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Abstract

The young infant explores its body, its sensorimotor system, and the im-
mediately accessible parts of its environment, over the course of a few months
creating a model of peripersonal space useful for reaching and grasping objects
around it. Drawing on constraints from the empirical literature on infant be-
havior, we present a preliminary computational model of this learning process,
implemented and evaluated on a physical robot.

The learning agent explores the relationship between the configuration
space of the arm, sensing joint angles through proprioception, and its visual
perceptions of the hand and grippers. The resulting knowledge is represented
as the peripersonal space (PPS) graph, where nodes represent states of the
arm, edges represent safe movements, and paths represent safe trajectories
from one pose to another.

In our model, the learning process is driven by a form of intrinsic moti-
vation. When repeatedly performing an action, the agent learns the typical
result, but also detects unusual outcomes, and is motivated to learn how to
make those unusual results reliable. Arm motions typically leave the static
background unchanged, but occasionally bump an object, changing its static
position. The reach action is learned as a reliable way to bump and move a
specified object in the environment.

Similarly, once a reliable reach action is learned, it typically makes a quasi-
static change in the environment, bumping an object from one static position
to another. The unusual outcome is that the object is accidentally grasped
(thanks to the innate Palmar reflex), and thereafter moves dynamically with
the hand. Learning to make grasping reliable is more complex than for reach-
ing, but we demonstrate significant progress.

Our current results are steps toward autonomous sensorimotor learning
of motion, reaching, and grasping in peripersonal space, based on unguided
exploration and intrinsic motivation.
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in part by a grant from the National Science Foundation (IIS-1421168).
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1 Introduction

1.1 What is the problem?

We observe that human infants are born without the ability to reach, grasp, and ma-
nipulate nearby objects. Their motions are seemingly aimless, but careful research
has established that infants are biased toward moving objects and toward keeping
the hands in view [35, 36, 34, 33]. After a few months of unguided experience, hu-
man infants can reach deliberately to contact nearby objects, and after a few more
months, they can grasp nearby objects with a reasonable degree of reliability [2].

During the early process of learning to reach, children’s arm trajectories are quite
jerky, suggesting the underdamped behavior of partially tuned control laws [30]. A
tempting hypothesis about early reaching is that visual servoing brings the images
of the hand and the target object close together. However, an elegant experiment
[9] refutes this hypothesis by showing that young children’s reaching behavior is
unaffected when they can see the target object, but not their own hands. During
later reach learning, children and adults move the arm and hand more smoothly
and directly to the target object, and they start depending on visual access to the
moving hand [2].

We abstract this developmental psychology problem to a problem in robot learn-
ing (Figure 1): How can a robot learn, from unguided exploratory experience, to
reach and grasp nearby objects? We use the term peripersonal space (PPS) for
the space immediately around the robot, accessible to its arms and hands for the
manipulation of objects.

Peripersonal space includes multiple representations to accommodate different
sensors and effectors. Proprioceptive sensors in the joints of the arm and hand
provide information about the degrees of freedom of the manipulator, typically six
or more. These degrees of freedom define the dimensions of the configuration space,
in which a point determines the configuration of the arm, including the pose (position
and orientation) of the hand. Vision provides sensory access to the 3D workspace,
some but not all of which is within reach. To reach and grasp successfully, the robot
needs to learn useful representations for the configuration space and the workspace,
and for mappings between their different representations of peripersonal space.

Peripersonal space is also accessed by other sensory modalities such as touch and
sound, and via other activities such as self-touch and tool use [6, 7, 22, 25]. This
paper focuses on learning from unguided exploration the functional relations linking
proprioception and vision, two sensory modalities central to the representation of
knowledge of peripersonal space. We hope to extend our approach to include touch
and sound in the future.

1.2 Why is the problem important?

Consider the computational problem faced by the newborn agent (human or robot),
trying to make sense of the “blooming, buzzing confusion” of its sensory input,
and learning to act with predictable and eventually useful results [24]. (Some of
this learning could take place over evolutionary time, the learned knowledge being
innate to the individual.)

Reaching and grasping are among the earliest actions learned by a human infant,
and they help it achieve control over its immediate environment, by being able
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to grasp an object, take control of it, and move it from one position to another.
Reaching the desired object is a prerequisite for grasping. Moving the arm from one
pose to another is a step toward learning to reach. All of this learning takes place
through unguided exploration, without explicit instruction or reward.

From the early days of artificial intelligence, planners and problem-solvers (e.g.,
STRIPS [11]) assumed the existence of primitive actions for grasping and moving
objects. This research contributes to showing how such primitives can be learned
from very early experience.

1.3 Overview

A fundamental question about developmental learning is how an agent, without
prior knowledge of its body, its sensors, its effectors, or its environment, can build a
useful representation for the state of its world, and then can use this representation
to learn reliable actions to change that state.

In our approach, the learning agent uses its unguided experience to define the
peripersonal space (PPS) graph. Each node of the PPS graph represents a state of
the arm, defined in terms of its joint angles, so it represents a point in configuration
space. An edge linking two nodes is included when direct motion is safe between
those two configurations. Each node is also annotated with the perceptual image(s)
of the hand and arm in the otherwise empty workspace.

In this paper, we describe two applications of a general process for learning
reliable actions. After creating the PPS graph, the process collects data about
an initial action, learning its typical results, identifying unusual results, and then
adding new preconditions or parameterizations to define a novel action that makes
those unusual results reliable. We assume that a kind of intrinsic motivation [1]
drives this learning cycle. We use intrinsic motivation as a tool, but this paper is
not intended as a contribution to the literature on intrinsic motivation.

The first application of the process observes the arm moving to configurations
described by randomly-selected nodes in the PPS graph. The typical result is no
change at all to the perceived images of blocks on the table; the main unusual
result is a quasi-static change to the image due to the arm pushing or bumping (i.e.
reaching) the block. Given a block to reach, the learning process finds preconditions
that identify a target PPS node corresponding to that block, so that moving to that
target node reliably reaches the intended block.

In the second application of the same process, the agent observes the result of
reaching to randomly-selected blocks. Since the reach action is now reliable, the
typical result is to cause a quasi-static change to the image of the selected block.
The unusual result is for the block to move dynamically with the hand, rather than
remaining static in a new position: the hand has grasped the block.

The conditions for making the grasp action reliable are more complex than for the
reach action, but fortunately, they can still be expressed in terms of the PPS graph
and the continuous spaces it approximates. Human infants, for several months after
birth, exhibit the Palmar reflex, in which a touch on the palm causes the fingers
to close tightly, automatically (and unintentionally) grasping an object [12], the
unusual event of an accidental grasp becomes frequent enough to provide sufficient
data for a learning algorithm.

In this paper, we describe this process for learning increasingly reliable reach

3



Figure 1: Our experiments are done using a Baxter robot from Rethink Robotics.
(a) The environment from the agent’s perspective, including simple block objects
used in this work. (b) The unusual bump event is observed during random motions
when the hand accidentally collides with an object and changes its state. The agent
defines a reach action to make purposeful repetition of the bump event reliable.
Actions are evaluated with a single foreground object present. (c) The grasp action
allows the agent to control the motion of an object as it travels with the hand.
The first grasps occur accidentally during reaching, and incorporation of additional
preconditions and parameterizations makes intentional grasps increasingly reliable.

4



and grasp actions, without externally provided feedback or instruction. This paper
improves, extends, and unifies results presented in our previous papers [18, 19].

2 Related Work

2.1 The human model: evidence from child development

There is a rich literature in developmental psychology on how infants learn to reach
and grasp, in which the overall chronology of learning to reach is reasonably clear
(e.g., [2, 10]). From birth to about 15 weeks, infants can respond to visual targets
with “pre-reaching” movements that are generally not successful at making contact
with the targets. From about 15 weeks to about 8 months, reaching movements
become increasingly successful, but they are jerky with successive submovements,
some of which may represent corrective submovements [37], and some of which reflect
underdamped oscillations on the way to an equilibrium point [30]. For decades, early
reaching was generally believed to require visual perception of both the hand and
the target object, with reaching taking place through a process of bringing the hand
and object images together (“visual servoing”). However, a landmark experiment [9]
showed that the pattern and success rate of reaching by young infants is unaffected
when the hand is not visible. Toward the end of the first year, vision of the hand
becomes important for configuring and orienting the hand in anticipation of contact
with target objects. The smoothness of reaching continues to improve over early
years, toward adult reaches which typically consist of “a single motor command
with inflight corrective movements as needed” [2].

Theorists grapple with the problem that reaching and grasping require learning
useful mappings between visual space (two- or three-dimensional) and the configura-
tion space of the arm (with dimensionality equal to the number degrees of freedom).

Bremner, Holmes & Spence [4] address this issue under the term, multisensory
integration, focusing on sensory modalities including touch, proprioception, and vi-
sion. They propose two distinct neural mechanisms. The first assumes a fixed initial
body posture and arm configuration, and represents the positions of objects within
an egocentric frame of reference. The second is capable of re-mapping spatial rela-
tions in light of changes in body posture and arm configuration, and thus effectively
encodes object position in a world-centered frame of reference.

Corbetta, et al [10] focus directly on how the relation is learned between propri-
oception (“the feel of the arm”) and vision (“the sight of the object”) during reach
learning. They describe three theories: vision first; proprioception first; and vi-
sion and proprioception together. Their experimental results weakly supported the
proprioception-first theory, but all three had strengths and weaknesses.

Thomas, Karl & Whishaw [31] closely observed spontaneous self-touching behav-
ior in infants during their first six months. Their analysis supports two separately-
developing neural pathways, one for Reach, which moves the hand to contact the
target object, and a second for Grasp, which shapes the hand to gain successful
control of the object.

These and other investigators provide valuable insights into distinctions that
contribute to answering this important question. But different distinctions from
different investigators can leave us struggling to discern which differences are com-
peting theories to be discriminated, and which are different but compatible aspects
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of a single more complex reality.
We believe that a theory of a behavior of interest (in this case, learning from un-

guided experience to reach and grasp) can be subjected to an additional demanding
evaluation by working to define and implement a computational model capable of
exhibiting the desired behavior. In addition to identifying important distinctions,
this exercise ensures that the different parts of a complex theory can, in fact, work
together to accomplish their goal.

