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Abstract— We present the Reflectance Field Map, a reliable
real-time method for detecting shiny surfaces, like glass, metal,
and mirrors, with lidar. The Reflectance Field Map combines
the theory developed for Light Field Mapping, common in
computer graphics, with occupancy grid mapping. Like early
methods for sonar-based robot mapping, we show how the
addition of angular viewpoint information to a standard 2D
grid map enables robust mapping in the presence of specular
reflections. However unlike previous approaches, our method
works in dynamic environments. Additionally, unlike recent
approaches for lidar-based mapping of specular surfaces, our
approach is sensor-agnostic and has no reliance on either
intensity or multi-return measurements. We demonstrate the
ability of the Reflectance Field Map to accurately map a
campus environment containing numerous pedestrians and
significant plate glass, both straight and curved. The algorithm
runs in real-time (75+Hz) on a single core of a standard
desktop processor. An open source implementation of the
algorithm is available at https://github.com/collinej/
reflectance_field_map.

I. INTRODUCTION

Modern man-made environments present a significant
difficulty for safe navigation of mobile robots: important
barriers that are seemingly invisible to most sensors,
including lidar. Plate glass, both flat and curved, is a
common architectural element, and mirrors and reflective
metal surfaces like elevator doors raise similar issues.
Mapping these specular surfaces would be intractable, except
for one situation: when the incidence angle of the laser ray is
very close to the surface normal, sufficient light is reflected
back to the sensor to produce a reliable range measurement.
However, almost all current mapping approaches treat lidar
observations as independent of observation direction. Since
lidar light bouncing off of glass only returns to the sensor
from a small number of directions, observations detecting
the glass are vastly outnumbered by those missing it.

A small but growing number of techniques have been
proposed for robotic mapping of glass and mirrors, but so
far none have proved reliable for realtime use by a mobile
robot across the variety of common environments. We argue
that this is because current techniques are overfitted to ideal
models, expecting static environments, bright and consistent
specular reflections, and/or flat surfaces. Real surfaces may
be clean or covered in dirt. They may be flat, curved or
cornered. They may have coatings from IR absorbers to
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Fig. 1. (a) A ground truth map of our scene is shown with walls of diffuse
paint (green), specular glass (blue), and shiny metal (red); and distrators
such as moving people (magenta), and transmitted/reflected/scattered rays
("reflections", in cyan). (b) A standard occupancy grid is unable to infer
the location of glass walls surrounding an atrium, making it dangerous
and unusable for navigating this environment. (c) Our method seamlessly
recovers the walls while removing the distractors by considering the
appearance from all angles using our proposed Reflectance Field Mapping.

glitter to retroreflectors. A successful mapping system should
be able to represent this diversity of appearance, and then
make inferences about it.

https://github.com/collinej/reflectance_field_map
https://github.com/collinej/reflectance_field_map


Despite a relative lack of attention in robotics, the
computer graphics and view synthesis communities have
long recognized that the appearance of glass and other
specular (shiny) surfaces are fundamentally related to the
view direction. We present a new algorithm that detects glass
and other shiny surfaces without fitting a particular physical
model, treating the robotic mapping problem as a version of
view synthesis. Our system’s core representation is what we
call a Reflectance Field Map (RFM), in analogy to light fields
(also referred to as radiance fields), which have recently
become popular in computer rendering [1], [2].

The RFM is a recording of the appearance of every
point in space from every direction it has ever been viewed
from, stored as a simple lookup table. This representation
allows us to consider the appearance of a point from all
known directions when determining whether it is an obstacle.
Critically, since inferences about obstacles are separated
from inferences about appearance, new information allows
us to quickly change our classification of obstacles (e.g.
from static to dynamic) without invalidating our appearance
model. We gracefully handle mapping the entire continuum
of specular and diffuse surfaces, allowing us to treat such
diverse materials as cloth, metal, mirrors, glass, and paint
using the same algorithm. Unlike the analogous radiance
fields in camera view synthesis, a reflectance field for
lidar is relatively low dimensional and fast to compute.
Additionally, as lidars are actively illuminated sensors, the
representation is stable over time and invariant to changing
lighting conditions.

