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Abstract

We propose a factored approach to mobile robot map-building that
handles qualitatively different types of uncertainty by combining the
strengths of topological and metrical approaches. Our framework is
based on a computational model of the human cognitive map, thus it
allows robust navigation and communication within several different
spatial ontologies. This paper focuses exclusively on the issue of map-
building using the framework.

Our approach factors the mapping problem into natural sub-
goals: building a metrical representation for local small-scale
spaces, finding a topological map that represents the qualitative
structure of large-scale space; and (when necessary) constructing a
metrical representation for large-scale space using the skeleton pro-
vided by the topological map. We describe how to abstract a sym-
bolic description of the robot’s immediate surround from local metri-
cal models, how to combine these local symbolic models in order to
build global symbolic models, and how to create a globally consistent
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metrical map from a topological skeleton by connecting local frames
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1. Introduction

A map is a description of an environment allowing an agent —
a human, or in our case a mobile robot — to plan and perform
effective actions. From a single location, an agent’s sensors
can not observe the whole structure of a complex, large en-
vironment. For this reason, the agent must build a map from
observations gathered over time and space. We distinguish be-
tween large-scale space, with spatial structure larger than the
agent’s sensory horizon, and small-scale space, with structure
within the sensory horizon.

Most metrical approaches to mobile robot map-building
define a single, global frame of reference in which to create
the map. Range measurements are used to perform probabilis-
tic inference about the location of features or about the occu-
pancy of discretized cells in the map (Thrun et al. 2005). Ex-
isting simultaneous localization and mapping (SLAM) meth-
ods are highly effective for building local metrical models of
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small-scale space and for providing reliable localization in the
frame of reference of the local map; however, maintaining
global consistency over large-scale environments is difficult,
particularly when closing large loops in the environment. A
popular approach is to use particle filters, where each parti-
cle represents a hypothesized exploration trajectory. The re-
searcher must hope that with enough particles the distribution
will include one that closes the loop correctly. Since the space
of trajectories can be enormous, this hope is often optimistic.

The fundamental problem is representational: loop-closing
hypotheses are alternative topological structures for the map,
not alternative metrical structures. To be able to solve complex,
multi-hypothesis loop-closing problems in a tractable manner,
the robot must reason with symbolic topological maps. The
space of metrical maps in a single frame of reference does
not appropriately represent the states of incomplete knowl-
edge that arise during exploration and map-building in com-
plex, large-scale environments.

Our factored mapping framework is based on the Spa-
tial Semantic Hierarchy (SSH) (Kuipers 2000, 2008), which
uses multiple coordinated representations for knowledge of
large-scale space. The Hybrid SSH (HSSH) (Kuipers et al.
2004; Beeson 2008) extends the basic SSH by including rep-
resentations for small-scale space and defining the relation-
ship between large-scale and small-scale spatial representa-
tions. Symbolic topological mapping methods such as the SSH
provide a concise representation for the structural alternatives
that arise in investigating loop closures. Topological maps pro-
vide the ability to store and access multiple local maps with
separate frames of reference and topological connections an-
notated with weak metrical constraints. By separating small-
scale from large-scale space, we postpone the problem of co-
ordinating the local frames of reference until the global struc-
ture of the topological map has been identified. At that point,
the global metrical map can be constructed, efficiently and ac-
curately.

Therefore, our approach factors the mapping problem into
four natural sub-goals: (1) building a metrical representation
for local small-scale spaces; (2) detecting places and determin-
ing their symbolic descriptions; (3) finding a topological map
representing the qualitative structure of large-scale space; and
(4) constructing a metrical representation for large-scale space
in a single global frame of reference, building on the skeleton
provided by the topological map. While the global metrical
map is useful for some purposes, it is worth noting that many
autonomous planning and navigation goals can be achieved ef-
fectively using only the global topological map and/or the local
metrical maps. Therefore, this approach to hybrid mapping is
more robust than one that extracts topological relations from a
global metrical map that must be built first (Thrun and Biicken
1996).