The model we present at this point is preliminary. To implement it on a par-
ticular robot, certain aspects of the perceptual and motor system models will be
specific to the robot, and not realistic for a human infant. To design, implement,
debug, and improve a complex model, we focus on certain aspects of the model,
while others remain over-simplified. For example, our model of the Peri-Personal
Space (PPS) Graph uses vision during the creation of the PPS Graph, but then
does not need vision of the hand while reaching to a visible object [9]. The early
reaching trajectory will be quite jerky because of the granularity of the edges in
the PPS Graph [37], but another component of the jerkiness could well be due to
underdamped dynamical control of the hand as it moves along each edge [30], which
is not yet incorporated into our model.

2.2 Robot developmental learning to reach and grasp

Robotic Modeling. Some robotics researchers (e.g., [13, 29]) focus on learning
the kind of precise model of the robot that is used for traditional forward and
inverse kinematics-based motion planning. Hersch, Sauser & Billard [13] learn a
body schema for a humanoid robot, modeled as a tree-structured hierarchy of frames
of reference, assuming that the robot is given the topology of the network of joints
and segments and that the robot can perceive and track the 3D position of each
end-effector. Sturm, Plagemann & Burgard [29] start with a pre-specified set of
variables and a fully-connected Bayesian network model. The learning process uses
visual images of the arm while motor babbling, exploiting visual markers that allow
extraction of 6D pose for each joint. Bayesian inference eliminates unnecessary links
and learns probability distributions over variable values. Our model makes weaker
assumptions about the variables and constraints included in the model, and uses
much weaker information from visual perception.

Neural Modeling. Other researchers structure their models according to hy-
potheses about the neural control of reaching and grasping, with constraints rep-
resented by neural networks that are trained from experience. Oztop, Bradley &
Arbib [23] draw on empirical data from the literature about human infants, to mo-
tivate their computational model (ILGM) of grasp learning. The model consists of
neural networks representing the probability distributions of joint angle velocities.
They evaluate the performance of their model with a simulated robot arm and hand,
assuming that reaching is already programmed in. Their model includes a Palmar
reflex, and they focus on learning an open-loop controller that is likely to terminate
with a successful grasp.

Chinellato, et al [8] propose an architecture consisting of two radial basis function
networks linking retinotopic information with eye movements and arm movements
through a shared head/body-centered representation. Network weights are trained
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through experience with a simulated 2D environment and 2 dof arm. Experiments
demonstrate appropriate qualitative properties of the behavior.

Savastano and Nolfi [26] describe an embodied computational model imple-
mented as a recurrent neural network, and evaluated on a simulation of the iCub
robot. They demonstrate pre-reaching, gross-reaching, and fine-reaching phases of
learning and behavior, qualitatively matching observations of children such as di-
minished use of vision in the first two phases, and proximal-then-distal use of the
arm’s degrees of freedom. The transitions from one phase to the next are repre-
sented by manually adding certain links and changing certain parameters in the
network, begging the question about how and why those changes take place during
development.

Caligiore, Parisi & Baldassarre [5] present a computational model of reach learn-
ing based on reinforcement learning, equilibrium point control, and minimizing the
speed of the hand at contact. The model is implemented on a simulated planar 2
dof arm. Model predictions are compared with longitudinal observations of infant
reaching between ages of 100 and 600 days [3], demonstrating qualitative similarities
between their predictions and the experimental data in the evolution of performance
variables over developmental time. Their focus is on the irregular, jerky trajectories
of early reaching [2], and they attribute this to sensor and process noise, corrective
motions, and underdamped dynamics [30]. By contrast, we attribute part of the
irregular motion to the irregularity of motion along paths in the PPS graph (rather
than to real-time detection and correction of errors in the trajectory, which would
be inconsistent with [9]). We accept that other parts of this irregularity is likely due
to process noise and underdamped dynamics during motion along individual edges
in the PPS graph, but that aspect of our model is not yet implemented. At the
same time, the graph representation we use to represent early knowledge of periper-
sonal space can handle a realistic number of degrees of freedom in a humanoid robot
manipulator (Figure 1).

Sensorimotor Learning. Several recent research results are closer to our ap-
proach, in the sense of focusing on sensorimotor learning without explicit skill
programming, exploration guidance, or labeled training examples. Each of these
(including ours) makes simplifying assumptions to support progress at the current
state of the art, but each contributes a “piece of the puzzle” for learning to reach
and grasp.

Our work is closely related to the developmental robotics results of Law, et al [21,
20]. As in their work, we learn graph-structured mappings between proprioceptive
and visual sensors, and thus between the corresponding configuration space and
work space. Like them, we apply a form of intrinsic motivation to focus the learning
agent’s attention on unusual events, attempting to make the outcomes reliable. A
significant difference is that Law, et al [21, 20] provide as input an explicit schedule
of “constraint release” times, designed to follow the observed stages identified in the
developmental psychology literature. Our goal is for the developmental sequence to
emerge from the learning process as pre-requisite actions (e.g., reaching) must be
learned before actions that use them (e.g., grasping).

Jamone, et al [16, 17] define a Reachable Space Map over gaze coordinates (head
yaw and pitch, plus eye vergence to encode depth) during fixation. The control
system moves the head and eyes to place the target object at the center of both
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camera images. (Aspects of this relationship between retinal, gaze, and reach spaces
were previously investigated by Hülse, et al [15].) In the Reachable Space Map, R =
0 describes unreachable targets; intermediate values describe how close manipulator
joints are to the physical limits of their ranges; and R = 1 means that all joints are
well away from their limits. The Reachable Space Map is learned from goal-directed
reaching experience trying to find optimal reaches to targets in gaze coordinates.
Intermediate values of R can then be used as error values to drive other body-
pose degrees of freedom (e.g., waist, legs) to improve the reachability of target
objects. Within our framework, the Reachable Space Map would be a valuable
addition (in future work), but the PPS Graph [18] is learned at a developmentally
earlier stage of knowledge, before goal-directed reaching has a meaningful chance of
success. The PPS Graph is learned during non-goal-directed motor babbling, as a
sampled exploration of configuration space, accumulating associations between the
joint angles determining the arm configuration and the visual image of the arm.

Ugur, et al [32] demonstrate autonomous learning of behavioral primitives and
object affordances, leading up to imitation learning of complex actions. However,
they start with the assumption that peripersonal space can be modeled as a 3D
Euclidean space, and that hand motions can be specified via starting, midpoint,
and endpoint coordinates in that 3D space. Our agent starts with only the raw
proprioceptively sensed joint angles in the arm and the 2D images provided by
vision sensors. The PPS graph represents a learned mapping between those spaces.
The egocentric Reachable Space Map [16] could be a step toward a 3D model of
peripersonal space.

M. Hoffmann, et al [14] integrate empirical data from infant experiments with
computational modeling on the physical iCub robot. Their model includes haptic
and proprioceptive sensing, but not vision. They model the processes by which
infants learn to reach to different parts of their bodies, prompted by buzzers on the
skin. They report results from experiments with infants, and derive constraints on
their computational model. The model is implemented and evaluated on an iCub
robot with artificial tactile-sensing skin. However, the authors themselves describe
their success as partial, observing that the empirical data, conceptual framework,
and robotic modeling are quite disparate, and not well integrated. They aspire to
implement a version of the sensorimotor account, but they describe their actual
model as much closer to traditional robot programming.

3 Building the Peripersonal Space Graph

3.1 Methods

A baby begins to explore its environment and the range of motion of its arms with
seemingly random movements and no clear external goal.

There is a physical relationship between the configuration q of the arm in con-
figuration space, and the resulting pose p of the hand in the workspace. This
relationship, forward kinematics, is not known to the baby.

f(q) = p (1)

The physical structure of the robot and its perceptual system also define a map-
ping from the pose of the hand to a visual representation (e.g., a binary image) of
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the hand. (Note that Ip is simply an identifier for an image, and does not allow the
agent to obtain an explicit representation of the pose p.)

I(p) = Ip (2)

Composing these defines a (partial) function g that the robot can learn about,
by simultaneously using proprioception to sense the configuration q, and visual
perception to sense the image Ip.

g(q) = I(f(q)) = Ip (3)

This observation (q, Ip) is one point on the function g.
The Peripersonal Space (PPS) graph P is a collection of nodes and edges, rep-

resenting a state of knowledge about the mapping g.1 A node n ∈ P represents an
observation (q, Ip). An edge (ni, nj) = eij ∈ P represents an affordance (i.e., an
opportunity) for safe motion between q(ni) and q(nj).

The robot learning agent creates a PPS graph P of N nodes by sampling the
configuration space of its arm. From an initial pose q0 in an empty environment,
the robot samples a sequence of perturbations ∆q from a distribution D to generate
a sequence of poses:

qi+1 = qi + ∆qi while i ∈ [0, N − 1] (4)

While the motor babbling of human infants may appear random, it does exhibit
biases toward moving objects and toward keeping the hand visible [35, 36, 34, 33].
We use rejection sampling to enforce these biases, and constraints against collisions
with the table or the robot’s own body. If either condition is violated, the proposed
configuration is rejected and a new qi+1 is sampled.

At this point, the arm is physically moved from its current configuration q1 to
the new configuration qi+1. After each new pose has been safely reached by physical
motion of the arm, a corresponding perceptual image Ip,i+1 is collected, and the
node ni+1 = (qi+1, Ip,i+1) and the undirected edge ei,i+1 = (ni, ni+1) are added to
P . The length of an edge is the Euclidean distance between the configurations at
its endpoint nodes, considered in joint space.

||eij|| = d(ni, nj) = ||qi − qj||2 (5)

At this point, the graph is a linear chain, so between any two nodes there is
a single path, typically very long. In addition to inefficiency, having a single path
through the graph does not provide options for avoiding obstacles or selecting the
most reliable approach for a learned action. The graph needs much higher connec-
tivity, by adding new edges linking existing nodes in P .

It is not feasible to test every pair of unconnected nodes, so we apply a heuristic.
Let the length of an edge be the Euclidean distance between the configurations at
its endpoint nodes, considered in joint space.

||eij|| = d(ni, nj) = ||qi − qj||2 (6)
1Strictly speaking, a graph P = 〈N , E〉 consists of two sets, one for nodes and one for edges.