The contributions of this paper are:
• a new approach for lidar-based robotic mapping, the

Reflectance Field Map, that allows for robust mapping
in the presence of specular surfaces.

• an algorithm for distinguishing specular surfaces from
dynamic obstacles in the Reflectance Field Map to
support real-time operation in both highly dynamic and
highly specular environments.

II. RELATED WORK

Recent work has focused on modeling how a lidar
measures specular surfaces to attempt to either filter
reflections from the point cloud or to identify specular
surfaces so they are not eliminated from the map by the
preponderance of evidence pointing to no object existing
at that location. Koch et al. use multi-echo returns [3]
and intensity data [4] to develop filters that identify
planar specular surfaces, including the ability to distinguish
transparent from reflective surfaces. In addition to pre-
filtering, they include a post-filtering step to reprocess all
scans to identify reflections off specular surfaces that were
detected after passing by the surface normal. Zhao et al. [5]
use intensity data and dual return for a 3D lidar to find planar
glass surfaces. Additional processing allows them to project
reflections into the map, providing the ability to see behind
objects.

Wang et al. [6] use a threshold-based intensity classifier to
identify likely glass cells in the map. Their approach simply

adds these measurements back into the final map. Jiang et
al. [7] use a more probabilistic approach to classification and
train a neural net classifier to compute a probability of glass
as a function of distance, intensity, and incidence angle. If a
cell is more likely to be glass (pglass > 0.5)), then a different
hit/miss threshold is used to estimate if a cell is occupied to
increase the likelihood that glass cells are correctly identified
in the map.

Our prior algorithm for mapping glass, VisAGGE [8],
can be viewed as a specialization of the more general
RFM (Sec. III). VisAGGE estimates only the largest mode
of the RFM at each location. However, the reliance on a
single reflection peak makes the method unable to represent
a multimodal reflectance peak. Additionally, VisAGGE
required 360° lidar coverage for best performance. The RFM
naturally handles arbitrary numbers of sensors and partial
scans, while also being simpler to implement.

Concurrent with the robot mapping community working
to interpret sensor data, the computer graphics community
has been working to generate increasingly realistic images
of scenes. Our method is most closely related to the idea
of light fields from computer rendering [1], recently made
popular in the view synthesis and visual SLAM community
as radiance fields. Debevec et al. [2] introduce the concept
of a reflectance field, which is defined as a function mapping
incoming light on a surface to its reflected (outgoing) light.
Though developed independently, this definition is analogous
to our definition of the reflectance field for lidar.

Recently, methods such as Block-NeRF [9] build a map
that represents an encoding of the appearance of every point
in a scene from every possible direction. These methods are
quite slow and compute heavy, taking several seconds per
image, and also must be recomputed for different lighting,
but create an unparalleled representation of the scene. The
reflectance field, our lidar analog of a light field, is much
simpler than the camera equivalent due to the self-illuminated
nature of the sensor. Inspired by occupancy grids, we further
simplify the representation by estimating the reflectance field
as a binary field. These changes make our representation far
faster and simpler to operate on than their visual equivalents.

Historically, some of the most challenging specular
situations were encountered by sonar sensors. Sonar was
the most widely used sensor during the development of
many standard robotic mapping algorithms, foremost the
occupancy grid [10]. However, sonar has a long wavelength,
so nearly all surfaces act like mirrors, creating significant
issues for reliable mapping.

