perception and an experimenter ground truth
observation that corrects for false positives and negatives. Full success
differs from partial success in that the target object must be Bumped on
the final edge of the reach trajectory only.

The agent fits normal distributions to the values of each
Dfc for the 67 successful trials and for the 33 unsuccessful
trials. Most of these distributions are similar between the
two cases, and no single feature can reliably distinguish
between the success and failure cases. However, treating all
21 features as weak sources of information, the agent can
use a Naı̈ve Bayes classifier to predict whether a given edge
and object combination will result in a Bump, achieving 81%
accuracy over the initial set of 100 trials.

For a given edge eij and object k, we let D (or, when
necessary, Deij ,k) denote the set of 21 Dfc features, Bump
denotes the event of motion along eij bumping object k, and
the prior probability P (Bump) is the value from Fig. 6. The
Naı̈ve Bayes classifier is then:

P (Bump | D) = αP (Bump)
∏
f,c

P (Dfc | Bump). (11)

Let the edges of a trajectory T with length(T ) = L be
denoted by el for l ∈ {1, . . . , L}. A fully successful reach
requires a deliberate Bump, done with eL, and no Bumps
with any of e1 through eL−1. Therefore, for a fully successful
reach to a target object k = 1,

P (Full | T ) = P (Bump | DeL,1)

L−1∏
l=1

(1−P (Bump | Del,1)).

(12)
Avoiding obstacles requires that no el causes a Bump, so for
environments with obstacle objects k ∈ {2, . . . ,K},

P (Avoid | T ) =
K∏

k=2

L∏
l=1

(1− P (Bump | Del,k)). (13)

This formulation allows the same knowledge to support
reaching and obstacle avoidance, and is successfully used in
Experiments 5 and 6, where a single trajectory T is chosen
to maximize the probability of accomplishing both goals,

P (Both Goals | T ) = P (Full | T ) · P (Avoid | T ). (14)

H. Experiment 5 - Reaches in the Learning Graph while
Avoiding Obstacles and Accidental Target Bumps

The agent is given 25 randomized K = 2 environments,
and performs two trials in each, one for each assignment of
target and obstacle roles. The agent uses the Learning Graph,
and the set E∗ is found as before. The trajectory

T ∗ = argmax
T

P (Both Goals | T ) (15)

Success Rates by Graph Used
Task Learning Graph Sampled PPS Graph

Reach Target 90% 90%
Avoid Obstacle 86% 74%

Both Goals 76% 68%

Fig. 9. Performance of the Agent over 50 trials at executing a single
trajectory to reach to a target and avoid an obstacle, according to the
experimenter judged ground truth criterion. It is clear that the introduction
of an obstacle does not prevent the agent from making effective reaches
in either graph. The high level of success in the Sampled PPS Graph
demonstrates that the learning from the Learning Graph transfers well, and
applies to a general graph.

is found from the set of all trajectories T that begin at starting
pose n1 and end with an edge in E∗. Given D, the trajectory
T ∗ has the highest probability of a fully successful reach that
also avoids collisions with obstacles.

The results in the Learning Graph column of Fig. 9
show that the rate of fully successful reaches have increased
to 90% from 65% in Experiment 4, even with the added
challenge of obstacle avoidance, demonstrating the benefits
of the intersection region features Dfc for planning reaches.
We believe that this large performance increase is due to
Naı̈ve Bayes over the Dfc features being able to reduce
occurrence of accidental Bumps and the selection of final
edges with minimal intersections.

The agent’s ability to avoid the obstacle in 86% of trials,
and to succeed at both reaching and avoidance with the
same trajectory 76% of the time, justifies the Naı̈ve Bayes
formulation for selecting T ∗. Achieving both goals while
planning with the same set of features, and without explicitly
training to avoid obstacles, implies that learning transfers
well from reaching to avoidance tasks. We continue to
analyze the strength of this formulation and the generality
of these features in the next experiment.

I. Experiment 6 - Generalized Reaching and Obstacle Avoid-
ance in the Sampled PPS Graph

We now return to the questions of the density and coverage
of the Sampled PPS Graph. We also quantitatively test
whether the agent’s Learning Graph experience supports
reaching in the randomly-generated Sampled PPS Graph,
which would be sufficient to show that the learned features
are general to any graph representation of peri-personal
space. This result will also demonstrate that planning in
a larger, more dense graph is tractable and yields similar
success rates. We conduct an experiment using the Sampled
PPS Graph generated in Experiment 1, and control the rest
of the experimental factors, notably using the same 25 pairs
of trials (with identical object placements) as Experiment 5
and the same procedure for generating T ∗. The results are
presented in the Sampled PPS Graph column of Fig. 9.

The agent’s 90% rate of fully successful reaches demon-
strates that the tabletop grid is well-covered. Further, the 74%
obstacle avoidance rate suggests that there is also enough
density in the graph that trajectories were not often forced



to include edges that Bump the obstacle in order to Bump
the target. Since the locations of the Sampled PPS Graph
nodes and edges are not correlated to locations in the grid,
it follows that the graph has sufficient coverage and density
in arbitrary subregions of PPS, and thus the entirety of PPS.

The number of successful reaches is unchanged from
Experiment 5, and the drop in obstacle avoidance success
rate when using the Sampled PPS Graph may be explained
by limitations of the convex hull approximations for each
G(eij , c) used with the Sampled PPS Graph, which do not
capture the extremes of the region caused by curved or under-
damped motion. We conclude that the simple Experiment 1
procedure has produced a representation of PPS that supports
the planning of safe and reliable reaches using the B and D
features generated from Learning Graph experience.

III. DISCUSSION AND CONCLUSIONS

An important foundational question about intelligence is,
“Where does knowledge of space come from?” The default
answer embodied by most work in AI and robotics is, “It is
built in by an intelligent designer.”

The Spatial Semantic Hierarchy [10], [2] describes how
knowledge of large-scale space can be learned from sen-
sorimotor experience, given pre-existing knowledge of local
control laws and local SLAM methods for small-scale space.
We have also shown how a robot learning agent without
prior knowledge of its sensors and effectors, can use domain-
independent statistical methods to learn (a) the structure of
its sensor arrays; (b) sensory features and control laws; (c)
the representational basis for local SLAM algorithms; and (d)
objects distinguished from the static environment and actions
that can be applied to them [13], [11].

In this paper, we present initial steps toward a compu-
tational model of how a learning agent can learn another
important kind of space: the peri-personal space within
which actions like reaching and grasping take place. We
describe a joint visual-proprioceptive representation for peri-
personal space — the PPS Graph — that can be created
without prior knowledge (or subsequent reconstruction) of
its 3D structure, or of the 3D interpretation of visual input,
or the kinematic implications of sensed joint angles for
manipulator configuration.

Experiments with a small model Learning Graph demon-
strate that the simple PPS Graph representation can support
discovery of unusual events (i.e., reaching) in which the
robot’s manipulator interacts with nearby objects in the
environment. They evaluate search methods for finding more
reliable trajectories for reaching nearby objects. This level of
competence corresponds roughly to the gross reaching level
observed in human infants. An experiment with the Sampled
PPS Graph demonstrates that a dense graph can provide
good coverage of the local peri-personal space and that
trajectory-search methods scale up reliably from the small
Learning Graph to the much larger Sampled PPS Graph.

Future work will extend this to the more dextrous fine
reaching level, which allows grasping to be identified as
a rare action, thanks to the palmar reflex [8]. Reaching,

grasping, and then moving objects from place to place are
the basis for mastery of peri-personal space.
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