For notational simplicity, we will use ni ∈ P and eij ∈ P as abbreviations for ni ∈ N (P) and
eij ∈ E(P).
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and let µe be the mean length of all the edges in the current (linear) graph. The
heuristic is that when d(ni, nj) < µe, the average length of edges known from ex-
ploration to be safe, then the edge eij can be added to P , if it is not already
present. With the inclusion of these edges, we expect that P will supports planning
of multiple trajectories between any given pair of nodes. Because P is still a sparse
approximation to the configuration space, trajectories across the environment will
tend to be jerky.

Any path 〈n1, . . . , nm〉 in a PPS graph P corresponds with a safe trajectory
〈q1, . . . ,qm〉 of the arm. The agent designates a home node, nh, where the arm rests
naturally and that allows relatively unoccluded observation of the environment. By
convention, trajectories begin at nh, and eventually return there, too. We will also
define the terms nf for the final node of a trajectory, and np for the penultimate
node.

The PPS graph P can then be used as “scaffolding” to learn increasingly expert
ways to reach and grasp. By searching the information in the PPS graph P , we can
define a function h that provides a discrete approximation to g−1 from equation (3):

C(Ib) = {(q, Ip) = n ∈ P : match(Ib, Ip)} (7)
h(Ib) = q∗ = selectq C(Ib) (8)

Given a current visual image Ib of an object (e.g., a block) in the environment,
we can identify nodes (q, Ip) = n ∈ P whose stored images Ip of the hand matches
(e.g. overlaps with) the currently sensed image Ib of the object. The generic operator
selectq defines the role for a criterion for selecting among matching nodes, for exam-
ple by maximizing the overlap between binary images Ib and Ip, or by minimizing
the distance between their centers.

3.2 Experiment 1: Creating the Peripersonal Space Graph

For our experiment, we apply the methods described above (Section 3.1) to learn
to control the left arm of our Baxter Research Robot (Figure 1), providing specific
instantiations for the generic aspects of the method. The state of this arm can be
given by eight degrees of freedom, a set of seven joint angles, q = 〈q1, . . . , q7〉 =
〈s0, s1, e0, e1, w0, w1, w2〉 and the aperture a between the gripper fingers, described
by a percentage of its maximum width.

For the Baxter Research Robot, each visual percept Ip is taken by a fixed-
viewpoint RGB-D camera, providing an RGB image IRGB and a depth-registered
image ID (Figure 2). During the construction of P , the agent may save a percept
P (ni) taken while it is paused at ni.

For our experiment, the robot begins with an empty PPS Graph P , and the
arm is initially at the home configuration qh = q(nh). The random motor babbling
search described in equation (4) is instantiated for our robot in a straight-forward
way. For each joint angle k, the displacement to add is sampled from a normal
distribution with a standard deviation equal to a tenth of the full range of that
joint.

qki+1 = qki + ∆qk where ∆qk ∼ N(0, σk) and σk = 0.1 · range(qk) (9)

We impose a bias using a form of rejection sampling, requiring that the resulting
end-effector pose must fall within the field of view, and must not collide either
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Figure 2: An example of the agent’s visual percept and stored representation for
a node ni. (a) A single RGB image IRGB, scaled down to 120 × 160 resolution,
taken while the arm configuration is set to qi = q(ni). (b) The registered depth
image ID taken at the same time. Note that the depth values are a measure of
disparity, so smaller values are further from the camera. (c) The full representation
the agent stores for the node ni. Aided by the yellow block held between the gripper
fingers, the agent segments the palm mask, corresponding to the grasping region
of the hand. The larger hand mask includes the palm mask (shown in yellow) and
parts of the robot image segment near the block, typically the gripper fingers and
lower wrist (shown in red). The range of depth image values within each mask is
also stored, as are the center of mass and mean depth value for each mask. Finally,
to estimate the direction the grippers are pointing, a vector is drawn from the hand
mask center through the palm mask center.

with the table or with the robot’s own body. If either condition is violated, the
proposed configuration is rejected and a new qi+1 is sampled. As noted previously,
human infants exhibit a bias toward keeping the hand visible [35, 36, 34, 33]. Human
infants are also soft and robust, so they can detect and avoid collisions with minimal
damage. To prevent damage to our Baxter Research Robot, we implement these
checks using a manufacturer-provided forward kinematics model that is below the
level of detail of our model, and is used nowhere else in its implementation. In
future work, we will considering biasing this sampling to resemble human infants’
pre-reaching motions toward objects, or to move in a cyclic fashion, often returning
to the center of the field of view.

To move along an edge eij from ni to nj, in the current implementation, the
agent uses linear interpolation of each joint angle qk from its value in qi to its value
in qj.

For this experiment, the total number of nodes created and added to P is N =
3000.

3.3 Experiment 1 Results

The Peripersonal Space graph P is a sparse approximation of the configuration
space of the robot arm (Figure 3). It is evident that random sampling through
unguided exploration has distributed N = 3000 nodes reasonably well throughout
the workspace, with some localized sparse patches and a region in the far right
corner that is generally out of reach of the robot’s left hand. The display in Fig-
ure 3(a) overlays information available to the robot in the individual nodes of P .
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The information in Figure 3(b) is not available to the robot.
Random exploration of the configuration space with N = 3000 creates 3000

nodes, in a chain with 2999 edges. Of the original 2999 edges, 1614 of them have
length less than the mean length µe of all 2999 edges. The heuristic that creates a
new edge between ni and nj when d(ni, nj) < µe adds 108,718 new edges, so that
P now has 3000 nodes and 111,717 edges. By comparison, the complete graph with
3000 nodes has 4,448,500 edges, so the PPS graph P has the same number of nodes
and about 2% as many edges as the complete graph.

Figure 3: Two visualizations of the Peripersonal Space (PPS) Graph P , with size
N = 3000. Each visualization shows wide coverage that facilitates movement
throughout the environment, with a few sparse patches. (a) An example RGB
percept of the empty environment, overlayed with the (u, v) center of mass loca-
tions for all N nodes. The dot for each node is colored and sized according to
its mean disparity value d (see key along right edge). Nodes with higher disparity
(closer to the camera) appear larger and more red, while nodes with lower disparity
(farther from the camera) appear smaller and closer to blue. (b) The nodes of P
displayed in the true world (x, y, z) coordinates of the Baxter Robot’s default frame
of reference. The gray plane represents the surface of the table. Nodes are plotted
as blue points. The 2999 edges in the original chain from motor babbling are shown
as dotted red lines. Not shown are the edges added according to the safe motion
heuristic.

4 Learning a Reliable Reach Action
In our model, learning the reach action takes place in three stages. First, the agent
must learn to detect the unusual event of bumping a block, causing a quasi-static
change in the environment, against the background of typical arm motions that
leave the environment unchanged. Second, the agent learns criteria for selecting
nodes from the PPS graph, such that moving to one of those nodes increases the
likelihood of bumping a specified block. Third, the agent learns how to interpolate
in continuous space between the nodes of the PPS graph to further increase the
likelihood of bumping a target block.
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Since these three learning stages have different character, depend on different
knowledge, and apply different methods, we describe our research on each of them
with its own Methods-Experiments-Results description.

4.1 Observing the Unusual Event of a Bump

4.1.1 Methods

During the construction of the PPS Graph, the agent’s perceptual input can be
easily factored into a static background, and a highly variable foreground corre-
sponding to the robot’s hand and arm. This allows the nodes of the PPS Graph
to be characterized by the perceptual image of the robot’s hand. By detecting a
correlation between “random” motor output and perceived hand motion, the agent
can diagnose that that the hand is part of the agent’s “self”.

Once the PPS Graph has been completed, additional objects are placed into the
workspace. The objects used for this work are rectangular prism blocks with a single
long dimension. The blocks are placed upright at randomly generated coordinates
on the table in front of the robot, with the requirement that each placement leaves all
blocks unoccluded and fully within the field of vision. The objects have distinctive
colors not present in the background, making it easy to create a binary image mask
for each object in the RGB image. This image mask can be applied to the depth
image to determine the range of depth values associated with the object.

The agent creates binary image masks as more efficient representations of its own
hand and of foreground objects that may be targets of actions. For each ni ∈ P , the
agent finds the end effector in IRGB(ni) and records two binary masks that describe
its location in the image. The palm mask pi is defined to be the region between the
gripper fingers, which will be most relevant for grasping.2 The hand mask hi includes
this region as well as the gripper fingers and the wrist near the base of the hand. hi
reflects the full space occupied by the hand, which is most useful to identify and avoid
nodes with hand positions that may collide with obstacles. The state representation
for a node also includes the range of depths the end effector is observed to occupy.
This range is found by indexing into ID(ni) with either mask, and determining the
minimum and maximum depth values over these pixels. That is, the depth range
of the palm D(pi) ≡ [min(ID(ni)[pi]),max(ID(ni)[pi])], and the depth range of the
full hand D(hi) is defined analogously. Edges can also be associated with a binary
mask for the area swept through during motion along it, si,i′ , approximated by a
convex hull of the hand masks of the endpoint nodes, hi and hi′ . The depth range of
motion along an edge is the full range between the minimum and maximum depths
seen at either endpoint, D(si,i′) ≡ [min(D(hi), D(hi′)),max(D(hi), D(hi′)].

Many (but not all) motions of the arm leave the other objects unaffected, so
the new objects typically behave as part of the static background model. However,
occasionally the hand bumps into one of the objects and knocks it over or shifts
its position. This is defined as a bump event, and is detected by the agent as a
quasi-static change to the perceptual image of the object.

When an image of an object is characterized by a binary mask, the difference
between two images A and B can be measured by the Intersection Over Union

2We use the word “palm” for this region because of its functional (though not anatomical)
similarity to the human palm, especially as the site of the Palmar reflex [12].
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measure:
IOU(A,B) = |A ∩B|/|A ∪B|. (10)

Comparing the images of an object A at times t1 and t2, when IOU(A(t1), A(t2)) ≈ 1
the object has remained static. In case we observe IOU(A(t1), A(t2))� 1, the object
may have moved, but we take care to exclude the case of a temporary occlusion of
an object by the hand or arm.