To address specular reflections, Konolige’s MURIEL
algorithm [11] introduced a key insight: the probability of
a specular reflection is highly dependent on the local surface
properties for a grid cell. Pose buckets were introduced that
stored the viewing angle and range for the measurements
incorporated in the map. Though used for avoiding redundant
measurements rather than for understanding specularity,
the pose buckets approach can be viewed as a low-
cost approximation of our reflectance field. However, by
discarding measurements, MURIEL was limited to static



environments.
In later work using short-range lidar, Bennewitz et al. [12]

use the lidar’s viewing angle information to estimate a
probability of reflectance for grid cells already identified as
occupied by a standard occupancy grid mapping algorithm.
However, a key assumption of their method fails to hold in
general. They assume that a failure to observe the surface
at a cell results in a max range result, which allows for
easily distinguishing between a ray passing through a cell
and a ray providing no information. For long-range lidar
though, specular reflections often result in multipath returns.
Consequently, the initial occupancy test in [12] will erase
some specular surfaces.

In contrast to prior work with enhanced map
representations, the RFM computes a log-odds of reflectance
for every (x, y, θ) cell. Computing log-odds, rather than
discarding additional measurements, is required for dynamic
environments because the obstacle that was detected at a
previous time may no longer exist, leading to permanent
false positives in the map. Furthermore, the RFM allows
computing an initial probability of occupancy that includes
the viewing angle, so a specular surface with a very narrow
but highly repeatable angle of incidence for detection is
accurately detected as an obstacle.

III. THE REFLECTANCE FIELD MAP

Light only changes direction when it hits an object’s
surface, at which point it will typically be reflected and
transmitted in many directions, as well as partially absorbed.
Every material surface can be characterized by a function
f(wi, wo) expressing how much light is emitted in any
direction wo for a given direction of incoming light wi. This
function is called the Bidirectional Scattering Distribution
Function [13]. Often, the transmitted and absorbed parts
are ignored, giving the Bidirectional Reflectance Distribution
Function (BRDF) [14].

Since any point in space may have a surface at it, we
need to consider the set of BRDFs throughout space, which,
following [2], we define as the reflectance field, R.

R = R(x, y, z, wi, wo) = R(x, y, z, θi, φi, θo, φo) (1)

In general, the field R is a 7D function, specified for every
2D input direction wi = (θi, φi), 2D output direction wo =
(θo, φo), and 3D position (x, y, z). However, the following
simplifications and assumptions allow us to use a simpler
representation.

First, we only consider 2D position (x, y) because a lidar
for a ground robot moves in a 2D plane. Second, we only
consider light traveling in the horizontal plane (φi = 0, φo =
0) reducing the directions to 1D. Last, since a lidar only sees
light that returns back along the same direction as the ray,
we only consider the case where the incoming and outgoing
directions are in exactly the opposite direction θi = θo + π.

Thus, we can approximate the full 7D function using a
simpler 3D reflectance field:

R̂ = R(x, y, θi) (2)

A. Constructing the Reflectance Field Map

Intuitively, we might consider measuring R̂ in units of
percent of the light reflected ("normalized intensity"), but
it turns out that this is a very unstable metric for specular
surfaces. A lidar beam impinging on a specular surface has a
very bright central spot, surrounded by much dimmer scatter.
A tiny out-of-plane rotation (tilt) of the lidar or surface often
causes the reflected central spot to miss the sensor, but a
much larger tilt is needed before the scatter region misses
the sensor entirely. Thus, a more repeatable measure than
asking “What is the percent reflectance?" is to ask “Is there
any detectable reflectance at all?" In other words, we should
model R̂ as a collection of binary random variables.