The multiple representations of the HSSH are described
independently, while their semantic dependencies imply that
they build on each other. However, this does not imply a sim-

ple serial processing pipeline. In fact, processing of sensory
input to build representations of the different kinds is inter-
leaved, providing various sorts of synergies. Two are partic-
ularly important. First, the local metrical map of small-scale
space is a useful “observer” both for detecting and describ-
ing places and for low-level control with obstacle avoidance.
Second, it may be useful to order candidate topological mod-
els by using the relative displacement of nearby places or even
by using the global layout of places within a single frame of
reference. Nonetheless, in order to clarify the distinct repre-
sentational ontologies, we will describe them in this paper as
though they operate independently.

The HSSH improves mobile robot capabilities in a vari-
ety of ways: efficient and robust map-building and navigation,
“natural” human-robot interaction due to the multiple repre-
sentations of space (Beeson et al. 2007), and hierarchical con-
trol. This paper cannot cover the full breadth of benefits ob-
tained from using a hybrid topological/metrical framework;
thus, this paper focuses solely on the issue of using the HSSH
framework for map-building. Here we describe the HSSH the-
ory and demonstrate key points of HSSH map-building us-
ing a particular implementation that focuses on perception us-
ing range sensors, although other sensory modalities can also
be utilized in the HSSH framework — the hybrid, hierarchical
framework is largely independent of the sensors used to create
the local metrical model of small-scale space (cf. Murarka et
al. (2006)). A more detailed description of the HSSH benefits
to control, place detection/description, and human—robot inter-
action are discussed by Beeson (2008).

2. Background
2.1. Metrical Mapping

Powerful probabilistic methods have been developed for
range-sensing mobile robots to perform SLAM within a sin-
gle frame of reference (Thrun et al. 2005). These methods are
accurate and reliable for online incremental localization within
local neighborhoods. Sensing with sufficiently high frequency
relative to local motion guarantees large overlap between suc-
cessive sensory images. Current sensory information can be
compared to the current map in order to improve localiza-
tion. By analogy with radar signal interpretation, finding the
correct match between observations and a model is called the
data association problem. After improved localization occurs,
the sensory information is used to update the map for the next
SLAM iteration. In local regions, many data association prob-
lems, such as the closing of large loops, can be excluded. The
absence of large loops means that the problem of large-scale
structural ambiguity does not arise in the local metrical map.
While metrical SLAM methods work in small spaces, they
do not extend well to larger environments. Global metrical
maps become more expensive to update and access without
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Fig. 1. Closing large loops reveals problems with cumulative errors when attempting to build metrical maps of large-scale
environments in a single global frame of reference. (a) This environment and the robot’s trajectory through it are used as an
example throughout. (b) The data comes from a Magellan Pro research robot with differential-drive odometry and a SICK-brand
lidar device for precise, planar range-sensing. (c) This robot-made map of the environment in image (a) shows the effect of
accumulated raw odometry error. (d) This map shows the improvement in pose estimation over image (c) by using metrical
SLAM methods, but it also shows that significant errors still accumulate with respect to the real environment.

clever storage schemes. More important is the difficulty that
arises when closing large loops (Figure 1). Even with local
SLAM methods that use perception to improve the accuracy
of localization, odometry error accumulates in the relation be-
tween the map’s global frame of reference and the ground-truth
reference frame of the real-world environment. This global er-
ror becomes even more pronounced in environments with long
paths that have few distinguishing features. Without proper
data association along paths, localization often drifts from the
ground-truth, both in the robot’s distance along the path and in
the robot’s heading, causing straight paths to compress, stretch,
or curve in the map.