We define a reach as the action of following a trajectory resulting in a bump event
with a target object. Even without knowing how to make a reach action reliable,
the IOU criterion will allow the agent itself to distinguish between successful and
unsuccessful reach actions. In subsequent stages, the agent will learn how to reach
reliably.

4.1.2 Experiments

The agent continues to practice its new capability to perform motions allowed by
the PPS Graph and observe the results of these motions.

Experiment 2: Exploration. The agent follows this procedure:

1. Observe the environment while at the home node nh, and find the initial mask
for each of three objects newly placed in the foreground.

2. Select a random final node nf in the PPS Graph.

3. Perform a graph search to determine the shortest path trajectory from the
home node nh to nf .

4. Execute the trajectory, checking the visual percept at each node for any sig-
nificant change to an object mask.

5. If a change is observed, or the current node is nf , immediately return to the
home node along the shortest path.

6. Calculate the IOU values between the initial and final masks for each object.

• If an apparent change at intermediate node ni that triggered an immedi-
ate return is not confirmed (i.e., IOU ≈ 1), then repeat the trajectory,
continuing past ni, to search for a subsequent bump event.

7. Cluster all IOU values seen so far into two clusters.

8. Repeat until the smaller cluster contains at least 20 examples.

By clustering the results of the IOU criterion, the agent learns to discriminate
between the typical outcome of a trajectory (no change) and an unusual outcome (a
bump event). These outcomes are defined as the unsuccessful and successful results
of a reach action, respectively. Subsequent stages will identify features to allow
increasingly reliable reach actions.
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Experiment 3: Reach Reliability. To quantify this improvement, we establish
a baseline level of performance for the policy of selecting a random final node nf and
then following the shortest path in the PPS Graph to nf . This second experiment
consists of 40 trials with a single, randomly-placed target block.

4.1.3 Results

Following this procedure, with three new objects added to the environment, the
agent moved along 102 trajectories and gathered 306 IOU values between initial
and final object masks. Where t is the target object mask prior to the motion,
and t′ is the target object mask following the motion, the IOU values fell into two
well-separated clusters.

IOU(t, t′) ≈ 1 285 typical: “no change”
IOU(t, t′)� 1 21 unusual: “bump event”

Intuitively, a trajectory to a random final node is unlikely to interact with an
object on the table. However, in a rare event the hand bumps the object, knocking it
over, or sliding it along the table and sometimes off the table (the resulting absence
of a final mask leads to an IOU of 0, so no special case is necessary).

The strategy of returning to the home node to observe the final mask allows the
agent to rule out occlusion by the hand as the source of the perceptual change. This
has not been observed to make false positive bump classifications. This is important
so that the agent will not learn incorrect conditions for a bump. There are a small
number of false negatives where the hand and object do collide, but without lowering
the IOU enough to fall into the smaller cluster. The agent is still able to learn the
conditions from the reduced number of observed bumps, and may even favor actions
that cause larger, more reliable bumps as a result.

The agent can classify all future motions in the presence of an object by asso-
ciating the resulting observed IOU with one of the two clusters. While we human
observers can describe the smaller cluster as a bump event, the robot learning agent
knows only that the smaller cluster represents an unusual but recognizable event,
worth further exploration. The agent has no knowledge of what makes a reach
succeed. The following stages will help fill that gap.

The quantitative baseline experiment gives a reliability of 20% for the reach
action to a random final node, which will be compared to other methods in Figure 7.

Reach reliability given selection method for nf

Select random target node nf from PPS graph (baseline) 20.0%

4.2 Identifying Candidate Final Nodes

4.2.1 Methods

The agent has identified the rare event of a bump, and has defined reach as the action
that can cause this event. Choosing a target node nf randomly from the PPS graph
gives a baseline reliability of 20%. The agent is now intrinsically motivated to
search for ways to improve the reliability of the reach action. This can be done by
identifying one or more features that discriminate between the cases that result in
a bump, and those that do not.
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The PPS graph stores a visual percept of the hand on each node, and the agent
has a current visual percept of the target object. Comparing these percepts is
straightforward, since they have the same frame of reference, and the agent has the
RGB masks and the depth ranges from each image. Any nonempty intersection
predicts that the hand and the target object will occupy the same region of the
RGB image, or the same depth, or both.

The stored visual percepts also allow the agent to derive the image-space center
of mass of the end effector at a given node. Centers and directions will have three
components, two for the (u, v)-coordinates in the RGB image, and one (d) for depth
values in the Depth image. For a node ni, the center of the palm cpi is composed of
the center of mass of pi and the average depth, mean(PD(ni)[pi]), and the center of
the hand chi is derived from hi and PD(ni)[pi] in the same manner. Center ct for a
target object with mask t and depth range D(t) in the current percept is also found
analogously.

Using the PPS graph, the agent improves reach reliability in three steps.

1. Determine which binary image masks and which intersection property best
predict the occurrence of a bump event.

2. Identify a set of candidate final nodes from the PPS graph with this intersection
property. Select an arbitrary node in this set as the target node nf .

3. Determine the best measure of closeness between centers of palm and target
object, and select the closest node nf from the candidate final node set.

4.2.2 Experiments

Experiment 4: Which intersection property is best? By further analysis
of the data reported in Section 4.1.3 from 102 reaching trajectories, the agent can
determine which binary image mask, and which intersection property, best predict
whether a trajectory will produce a bump event.

The agent compares binary masks b representing the palm (pf ) or the hand (hf )
at its final pose or throughout its final motion (sp,f ). For each binary mask b and
the mask t representing the target object, the trajectories are placed in four groups
according to whether b ∩ t and/or D(b) ∩ D(t) are empty or nonempty. Counts of
observed bumps and the total number of trajectories within each group allow the
conditional probabilities of a bump to be computed.

The set of PPS graph nodes that satisfy the selected mask intersection property,
with the best choice of mask, will define the set of candidate final nodes for a reach
trajectory.

Experiment 5: Using the Candidate Final Nodes. An improved reach action
policy can be created by selecting the target node nf as a random member of the
candidate final node set, rather than a random node from the entire PPS graph.
The shortest graph path is found from the home node nh to this final node nf .
This policy is evaluated using the same method as Experiment 2 in Section 4.1.2:
reaching for 40 blocks, presented individually at randomly assigned locations on the
table.
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Figure 4: Candidate final nodes are identified from their intersection features. [top
row] RGB-D percepts taken from the node definition (left two) and from the current
percept of the environment (right two). [middle row] The palm masks and depth
ranges from the stored percept (left) and current percept (right). [bottom image]
The intersections of the palm masks and the depth ranges are both non-empty, so
the current node is identified as a candidate for reaching the observed block. The
palm masks and depth ranges for each node can be computed in advance. The
intersections of the mask and range from a target block can be quickly evaluated for
all 3000 PPS graph nodes to generate the set of candidate final nodes.

Experiment 6: Selecting the Best Candidate Node. In spite of every can-
didate node having non-empty intersections between both RGB and D masks of
hand and target object, the reliability of this reach action is still only 52.5%. One
reason is that the RGB and D masks taken together over-estimate the space occu-
pied by the hand or an object, so the intersection may take place in empty space.
Another reason is that some non-empty intersections may be very small, resulting
in an imperceptible bump event.

To address this issue, we identify a distance measure between hand and target
object, and then select from the set of candidate nodes, the node that minimizes
that distance measure. Once this node is chosen, the rest of the path is planned as
before. This improved policy is evaluated the same way as Experiment 4.

4.2.3 Results

Experiment 4 results. The set of groups where b = pf contains the group with
the highest conditional probability.

Each array represents the four possible intersection conditions, and each entry
holds the conditional probability of a bump event in a trajectory satisfying that in-
tersection conditioned, explained as the ratio of bump events to trajectories. Recall
that three objects were present for each trajectory, so the total number of observa-
tions reflected in the denominators is 306.
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Figure 5: Given percepts for hand and target object, the agent searches for the
feature f that will maximize the conditional probability P (Bump | f). Each feature
considers the centers of the palm and target in (u, v, d) image-space. fu, fv, and fd
evaluate to true if the absolute difference in one coordinate is less than a variable
threshold k, and fc is true if the distance between centers is less than k. The
probabilities shown in this graph are based on the 102 trajectories used previously,
and their outcomes. For all values of k, P (Bump | f) is maximized when f = fc.
The agent therefore selects as nf the candidate node where the hand is closest to
the target object, thereby minimizing k and maximizing P (Bump | f).

Hand silhouette
D(hf ) ∩D(t) 6= ∅ D(hf ) ∩D(t) = ∅

hf ∩ t 6= ∅ 64% (7/11) 9.8% (5/51)
hf ∩ t = ∅ 7.6% (6/79) 1.8% (3/165)

Palm silhouette
D(pf ) ∩D(t) 6= ∅ D(pf ) ∩D(t) = ∅

pf ∩ t 6= ∅ 64% (7/11) 0% (0/28)
pf ∩ t = ∅ 14% (12/84) 1.1% (2/183)

Edge (hand) silhouette
D(sp,f ) ∩D(t) 6= ∅ D(sp,f ) ∩D(t) = ∅

sp,f ∩ t 6= ∅ 60% (12/20) 11% (8/75)
sp,f ∩ t = ∅ 1.2% (1/87) 0% (0/124)
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A bump is most likely (64%) to occur at a final node nf where the palm percept
has a nonempty intersection in both mask and depth range with the target percept,
that is, where

pf ∩ t 6= ∅ ∧ D(pf ) ∩D(t) 6= ∅. (11)

The process of identifying a node as a candidate is demonstrated in Figure 4.

Experiment 5 results. For the same 40 placements as the baseline (Experiment
2), 39 have at least one node with both mask and depth range intersections with the
target (i.e., has a non-empty candidate final node set), and the policy of moving to
one of these nodes bumps the target 21 times. Attempting a reach to the placement
where no node has both RGB and Depth intersections was not successful. Overall,
the reach action is now 52.5% reliable. The comparison in Figure 7 shows reaching
to an arbitrary candidate node is more than twice as reliable as the baseline action
of moving to a random final node.