We approximate the continuous field R̂ as a 3D discretized
grid R̂i = {R̂i} with uniform cells of size ∆xy in the x-y
plane and ∆θ in the range θ = (0, 2π], which we call the
reflectance field map (RFM) Given a trajectory XT and a
sequence of measurements ZT , we estimate the distribution
p(R̂i|ZT ,XT ) by treating each cell Ri as independent and
estimating the state p(Ri = 1|ZT ,XT ) using a binary Bayes
filter [15]. The remainder of the paper reduces p(Ri = 1) to
p(Ri) for clarity.

p(R̂|ZT ,XT ) = ηp(ZT |R̂,XT )p(R̂|XT )

≈ η
∏
i

p(ZT |R̂i,XT )p(R̂i|XT ) (3)

Our implementation uses a uniform prior p(R̂i|XT ) = 0.5.
We note that (3) is identical to the standard 2D occupancy
grid [15], except in a 3D (x, y, θ) space, grid rather than 2D
Cartesian space.

Notice that by this definition, an occupancy grid map can
be interpreted as a reflectance field map by setting ∆θ = 2π
and treating occupancy as synonymous with reflectivity. In
an occupancy grid map, every point in space is considered
either occupied and reflective from all directions, or free and
non-reflective. A cell of the map is assumed to not reflect
light with high probability if and only if it is empty.

We accumulate evidence for the RFM using the raycasting
approach described in Alg. 1. The key is that each ray
updates a (potentially) different slice of the x-y plane along
the measurement direction θr. By estimating independent
reflectances in every direction, we avoid conflating the
concepts of reflectivity and occupancy. Instead, we proceed
by first collecting evidence of reflectance, from which we
later infer occupancy.

The reflectance field map represents the probability of a
lidar ray to be reflected at a given location and direction
in the environment. Because lidar reflections occur where
there are objects, locations with a high probability of
reflectance are highly likely to correspond to obstacles in
the environment. Thus, we can construct an occupancy grid
from an RFM by applying a function to each (x, y) that
computes a probability of occupancy, given the probability
of reflectance:

p(cx,y) = fR̂(R̂(x, y, θ = 0), . . . , R̂(x, y, 2π −∆θ)) (4)



Algorithm 1 Accumulating RFM Evidence
Input: Rhit : a 3D grid storing number of rays impinging

on each cell
Input: Rmiss : a 3D grid storing number of rays passing

through each cell
// All x, y, θ are in units of the cell size (∆x,∆y,∆θ)
for all r ∈ rays do

// r has origin (xr, yr), distance Dr, and heading θr
[ux, uy]← [cos(θr∆θ), sin(θr∆θ)]
for d = 0 to Dr − 1 do

[xd, yd]← [xr + dux, yr + duy]
Rmiss(xd, yd, θ)← Rmiss(xd, yd, θ) + 1

end for
[xD, yD]← [xr +Drux, yr +Druy]
Rhit(xD, yD, θ)← Rhit(xD, yD, θ) + 1

end for

In practice, a simple counting approach is sufficient for
(4). If the count of directions where a cell is probable to
reflect is greater than some threshold, we consider the cell
an obstacle:

fR̂(x,y) =
2π∑

Θ=0

[Θ ∈ p(R̂(x, y,Θ)|ZT ,XT ) > 0.5]∆θ > α (5)

α is in units of radians, so we only consider obstacles visible
from a large enough range. We set α = 1° for our results.

The RFM creates a good representation of the reflectance
field for static environments. Following a similar result for
light fields [1], the observed part of the reflectance field
is independent of the sensor path as long as it is outside
the convex hull of the region of interest. In practice, this
means that driving topologically similar paths through the
environment produces identical RFMs, making them good,
stable input features for environment modeling.

IV. SOLVING THE MOTION PROBLEM

A. The Motion Problem

The RFM is capable of mapping any environment. Over
repeated observations, the RFM will converge to the static
reflectance field. However, in the presence of motion,
temporary obstructions can appear in the map, that would not
appear in a standard 2D occupancy grid. Such obstructions
persist because only a very small amount of time is generally
spent observing each cell, much less than in an equivalent
occupancy grid.1.