Experiment 6 results. Figure 5 shows the results of comparing several different
distance measures between the center positions of the hand and of the target object.
This result supports the use of the final node candidate with the smallest center
to center distance with the target ||ct − cpf ||. This result is also included in the
comparison in Figure 7. Attempting the 40 reaches again, the agent now considers
the reach action to be 77.5% reliable, with 31 successes, 7 false negatives, and 2
actual failures to bump the object.

Tabulated results from Experiments 3, 5, and 6:

Reach reliability given selection method for nf

Select random target node nf from PPS graph (baseline) 20.0%
Select arbitrary candidate node nf 52.5%
Select candidate node nf with hand center closest to target center 77.5%

This method, for identifying candidate target nodes that increase the probability
of bumping a specified block, can be extended to avoid bumping specified blocks.

4.3 Interpolating between PPS nodes

4.3.1 Methods

Recall that the first improvement to the reach action was to identify a set of can-
didate final nodes, all nodes where the stored hand representation and the current
percept of the target intersect in both the RGB and depth images. Moving to an
arbitrary candidate final node instead of a random node from the PPS graph more
than doubles the rate at which bumps are successfully caused. However, Figure 5
demonstrates that the success rate for reaches increased as ||cpf − ct|| decreased.
Choosing the candidate node nearest to the target object improved the reliability
of the reach to 77.5%, but this method is limited by the density of the PPS Graph
near the target. Especially in relatively sparse regions of the graph, even the nearest
node may not be close enough for a reliable reach. The agent must learn to make
small moves off the graph to reach closer to the object than the nearest node.
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The PPS graph P is a discrete, sampled approximation to a continuous mapping
between the continuous configuration space of the arm, and a continuous space of
perceptual images. The full Jacobian model J(q) relating joint angle changes ∆q
to changes in hand center coordinates ∆c is a nonlinear mapping, dependent on
the current state of the arm q, a seven-dimensional vector. The full Jacobian is
therefore prohibitively difficult for the agent to learn and use. However, P does
contain sufficient data for making linear approximations of the relationship between
∆q and ∆c local to a particular qi = q(ni). This estimate is most accurate near the
configuration qi, with increasing error as the distance from qi increases.

The linear approximation at a node ni is derived using the neighborhoodN(ni) ≡
{ni′ |∃ei,i′}, the set of all nodes ni′ connected to ni by an edge for feasible motion.
The local Jacobian estimate Ĵ(ni) considers all edges ei,i′ such that ni′ ∈ N(ni).
Each edge provides an example pair of changes ∆q = qi′ − qi and ∆c = cpi′ − c

p
i . If

there are m neighbors, and thus m edges, these can be combined as an m×7 matrix
∆Q and a m× 3 matrix ∆C, respectively. Ĵ(ni) is the least squares solution of

∆Q Ĵ(ni) = ∆C. (12)

For a given change ∆q in arm configuration, ∆q Ĵ(ni) = ∆c gives a local linear
estimate of the resulting change ∆c in the appearance of the hand. Conversely,
given a desired change ∆c in the appearance of the hand, the pseudo-inverse Ĵ+(ni)
makes it easy to compute the change ∆q in arm configuration that will produce that
result.

Figure 6 shows an example graph neighborhood and a visualization of the in-
formation contained in each edge. The resulting Ĵ(ni) is a 7 × 3 matrix where
the element at [row, col] gives the rate of change for ccol (either the u, v, or d co-
ordinate of the palm’s center of mass) for each unit change to qrow. A possible
adjustment ∆q to qi may be evaluated by determining if the predicted new palm
center ĉpi ≡ cpi +∆qĴ(ni) and the palm mask pi translated by ∆qĴ(ni) have desirable
features. Rotations and shape changes of pi that will occur during this motion are
not modeled, but are typically small.

Where nf is the final node of the planned trajectory for a reach, the agent can
use the local Jacobian Ĵ(nf ) and its pseudo-inverse Ĵ+(nf ) to improve the accuracy
of its final motion, and the likelihood of causing a bump event.

Where cpf is the center of the palm in the percept in node nf , and ct is the center
of the target object, the desired change in the palm percept is ∆c = ct − cpf . Then
the updated final configuration is

q∗f = qf + (ct − cpf )Ĵ+(nf ) (13)

When the agent moves to the configuration q∗f , the palm center should be approx-
imately aligned with the target’s center. A motion that aligns the centers should
increase the size of the intersection, making the action robust to noise, and increasing
the likelihood of the resulting bump event.

While the ability to make a small move off of the graph to q∗f increases the
robustness of the reach, it does not eliminate the need for a set of candidate final
nodes, or for the decision to use the nearest node to the target as nf . As Ĵ+(nf )
is a local estimate, if ||ct − cpf || is large, the error in the recommended ∆q will also
tend to be large. Choosing the nearest candidate nf minimizes the factor by which
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Figure 6: (a) The agent considers the graph neighborhood around a node ni to
estimate the change in appearance for small changes in configuration near ni. The
predictions will be made by a local Jacobian estimate Ĵ(ni) (see equation (12)). ni

is near the center of P and has a large number of neighbors. Each edge is relatively
short in configuration space, where edge feasibility is measured, even though some
neighbors appear distant in image space. The furthest neighbors tend to be those
where most of the edge length comes from a difference in proximal joint angles that
have a larger effect on workspace position. (b) The images of the node ni and one
of its neighbors are superimposed with a representation of the edge, drawn between
their centers of mass. This example illustrates a change in configuration ∆q and the
resulting change in center locations ∆c along one edge.
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natural errors in Ĵ+(nf ) will be multiplied, giving the best accuracy for the final
position of the reach. Adding the use of the inverse local Jacobian gives the final
reaching procedure below.

4.3.2 Experiment 7: Reaching to target adjusted by local Jacobian

The final improvement in the reach action starts with the trajectory planned to the
closest candidate node nf to the target object. The configuration qf in that node
is then adjusted according to the local Jacobian for the neighborhood of nf . The
final motion in the trajectory then goes to q∗f , rather than qf . In effect, the PPS
graph supports a local linear approximation to the full Jacobian over the continuous
configuration space, based in the neighborhood of each node.

This improved policy is evaluated the same way as Experiments 3, 5, and 6.

4.3.3 Experiment 7 Results

Using this procedure on the training set of target placements, the agent perceives
bumps at the final node of all 40 trajectories. This 100% result demonstrates that
the reach action has become reliable, and is a significant improvement from the
previous methods shown in Figure 7.

Reach reliability given selection method for nf

Select random target node nf from PPS graph 20.0%
Select arbitrary candidate node nf 52.5%
Select candidate node nf with hand center closest to target center 77.5%
Adjust target away from nf using local Jacobian 100.0%
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Figure 7: Reliability of the agent’s action to reach and bump a single target object
by following a trajectory to a selected target node. The four groups represent (1)
randomly selected target node; (2) random selection from among candidate nodes
with non-empty image intersections; (3) select closest among candidate nodes; (4)
adjust node with local Jacobian to best match target object. Within each group,
the bars represent different criteria for success: (l) observed bump at final node,
which measures the agent’s ability to cause bumps intentionally and efficiently;
(m) observed bump anywhere in the trajectory, which identifies bumps that can be
learned from; (r) any bump, observed or unobserved, which measures ground truth
of bump occurrence.
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5 Learning a Reliable Grasp Action
In our model, after the intrinsic motivation pattern has resulted in a reliable reach
action, the pattern may be applied a second time to learn a grasp action. As the
reach action toward a target object becomes more reliable, the result of causing a
quasi-static change in the image of that object becomes more typical. However, there
is an unusual result: during the interaction with the target object, the hand may
reflexively close, providing sensorimotor experience with attempted and successful
“accidental grasps”.

Driven by intrinsic motivation, the grasp action becomes more reliable, toward
becoming sufficient to serve as part of a pick and place operation in high level
planning. In this case, additional requirements may be learned in a more flexible
order, so we present the learning stages of our agent according to the order in which
it considered the concepts. The agent must begin with the Palmar reflex to observe
the unusual results of a reliable reach action without consciously closing the hand
with correct timing. Our agent then learned: how to most reliably set the gripper’s
aperture during the grasp approach, how to best align the hand, target, and final
motion, and how to preshape the hand by orienting the wrist. Each stage is presented
with a Methods-Experiments-Results description.

5.1 Reaching with an Innate Palmar Reflex

5.1.1 Methods

Human infants possess the Palmar reflex, which closes the hand as a response to
contact of an object to the palm. Our work assumes that the Palmar reflex is
innate and persistent during at least early stages of learning to grasp. Within our
framework, the primary importance of this reflex is to enable the observation of
accidental grasps as an unusual event while reaching. While the closing of the hand
is unconscious, the agent learns the motor commands and sensations of closing the
hand.

When conditions are correct, the Palmar reflex causes an accidental grasp, where
the object is held tightly in the hand and becomes a temporary part of the self.
This gives a much greater level of control over the pose of the object, as it can
be manipulated with the agent’s learned scheme for moving the hand until the
relationship ends with an ungrasp, opening the fingers to release the object. The
variety of outcomes possible with the level of control a grasp provides imply a high
potential reward from learning to predict the outcomes and actions to cause them,
but it is also the case that grasps occur too rarely to learn immediately after learning
to reach. Without enough examples, learning the conditions for a grasp may prove
too difficult, leading to a modest rate of improvement and a low reward. In our
model, the agent focuses next on an intermediate rare event.

The activation of the Palmar reflex is such an event that may be observed as an
unusual result of successful reaches. When the hand’s final approach to the target
meets all necessary conditions of openness, alignment, and orientation, the target
object passes between the grippers in a way that activates the simulated Palmar
reflex, and the gripper fingers close. The openness of the grippers is a degree of
freedom for the robot’s motion, and is continually sensed by proprioception. As a
result, accurate detection of when the Palmar reflex has been triggered does not rely
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on the visual percept, and can be observed in a rapid decrease of openness to a new
fixed point.

The closing of the grippers, either by reflex or conscious decision, is necessary for
the agent to gain a higher level of control over the object with a grasp. In some cases,
the initial interaction between the hand and object does not lead to the grippers
closing around the object, and the attempt to gain control fails immediately. We
refer to this event as a Palmar bump, as it often involves knocking away the object
before the grippers can close on it. Like other bumps, this is a quasi-static change
with an observably low IOU value between masks, and it is the result of a successful
reach. While the Palmar bump is not a successful grasp, it serves as a useful near-
miss example, promoting use of the conditions that allowed the reflex to trigger in
future grasp attempts.

When a grasp occurs, the activation of the Palmar reflex is followed by the object
shifting from its initial quasi-static state to a new dynamic state. Now held between
the gripper fingers, the object begins to follow the hand with continued motion
correlated with the motion of the hand. The agent can identify this corresponding
motion by comparing masks and depth ranges during the return trajectory. A grasp
is successful if and only if the stored masks and depth ranges for each node of the
trajectory intersect with those of the target object in the visual percepts during
the return to the home node. Note that the full hand masks and depth ranges are
used since the gripper fingers, once closed, may obscure the portion of the object in
the palm region. If all nodes of the trajectory have an empty mask or depth range
intersection, control was never gained and the result is a Palmar bump. If at least
one node fails the intersection check, but not all nodes, the grasp is considered to
be a weak grasp. Here the grasp was initiated, but due to a loose or poor placement,
did not persist through the return trajectory. Note that the loss of control of the
object in a weak grasp does not involve an opening of the grippers, as an intentional
ungrasp action would. Figure 8 provides an example of the agent’s visual percepts
of a trajectory that produced each type of result.

Since the Palmar bump and weak grasp cases fail to gain or maintain control
of the object, both are successful reaches but failed grasps. By considering both
situations to be failures, the successful grasps that emerge from this learning process
are more likely to facilitate subsequent learning of higher order actions that require
a grasp. However, Palmar bumps, weak grasps and grasps share the sensed result
of reflexively closing the hand, and may be assumed to share similar preconditions
as well. Until a sufficient number of successful grasps are observed, the agent will
draw information from all cases where the Palmar reflex was activated to learn to
grasp.

5.1.2 Experiment 8: Monitoring the Palmar Reflex During Reaching

We first attached a break-beam sensor between the tips of the Baxter robot’s parallel
gripper fingers to provide the agent with a simulated innate Palmar reflex. Then
our agent repeated all trials of Experiments 3, 5, 6, and 7 in section 4, using the
same target placements and planned trajectories. For each trial, the agent records
if the Palmar reflex was activated, and which category of result (grasp, weak grasp,
Palmar bump, bump, or miss) it observed.
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Figure 8: The agent’s RGB percepts during attempted grasp trajectories. Images
for the forward portion toward nf are shown in the first of each pair of rows, and
images for the portion to return to nh are shown in the second rows. Images for some
nodes in the middle of trajectories with more than five nodes have been omitted.
The agent classifies the result of the grasp attempt by observing the state of the
target object during the trajectory. In all cases but miss, there is a substantial
change between the first and last observations, and the trajectory is a successful
reach. In all other cases these observations should be significantly different, and the
reach component of the grasp was successful. Further classification depends on the
state throughout the return trajectory and if the Palmar reflex was activated, as
discussed in section 5.1.1. Only the result of the final example is considered to be a
successful grasp.
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5.1.3 Experiment 8 Results

It is clear that learning to reach more reliably and with greater precision allows
more Palmar reflex activations and grasps to occur. With the random trajectories
of Experiment 3, one of 40 activated the Palmar reflex, and this was a successful
grasp. Using the final reaching method of Experiment 7, the agent observed that the
Palmar reflex was activated in 12 out of the 40 trials. Of these 12, 5 were successful
grasp trajectories. These provide a baseline reliability of grasping with random
motion trajectories (2.5%) and of grasping with a reliable reach trajectory (12.5%).
These results and those for intermediate reach methods are tabulated below, and
also shown alongside the rest of the results for this section numerically in Figure 11
and spatially in Figure 12.

Tabulated Results from experiment 8:

Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss
Experiment 8 (3) 2.5% 0% 0% 17.5% 80.0%
Experiment 8 (5) 2.5% 0% 7.5% 42.5% 47.5%
Experiment 8 (6) 5.0% 0% 12.5% 60.0% 22.5%
Experiment 8 (7) 12.5% 0% 17.5% 70.0% 0%

5.2 Initiating Grasps with the Gripper Fully Open

5.2.1 Methods

While exploring PPS and performing reaches, the agent is motivated to keep the
hand fully open (a = 100). This presents the largest silhouette of the hand to keep
in view, as desired, and the full extension allows for more interactions with objects
when the extremities collide with them. As the PPS Graph was created, this setting
also allowed a brightly colored block to be placed spanning the full width of the
grippers, simplifying visual tracking of the “palm”.

With the new event of a Palmar reflex activation during the interaction, the
agent may choose to investigate its degrees of freedom. Each of the joint angles in
q have an understood role in the placement of the hand, but a does not appear to
significantly affect the location of the hand’s center of mass and does not differentiate
graph nodes. This allows it to be freely modified to investigate its influence on the
frequency of Palmar reflex activations.

5.2.2 Experiment 9: Which gripper aperture setting is most reliable?

While it is intuitively desirable for the agent to approach targets with the grippers
open for a Palmar bump or grasp, the agent does not yet have sufficient data to
reach this conclusion. This is gathered by repeating the trajectories of Experiment
6, the final reaching method, with the Palmar reflex active and each gripper aperture
of 0%, 25%, 50%, and 75% open. These four sets of results can be compared with
those for the fully open gripper that were already obtained in Experiment 7.
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Figure 9: The portion of attempted reach trajectories that produce observed bumps
(orange), ground truth bumps (yellow), and Palmar bumps, or bumps which also
trigger the Palmar reflex (purple) for varying gripper apertures a. The high reli-
ability of the reach action is independent of a, indicating it could be learned and
executed with any setting. By contrast, triggering the Palmar reflex is much more
likely as a increases, and is learned as a prerequisite for the Palmar bump event and
later for the grasp action.

5.2.3 Experiment 9 Results

Two conclusions may be drawn from the results of this experiment, which are visual-
ized in Figure 9. First, it is clear that the probability of activating the Palmar reflex
increases with the openness a of the gripper during the approach. As a decreases,
the opening of the hand narrows, and the object is less likely to pass inside with an
approach of equal precision, so there are less activations. Once a is sufficiently low
that the object cannot fit in the hand, the Palmar reflex never triggers. The agent
will continue using the fully open setting a = 100 in future attempts to maximize
its expected success rate.

Second, we see that the openness of the gripper has almost no affect the prob-
ability of a bump. In fact, only one trial was perceived to fail with any setting,
and this was a false negative. We claim that this demonstrates the agent could
have learned the reach action with the same process and ending reliability for any
gripper setting, and at that point would learn to prefer 100% open. It is therefore
not necessary for our model to assume any initial setting a for the gripper opening
while learning to reach.

5.3 Planning the Approach with Cosine Similarity Features

5.3.1 Methods

When reaching, it is important that the candidate final nodes satisfying equa-
tion (11) are identified, and nf is chosen to minimize ||ct−cpf ||. To plan reaches that
activate the Palmar reflex, additional features are needed to ensure not only that
the final position is correct, but also that the hand orientation and the direction
of final motion are suitable. These must be compatible during the approach, and
must also be effective for the current target object. To learn to use satisfactory
relationships between these vectors, the agent constructs this set of vectors using
information from its stored and current visual percepts:
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gripper vectors: pointing outward, near parallel to the gripper fingers.
~gp ≡ drawn from chp through cpp
~gf ≡ drawn from chf through cpf

motion directions: direction of motion along an edge or toward a target
~mp,f ≡ the direction of the edge-based final motion from cpp to cpf
~mp,t ≡ the direction of the modified final motion from cpp to ct

~mf,t ≡ the direction of displacement from cpf to ct

object orientation: the perceived major axis of the target object
~o ≡ drawn along the major axis of t.

(14)

The agent learns cosine similarity criteria for the vectors of final motions that
most reliably cause Palmar reflex activations in Experiment 10. In Experiment 11,
the agent plans trajectories with final motions that satisfy this criteria to improve
the reliability of Palmar reflex activations and grasps.

5.3.2 Experiments

Experiment 10: Learning reliable cosine similarities. To discover the best
relationship between these vectors for repeating the Palmar reflex activation event,
the agent uses the data from repeating the final reach trajectories of Experiment 7
in Experiment 8 with the Palmar reflex enabled. For each trajectory, it considers
the cosine similarity C(~v1, ~v2) of each pair ~v1, ~v2 ∈ {~gp, ~gf , ~mp,f , ~mp,t, ~mf,t, ~o} and
results. The cosine similarities are discretized to the nearest value in {-1, -0.5, 0,
0.5, 1}. The rate of Palmar reflex activations is observed for trajectories grouped
by their discretized C values.

Experiment 11: Planning well-aligned final motions. The agent uses the
results of Experiment 10 to plan the next set of trajectories to interact with the tar-
get. At this time, the agent does not have the ability to change any ~gi to a particular
direction to be perpendicular to ~o. Therefore, instead of the nearest candidate fi-
nal node, nf is selected from the candidates such that |C(~gf , ~o)| is minimized. As
before, Ĵ+(nf ) is computed and used to modify the final configuration to a more
reliable q∗f by equation (13). The agent may apply Ĵ+(nf ) again to create a pre-
shaping position, a copy of the final position translated in the direction of −~gf . This
image-space translation has a magnitude of 21, the mean length of the final motion
for all Palmar bumps and grasps previously observed. The preshaping position has
configuration

q∗p = q∗f + 21(−~gf/||~gf ||) (15)

and will replace qp. With this use of Ĵ+(nf ), it is expected that ~gp ≈ ~gf , and the
motion from q∗p to q∗f should be in the direction of ~gf , opposite of the translation. In
place of ~mp,f , ~mp,t, and ~mf,t, the direction of this motion is parallel to the gripper
vector and near perpendicular to the target major axis. The three steps of choosing
nf , adjusting to q∗f to match centers with the target, and translating to create a
well-aligned preshaping position with q∗p are visualized in Figure 10.