In the common scenario where a lidar sensor passes a
point in a straight line, it will only observe that point from
any given angle once. The intensity may also be similar to a
diffuse wall. Consequently, there is no robust way to tell if
a brief set of observations at that point are due to a moving
object, or just a highly specular one. In fact we assert that, for

1We are measuring a 3D grid of cells from the same data that would
measure a 2D occupancy grid, so naturally much less data affects each cell.
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Fig. 2. (a) The Reflectance Field Map from a freestanding glass wall.
Notice the distinctive H structure of reflective cells along the θ (vertical in
image) axis. The edges of the glass are scattering and retroreflective, and
thus are visible from nearly all directions, creating the sides of the H. Unlike
intensity-based features, this core H structure is highly repeatable, and is
robust to typical out-of-plane rotations caused by bumps and suspension
loading in mobile robot applications. (b) The H figure reliably appears at
the edges of curved glass walls. Shown is a cutout of the RFM along a
spiral staircase (left) (see inset), seen in extreme perspective to display the
H pattern in different directions (right). The gap in the pattern is the entrance
to the stairwell, and is correctly identified as freespace.

a single sensor travelling at constant velocity, it is impossible
to distinguish glass and motion reliably by looking at the
lidar measurements of a single point in space. We call this
the local ambiguity problem.

B. Resolving Local Motion Ambiguities

Our solution to the local ambiguity problem finds a non-
local feature that is: (a) highly discriminative between motion
and glass, (b) robust to varying levels of curvature and
transparency, and (c) robust to out-of-plane tilt caused by
bumps or suspension loading. To understand our solution, it
is first helpful to consider the appearance of a moving object
in the RFM compared to a true pane of glass.

As shown in Fig. 2, if we plot the reflective cells from
an RFM taken near a pane of glass in 3D(x, y, θ), we see a
distinctive H shape, with the sides of the H aligned to the θ
axis. In contrast, as shown in Fig. 3, a moving object appears
as a single relatively thin stroke in 3D. The stroke has no
intersections with other strokes, and does not travel parallel
to the θ axis unless the object temporarily stops.

The H feature always has two common components when
plotted with the θ axis vertical:

1) Strong vertical lines caused by the scattering at the edge
of the glass, or its frame if mounted in another material.
We refer to these as widely visible locations.

2) An approximately horizontal stroke corresponding to
the surface normal of the glass face. The thickness
of this line varies depending on if the glass is dirty
or doesn’t have much behind it. Crucially, the surface
normal cells are connected in (x, y, θ) space, even for
curved glass (see Fig. 2b).

The distinctive H shape is still observed even if a glass
pane or mirror has a frame or is inset into another wall
because, instead of the edges of the glass, the frame or
surrounding wall provides the sides of the H. These widely
visible locations are the critical distinguishing feature that is
present at the edge of every piece of glass, but not on the
path of a moving object.



Fig. 3. A moving object in the RFM appears as a thin stroke in θ
space in the RFM that is readily distinguishable from the H shape in θ
formed by a static specular surface (Fig. 2). In particular, the sides of the
H are aligned with the θ axis. However, an object can only create a similar
shape by not moving. As soon as the object moves, it will begin creating a
stroke perpendicular to the θ axis. In this example we see the RFM near a
pedestrian moving along a hall, while our robot passes by. Since we have
two lidars, the pedestrian actually splits into two thin strokes, as the lidars
do not observe the person from the same viewing angle.

We define a widely visible cell as one with high odds of
being reflective from any direction. To compute the odds, we
marginalize out θ from the odds-likelihood distribution [11]
for location (x, y):

O(R̂ = 1|ZT ,XT ) =

p(ZT |R̂i = 1,XT )

p(ZT |R̂i = 0,XT )
O(R̂i = 1|XT ) (6)

O(R̂i(x, y) = 1|ZT ,XT ) =
2π∑

Θ=0

[O(R̂(x, y, θ = Θ) = 1|ZT ,XT )∆θ)] (7)

where O(R̂i = 1|XT ) is a prior that an unobserved cell
(x, y, θ) is reflective.