The agent must plan a trajectory that ends with this approach. q∗p is not stored
in P , so to find a feasible path to q∗p, the agent first identifies the nearest node
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nn ∈ P that minimizes ||q∗p−qn||. A graph search then yields the shortest path from
the home node to nn. After visiting nn, the arm will be moved from qn to q∗p, and
then make the final motion to q∗f to complete the trajectory.

The reliability of the grasp action using this method for planning trajectories
with aligned final motions is evaluated using the same layout of target placements
as Experiment 7, with the Palmar reflex enabled as in Experiment 8. The agent
also continues to record the frequency of all types of Palmar reflex activations.

5.3.3 Results

Experiment 10 results. When ~v1 6= ~o and ~v2 6= ~o, the highest rate of Palmar
reflex activations occurs in the C(~v1, ~v2) ≈ 1 group. For any ~v1 6= ~o, the trajectories
where C(~v1, ~o) ≈ 0 have the highest rate. The agent concludes that the ideal
approach for the Palmar reflex activation event should use matching directions for all
vectors describing the motion and orientation of the hand, {~gp, ~gf , ~mp,f , ~mp,t, ~mf,t},
and all of these parallel vectors should be perpendicular to the target’s major axis
~o.

Experiment 11 results. Using trajectories planned in this manner, 39 of 40
reaches are successfully completed and 21 of these activate the Palmar reflex. 14
of these activations result in a grasp. By choosing the best aligned candidate final
node instead of the closest candidate node and then adjusting the entire final motion
to match its gripper vector, the reliability of grasping is nearly tripled to 35%.
Figures 11 and 12 provide additional comparisons with results from other learning
stages.

Tabulated Results from experiments 8 and 11:

Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss
Experiment 8 (3) 2.5% 0% 0% 17.5% 80.0%
Experiment 8 (5) 2.5% 0% 7.5% 42.5% 47.5%
Experiment 8 (6) 5.0% 0% 12.5% 60.0% 22.5%
Experiment 8 (7) 12.5% 0% 17.5% 70.0% 0%
Experiment 11 35.0% 0% 17.5% 45.0% 2.5%

5.4 Orienting the Grippers with the Wrist

5.4.1 Methods

For our Baxter robot, the joint angle setting q7, which controls the most distal
twist joint, “wrist 2” or w2, affects only a small portion of the wrist with a roll
of the hand relative to the axis of the forearm without changing this axis. This
alters the orientation and perceived shape of the gripper opening, but leaves the
position largely unchanged. The primary modification is to the plane in which the
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Figure 10: The agent plans modifications to the end of the trajectory, and defines
a preshaping configuration q∗p. Human intuition and the agent’s learning recognize
that all vectors describing gripper direction and the direction of motion should be
near parallel, with all of these vectors near perpendicular to the target’s major axis.
The agent plans a final motion with these features in three steps: (a) The agent
chooses nf from the candidate final nodes (equation (11)) to minimize C(~gf , ~o). This
image displays the palm mask (yellow) and hand mask (red) for the chosen nf , along
with the target mask (blue). A blue outline is used to show the boundary of the
intersection between the hand and target. ~gf and ~o are displayed in light blue and
orange, respectively. (b) The agent uses Ĵ+(nf ) to estimate the change in joint
angles necessary to cause the image-space translation shown here. This translation
improves the approach accuracy by aligning cpf with ct by moving to q∗f . (c) The
agent constructs q∗p by equation (15), which is predicted to have masks translated
as shown from those for q∗f . A final motion from q∗p to q∗f has aligned gripper and
motion vectors.
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gripper fingers open and close. Adjusting this is analogous to a human’s preshaping
techniques to ready the hand for grasping an object, though simpler, as there are
fewer ways to configure parallel grippers than an anthropomorphic hand. For a
grasp to be successful, the cross section of the object in the gripper plane must be
smaller than the space between the grippers. Additionally, the angle at which the
plane and the object meet must not be so steep as to squeeze the object out of the
grip. Intuitively, the most reliable grasp approach rotates w2 so that the gripper
plane is perpendicular to the target object’s major axis.

5.4.2 Experiment 12: Copying successful wrist settings

Without intuition for the correct orientation, the agent must find another criteria for
predicting the wrist orientation that will be most reliable. By this time, the agent
has observed that, like the gripper aperture a, q7 does not have a significant impact
on the hand’s location in the image. This allows the agent to consider modifying
q7 without considering the graph nodes visited to change. In the same way, these
changes do not conflict with the learned requirements for reaching or the previous
grasping method of choosing nf such that ~gf and ~o are approximately perpendicular.
In order to avoid new failures from introducing large, sudden rotations of the hand
near the target, when a new q7 is chosen it will be used instead of the stored q7

value of all nodes in the trajectory nTj
.

To begin, the agent repeats each successful grasp, with a linear search over values
of q7 to identify the longest continuous range where the attempt still succeeds. The
center of this range will be saved as the ideal q7 value for this example grasp. The
agent will then retry each trajectory from Experiment 11. For each of these grasp
attempts, the adjusted final configuration q∗f is computed by equation (13), as before.
Using the Euclidean distance between all other joint angles, 〈q1f , . . . , q6f〉, the nearest
neighbor example grasp is found for the current trial. The grasp is attempted with
the ideal q7 value from this example and all other angles unchanged.

5.4.3 Experiment 12 Results

Over the same set of 40 object placements from previous experiments, this technique
increases the number of Palmar reflex activations (Palmar bumps, weak grasps, and
grasps) to 30 (75%), and grasps to 20 (50%), as shown in Figures 11 and 12. These
increases come at the cost of one bump, where the target is now missed because the
rotation of the hand prevents a collision that used to narrowly occur. In principle,
any time new successes are achieved, they can be treated as new example grasps
with ideal q7 values to consider for trials with nearby target placements, allowing
for further improvements to the success rate. However, in this training set only
two still unsuccessful grasp attempts have different nearest neighbor examples than
previously, and neither changes to a success with the new q7 value. Iterations of
using new nearest neighbors therefore end, but may be returned to in future work
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once more examples are available.

Tabulated Results from experiments 8, 11, and 12:

Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss
Experiment 8 (3) 2.5% 0% 0% 17.5% 80.0%
Experiment 8 (5) 2.5% 0% 7.5% 42.5% 47.5%
Experiment 8 (6) 5.0% 0% 12.5% 60.0% 22.5%
Experiment 8 (7) 12.5% 0% 17.5% 70.0% 0%
Experiment 11 35.0% 0% 17.5% 45.0% 2.5%
Experiment 12 50.0% 2.5% 22.5% 20.0% 5.0%

6 Conclusions
We have demonstrated a computational model of an embodied learning agent, imple-
mented on a physical Baxter robot, exploring its sensorimotor space without explicit
guidance or feedback, constructing a representation of the robot’s peripersonal space
(the PPS graph), including a mapping between the proprioceptive sensor and the
visual sensor.

We make use of a specific form of intrinsic motivation. After learning the typical
result of an action, and identifying an unusual outcome, the agent is motivated to
learn the conditions that make the unusual outcome reliable. We apply this process
once to learn reliable reaching, and again to learn (relatively) reliable grasping.

This work makes several contributions to developmental learning:

The Peripersonal Space (PPS) Graph. By unguided exploration of the pro-
prioceptive and visual spaces, and without prior knowledge of the structure or di-
mensionality of either space, the learning agent can construct a graph-structured
skeleton (the PPS Graph) that enables manipulator motion planning by finding and
following paths within the graph. The graph representation requires only limited
knowledge of the attributes of the nodes, and no knowledge of the dimensionality of
the embedding space.

Learning Reliable Reaching. By learning conditions to make a rare action (i.e.,
reaching to cause a bump of a block) reliable, the agent learns a criterion on per-
ceptual images (stored and current) that allows it to select a suitable target node in
the PPS Graph. Motion to that target node accomplishes a reliable reach. The PPS
Graph representation accounts for reaching in a way that matches striking quali-
tative properties of early human infant reaching: jerky motion, and independence
from vision of the hand.

By interpreting the target node and its neighborhood as a sample from a con-
tinuous space, the agent can approximate the local Jacobian of the hand pose in
perceptual space with respect to the joint angles. This allows it to adjust the tra-
jectory to make reaching more reliable.
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Figure 11: The top plot presents the overall results from the reaching methods as
a baseline for the grasp action as found in Experiment 8. The final reach method,
Adjusted Closest Candidate Node (Experiment 7), is always successful at reach-
ing, but within these interactions only 12.5% are fully successful though accidental
grasps. By considering additional features, the grasp methods in the bottom plot all
achieve more than double this success rate for grasping with only modest decreases
in reach reliability. The Cosine Similarity Approach Method (Experiment 11) aims
to increase the number of Palmar Bumps, with nf chosen from the candidates such
that |C(~gf , ~o)| is minimized and with np replaced by a preshaping position so that all
other cosine similarities are 1. Approaching with a motion parallel to ~gf and perpen-
dicular to ~o also increases the number of successful grasps. The Wrist Orientation
Method (Experiment 12) further adds a technique to copy the most distal degree of
freedom q7 used at the nearest configuration to previously succeed, converting more
bumps into Palmar bumps and grasps.

34



Figure 12: Spatial representations of the results of three methods for the agent’s
learned reach and grasp actions. Each shows a superposition of all placements of
the single target object, colored according to the result of the agent’s attempt to
repeat an unusual event by executing a motion trajectory. (a) Experiment 8 uses
the final reaching trajectories of Section 4.3 to successfully repeat the bump event
for all target placements. Twelve of these reaches accidentally trigger the Palmar
reflex, five of which become early examples of grasps. (b) Using cosine similarity
features in Experiment 11 (Section 5.3), the agent modifies the final approach so
that this motion causes significantly more Palmar bumps and more grasps are also
observed. (c) In results from experiment 12, the agent grasped from additional
placements by changing the angle of the most distal joint, w2. The wrist orientation
is copied from the final configuration of a trajectory that succeeded for a nearby
placement (Section 5.4). The use of nearest neighbors applies best very close to
existing successes, so most improvements can be observed in these areas.
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Learning Reliable Grasping. At this point, reaching reliably displaces the tar-
get block. Occasionally, instead of quasi-statically displacing the block, the block
continues to move, to follow the subsequent motion of the hand. Making this result
reliable requires several distinct conditions. The innate Palmar reflex makes these
rare events common enough to learn from. Conditions on gripper opening, wrist
orientation, and approach direction can all be learned based on positive feedback
from the unusual block motion.

Future Research Directions. Our current model is very simple, yet it supports
learning of reliable reaching and grasping. We hypothesize that an improved dy-
namical model of hand motion will better explain early jerky motion. We also
hypothesize that progress toward smooth, directed, adult reaching will build on ap-
proximated interpolation methods exploiting information in the PPS graph, such
as the local Jacobian. Finally, we expect to be able to model improvements in the
visual system, allowing observations of the size and shape of the target object to
influence pre-shaping of the hand.

Significance for Developmental Learning. There have been recent impressive
results from unguided end-to-end learning of multiple games [28, 27]. While these
results are very exciting, some limitations come from the need for vast amounts of
training experience, and the lack of transparency and explainability of the learned
knowledge.

We hope that our work on reaching and grasping in peripersonal space can illu-
minate the kinds of intermediate states that a developmental learner goes through.
Those intermediate states make the structure of the knowledge more comprehensi-
ble, and the learning stages between them more efficient. Combining the strengths
of these approaches could be important.

References
[1] G. Baldassarre and M. Mirolli, editors. Intrinsically Motivated Learning in

Natural and Artificial Systems. Springer, 2013.

[2] N. E. Berthier. The syntax of human infant reaching. In Unifying Themes
in Complex Systems: Proc. 8th Int. Conf. on Complex Systems, volume VIII
of New England Complex Systems Institute Series on Complexity, pages 1477–
1487. NECSI Knowledge Press, 2011.

[3] N. E. Berthier and R. Keen. Development of reaching in infancy. Experimental
Brain Research, 169:507–518, 2006. doi:10.1007/s00221-005-0169-9.

[4] A. J. Bremner, N. P. Holmes, and C. Spence. Infants lost in (periper-
sonal) space. Trends in Cognitive Science, 12(8):298–305, 2008. doi:
10.1016/j.tics.2008.05.003.

[5] D. Caligiore, D. Parisi, and G. Baldassarre. Integrating reinforcement learning,
equilibrium points, and minimum variance to understand the development of
reaching: A computational model. Psychological Review, 121(3):389–421, 2014.
DOI:10.1037/a0037016.

36



[6] E. Canzoneri, E. Magosso, and A. Serino. Dynamic sounds capture the bound-
aries of peripersonal space representation in humans. PLoS One, 7(9):e44306,
2012. doi:10.1371/journal.pone.0044306.

[7] E. Canzoneri, S. Ubaldi, V. Rastelli, A. Finisguerra, M. Bassolino, and
A. Serino. Tool-use reshapes the boundaries of body and peripersonal
space representations. Experimental Brain Research, 228:25–42, 2013. doi:
10.1007/s00221-01303532-2.

[8] E. Chinellato, M. Antonelli, B. J. Grzyb, and A. P. del Pobil. Implicit sensori-
motor mapping of the peripersonal space by gazing and reaching. IEEE Trans.
on Autonomous Mental Development, 3(1):43–53, 2011.

[9] R. K. Clifton, D. W. Muir, D. H. Ashmead, and M. G. Clarkson. Is visually
guided reaching in early infancy a myth? Child Development, 64(4):1099–1110,
1993.

[10] D. Corbetta, S. L. Thurman, R. F. Wiener, Y. Guan, and J. L. Williams.
Mapping the feel of the arm with the sight of the object: on the embod-
ied origins of infant reaching. Frontiers in Psychology, 5(576), June 2014.
http://dx.doi.org/10.3389/fpsyg.2014.00576.

[11] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3–4):189–208,
1971.

[12] Y. Futagi, Y. Toribe, and Y. Suzuki. The grasp reflex and Moro reflex in infants:
Hierarchy of primitive reflex responses. International Journal of Pediatrics,
2012(191562), 2012. doi:10.1155/2012/191562.

[13] M. Hersch, E. Sauser, and A. Billard. Online learning of the body schema. Int.
J. Humanoid Robotics, 5(2):161–181, 2008.

[14] M. Hoffmann, L. K. Chinn, E. Somogyi, T. Heed, J. Fagard, J. J. Lockman, and
J. K. O’Regan. Development of reaching to the body in early infancy: From
experiments to robotic models. In IEEE Int. Conf. Development and Learning
and Epigenetic Robotics (ICDL-EpiRob), 2017.

[15] M. Hülse, S. McBride, J. Law, and M. Lee. Integration of active vision and
reaching from a developmental robotics perspective. IEEE Transactions on
Autonomous Mental Development, 2(4):355–367, 2010.

[16] L. Jamone, M. Bradao, L. Natale, K. Hashimoto, G. Sandini, and A. Takanishi.
Autonomous online generation of a motor representation of the workspace for
intelligent whole-body reaching. Robotics and Autonomous Systems, 62(4):556–
567, 2014.

[17] L. Jamone, L. Natale, F. Nori, G. Metta, and G. Sandini. Autonomous online
learning of reaching behavior in a humanoid robot. Int. J. Humanoid Robotics,
9(3):1250017, 2012.

[18] J. Juett and B. Kuipers. Learning to reach by building a representation of
peri-personal space. In IEEE/RSJ Int. Conf. Humanoid Robots, 2016.

37



[19] J. Juett and B. Kuipers. Learning to grasp by extending the peri-personal space
graph. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2018.

[20] J. Law, P. Shaw, K. Earland, M. Sheldon, and M. Lee. A psychology based
approach for longitudinal development in cognitive robotics. Frontiers in Neu-
rorobotics, 8(1), 2014. doi: 10.3389/fnbot2014.00001.

[21] J. Law, P. Shaw, M. Lee, and M. Sheldon. From saccades to grasping: A model
of coordinated reaching through simulated development on a humanoid robot.
IEEE Trans. on Autonomous Mental Development, 6(2):93–109, 2014.

[22] F. Mannella, V. G. Santucci, E. Somogyi, Jacquey L, K. J. O’Regan, and G. Bal-
dassarre. Know your body through intrinsic goals. Frontiers in Neurorobotics,
12, 2018. doi: 10.3389/fnbot.2018.00030.

[23] E. Oztop, N. S. Bradley, and M. A. Arbib. Infant grasp learning: a computa-
tional model. Experimental Brain Research, 158(4):480–503, 2004.

[24] D. M. Pierce and B. J. Kuipers. Map learning with uninterpreted sensors and
effectors. Artificial Intelligence, 92:169–227, 1997.

[25] A. Roncone, M. Hoffmann, U. Pattacini, L. Fadiga, and G. Metta. Peripersonal
space and margin of safety around the body: Learning visuo-tactile associations
in a humanoid robot with artificial skin. PLoS ONE, 11(10):ee0163713, 2016.
https://doi.org/10.1371/journal.pone.0163713.

[26] P. Savastano and S. Nolfi. A robotic model of reaching and grasping develop-
ment. IEEE Trans. on Autonomous Mental Development, 5(4):326–336, 2013.

[27] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglu, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hass-
abis. A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science, 262(6419):1140–1144, 2018.

[28] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017.

[29] J. Sturm, C. Plagemann, and W. Burgard. Unsupervised body scheme learning
through self-perception. In IEEE Int. Conf. Robotics and Automation (ICRA),
2008.

[30] E. Thelen, D. Corbetta, K. Kamm, J. P. Spencer, K. Schneider, and R. F.
Zernicke. The transition to reaching: mapping intention and intrinsic dynamics.
Child Development, 64(4):1058–1098, 1993.

[31] B. L. Thomas, J. M. Karl, and I. Q. Whishaw. Independent develop-
ment of the Reach and the Grasp in spontaneous self-touching by human
infants in the first 6 months. Frontiers in Psychology, 5(1526):1–11, 2015.
doi:10.3399/fpsyg.2014.01526.

38



[32] E. Ugur, Y. Nagai, E. Sahin, and E. Oztop. Staged development of robot skills:
behavior formation, affordance learning and imitation with motionese. IEEE
Trans. on Autonomous Mental Development, 7(2):119–139, 2015.

[33] A. L. van der Meer. Keeping the arm in the limelight: Advanced visual control
of arm movements in neonates. Eur. J. Paediatric Neurology, 4:103–108, 1997.

[34] A. L. H. van der Meer, F. R. van der Weel, and D. N. Lee. The functional
significance of arm movements in neonates. Science, 267:693–695, 1995.

[35] C. von Hofsten. Eye-hand coordination in the newborn. Developmental Psy-
chology, 18(3):450–461, 1982.

[36] C. von Hofsten. Developmental changes in the organization of pre-reaching
movements. Developmental Psychology, 20(3):378–388, 1984.

[37] C. von Hofsten. Structuring of early reaching movements: A longitudinal study.
J. Motor Behavior, 23(4):280–292, 1991.

39


	Introduction
	What is the problem?
	Why is the problem important?
	Overview

	Related Work
	The human model: evidence from child development
	Robot developmental learning to reach and grasp

	Building the Peripersonal Space Graph
	Methods
	Experiment 1: Creating the Peripersonal Space Graph
	Experiment 1 Results

	Learning a Reliable Reach Action
	Observing the Unusual Event of a Bump
	Methods
	Experiments
	Results

	Identifying Candidate Final Nodes 
	Methods
	Experiments
	Results

	Interpolating between PPS nodes
	Methods
	Experiment 7: Reaching to target adjusted by local Jacobian
	Experiment 7 Results


	Learning a Reliable Grasp Action
	Reaching with an Innate Palmar Reflex
	Methods
	Experiment 8: Monitoring the Palmar Reflex During Reaching
	Experiment 8 Results

	Initiating Grasps with the Gripper Fully Open
	Methods
	Experiment 9: Which gripper aperture setting is most reliable?
	Experiment 9 Results

	Planning the Approach with Cosine Similarity Features
	Methods
	Experiments
	Results

	Orienting the Grippers with the Wrist
	Methods
	Experiment 12: Copying successful wrist settings
	Experiment 12 Results


	Conclusions