Using (7), we can define a widely visible cell vx,y as a cell
with high odds of being reflective, O(R̂i(x, y)|ZT ,XT ) > β.

These observations immediately suggest an algorithm to
distinguish glass and motion:

Algorithm 2 Motion Removal
1) Find the set of widely visible (x, y) locations in the map
{vx,y ∈ V } per (7).

2) Find the connected components C of R̂ in (x, y, θ)
space.

3) For each C ∈ C:
a) If C ∩ V 6= ∅, mark cells in C − V as glassy.
b) If C ∩ V = ∅, mark cells in C as motion.

V. REMOVING REFLECTIONS

Specular reflections can create persistent virtual images in
the RFM. While reflections out windows only create visual

clutter, reflections off interior glass can create false obstacles
that block otherwise navigable portions of the environment.

Koch et al. [3] provide an algorithm to trigger reprocessing
old scans for reflection removal after the robot has passed
a glass surface. They use the endpoints of lines found by
RANSAC, but their method works for any algorithm that can
identify glass surfaces, which are found during our motion
removal algorithm.

Algorithm 3 Reflection Removal
1) Identify glassy surfaces using Alg. 2.
2) Reprocess all scan rays to build a new reflection-

removed RFM R̂′:
a) If a ray passes through glass in R̂, discard evidence

beyond the glass.
b) Otherwise, add to R̂′ per Alg. 1.

As shown in Sec. VI, reflections are reliably identified and
removed by Alg. 3. However, the output is a new RFM, R̂′.
Since reflections are identified based on the contents of the
RFM, Alg. 3 can be run iteratively until it converges and no
additional reflections are found. In practice, we haven’t found
meaningful differences beyond the first iteration. In at least
one rare instance, the reflection removal failed to converge
in an environment with two parallel glass panes that would
cause rays impinging on the other surface to be removed, so
each iteration would remove one wall and add the other.

VI. EVALUATION

We evaluate the RFM in a challenging environment at
the University of Michigan. The environment contains a
wide variety of glass, including flat, curved, and stained,
as well as shiny metal, and many pedestrians. As shown
in Table I, approximately half of the rays in the dataset go
through or reflect off a shiny surface. We collected the data
using our intelligent wheelchair, Vulcan, equipped with two
Hokuyo-UTM-30LX lidars, an IMU, and wheel encoders.
The wheelchair was operating autonomously during data
collection.

A. Map Accuracy

To evaluate the accuracy of the RFM, we built and hand-
labelled a high-resolution (∆xy = 1cm,∆θ = 0.25°) map
from our data and measured the percentage of glass, metal,
and traditional surfaces kept by the RFM, as well as the
amount of motion and reflection removed. We baseline our
method against a typical occupancy grid, and perform an
ablation study to determine the importance of each step
of our system. Fig. 1 shows a portion of the evaluation
environment, including the labeled ground truth and RFM
and occupancy grid maps built from the data.

We treat the problem as a multiclass classification
problem, with the goal to remove reflections and motion
while keeping static obstacles. We wish to eliminate
unreliable observations through glass, but often observations
land in the same cell both through glass and directly. To
distinguish this situation, we classify lidar rays. For the



TABLE I
CONFUSION MATRIX FOR RFM CLASSIFICATION OF LASER RAYS

Predicted
Total Kept(%) Removed(%)

Diffuse 1705612 98.5 1.5
Glass 104478 98.7 1.3
Metal 7049 99.4 0.6

Motion 22439 0.3 99.7
Reflection 2102216 1.8 98.2

TABLE II
CONFUSION MATRIX FOR OCCUPANCY GRID CLASSIFICATION OF

LASER RAYS

Predicted
Total Kept(%) Removed(%)

Diffuse 2253828 98.3 1.7
Glass 176619 51.6 48.4
Metal 13470 96.8 3.2

Motion 22439 0 100
Reflection 2102216 24.6 75.4

purposes of unambiguous metrics, we treat both transmitted
and reflected rays as “reflections”, and define “motion” as
any non-reflected rays landing on a transient object. For
our results, we treat the different classifications for rays as
mutually exclusive. In the case of reflections, a ray can be
transmitted through glass and then return an object on the
other side of the glass. We report such a ray as a reflection
because all objects observed through glass are treated as
untrustworthy. For classification of kept surfaces, we only
consider rays that are not rejected as reflections. Since the
RFM successfully rejects many more reflections, the total
number of surface rays considered is less. As a result, there
are different total numbers of rays between Table I and
Table II.

As shown, in Table III, the simple RFM already increases
glass recall capability, but at the expense of some unwanted
motion appearing in the map. The addition of motion removal
and reflection removal largely eliminates those sources of
error, while maintaining high recall on glass and normal
diffuse surfaces. Not represented in the table is that many of
the rays lost from motion and reflection removal are in the
same cells as other rays. For example, motion and reflection
filtering decrease ray recall for glass by 1.1%, but only 0.4%
of actual glass cells are discarded.

B. Performance

A Python implementation of the RFM algorithm was used
for the presented results. Scans of the environment were
batch processed. Adding a new scan, consisting of 1081
measurements, takes 1.25ms, removing reflections takes
1.28ms/scan, and motion filtering is run approximately once
every 20 seconds and takes 2500ms.

For online SLAM, we use an optimized C++
implementation that maintains an active region centered
on the robot where motion filtering and map updates
occur. Running on an AMD Ryzen7 3800X processor,

TABLE III
ABLATION STUDY OF RFM OPERATIONS

Method
Recall
Diffuse

(%)

Recall
Glass
(%)

Motion
Removed

(%)

Reflection
Removed

(%)
Occupancy Grid 98.3 51.6 100 75.4
Basic RFM 99.8 99.8 91.8 9.0
+Motion Removal 99.2 99.9 96.5 10.7
+Reflection Removal 98.5 98.7 99.7 98.2

using an active region with 10m radius, and cells with
(∆xy = 5cm,∆θ = 2°), adding a new scan takes an average
of 1.8ms, motion removal an average of 6.4ms, and the
entire RFM update an average of 10.3ms.

VII. CONCLUSION

The RFM makes no attempt to model the complex
interactions of a lidar ray with a surface, but instead
simply records the information the sensor receives, and
then does inference on that information as a second step.
There are no planarity assumptions, requirements for multi-
echo sensors, or models of intensity data. However, these
filtering and classification methods can be useful for the
inference step of the mapping process for aiding in motion
removal. In particular, classification-based techniques have
a very low false positive rate, but a relatively high false
negative rate [16]. We can therefore use them as additional
information to seed known glass points in our occupancy
calculation and inform our motion removal step.

The evaluation of this work used 2D lidar. However, an
approximation of the RFM can easily created for 3D scenes.
To build the RFM, a virtual 2D scan can be created from the
full 3D point cloud by selecting rays from the laser sweep
nearest to parallel to the ground plane. This virtual scan can
then be used to construct a 2D RFM of the environment,
though only structures that are approximately vertical and
intersect the virtual 2D scan will be included.

Converting raw sensor data to an RFM creates a feature
that is able to express the entirety of a scene’s static
appearance, is repeatable between multiple runs through
the environment, and is computationally cheap, making
it a suitable input feature for a variety of perception
problems. We believe that future researchers will see the
usefulness of the RFM in other applications, including
material identification, thin object detection, or as an input
to various machine learning techniques.

We believe that Reflectance Field Mapping is a significant
advance for robotic mapping and perception in common
environments, representing the lidar equivalent of light field
techniques. We have shown performance and robustness on
the challenging specular surface detection problem sufficient
to allow every day operation of autonomous robots in a wide
variety of environments.
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