There are ad hoc methods for hypothesizing loop closures
when the global odometry error is small. When a large loop
is closed, accumulated error will often result in the robot’s
current observations clashing with older portions of the map.
Methods exist that search for a nearby pose in the older por-
tions of the map where perceptions match the prediction (prop-
agating detected global error backwards through the explo-
ration trace) (Lu and Milios 1997; Hahnel et al. 2003a); how-
ever, these solutions can fail in sufficiently large or complex

environments. For example, Cummins and Newman (2008)
discuss closing loops over kilometers of travel, where small
rotational errors lead to large positional errors, and the correct
loop closure may never be considered by odometry-based solu-
tions. Additionally, if the environment is subject to perceptual
aliasing (different locations look the same), then the matching
process may close the loop incorrectly, distorting the map as
a whole. Depending on the amount of symmetry in the envi-
ronment, a single incorrect match can lead the mapping agent
down an arbitrarily long “garden path” before the error is dis-
covered. It is still unclear how probabilistic methods applied
to metrical maps can properly discover an incorrect map and
how they might efficiently backtrack to hypothesize a different
loop closure (Hihnel et al. 2003b).

Some research on map-building avoids loop-closing issues
by explicitly assuming that the correct data association is
known (Leonard and Newman 2003; Paskin 2003). In some
cases, even without an explicit assumption about data associ-
ation, impressive feats of large-scale map-making depend on
locations in the environment being sufficiently distinguishable
based on local cues (Montemerlo et al. 2002; Konolige 2004).
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Others accept false negative matches in order to avoid false
positives, sometimes improperly hypothesizing that a previ-
ously visited location is a new place (Bosse et al. 2003). This
can eliminate the possibility of closing a loop correctly and
finding the correct map, which leads to poor planning and nav-
igation performance. In a rich environment with noise due to
dynamic changes, it could be that every location is in principle
distinguishable, but it is difficult or impossible to know which
features identify the place, and which are noise. Methods cre-
ated to distinguish between perceptually aliased states can get
confused under scenarios of perceptual variability (the same
place looks different on separate occasions) (Kuipers and Bee-
son 2002) causing a single physical location to be represented
multiple times in the same map.

Early approaches to probabilistic localization and mapping
used particles to represent a distribution over robot poses for
localization, but a single shared map was updated from the
maximum-likelihood pose hypothesis (Thrun et al. 2000b).
This could produce an incoherent map due to an incorrect
and premature commitment to a maximum-likelihood pose hy-
pothesis that turned out to be incorrect. A more principled
approach uses Rao-Blackwellized particle filters to explicitly
represent the distribution of trajectories and maps by maintain-
ing multiple metrical map hypotheses (Montemerlo et al. 2003;
Eliazar and Parr 2003; Hédhnel et al. 2003a). These methods are
run offline (due to computational demands) after exploration is
completed, forgoing useful active exploration techniques ca-
pable of eliminating some loop-closing hypotheses. Addition-
ally, in large, symmetric environments, intractably large num-
bers of particles may be required to avoid particle depletion
when closing large loops. Particle depletion is a failure to have
a particle in the distribution that adequately models the correct
map.

2.2. Topological Mapping

Topological mapping is the other major paradigm studied in
mobile robotics. Cognitive map research supports the creation
of topological maps of large, complex environments (Lynch
1960; Siegel and White 1975; Kuipers 1978; Chown et al.
1995; Kuipers 2000). A topological map, in its most basic
form, represents an environment as a graph where nodes rep-
resent places and edges represent connections between places.
Several groups of robotics researchers have presented distinct
topological implementations that differ in their semantics for
the graphs — how they define/describe places and actions be-
tween them (Kuipers and Byun 1991; Mataric 1992; Shatkay
and Kaelbling 1997; Duckett and Nehmzow 1999; Choset
and Nagatani 2001; Morris et al. 2005). Some implementa-
tions build topological maps autonomously, some are given
topological maps a priori (Koenig and Simmons 1996), and
some let the robot explore autonomously while the researcher
provides place names to overcome perceptual aliasing issues
(Kortenkamp and Weymouth 1994).

Topological maps are more compact representations than
global metrical maps, allowing efficient large-scale planning.
Additionally, since the environment is discretized into a graph,
movement errors do not accumulate globally. Possibly the
most important difference for future robotics research is that
topological maps allow compact, efficient hierarchical models
that support multi-level symbolic reasoning for robust naviga-
tion, planning, and communication.

The major hurdle for topological map-building has been the
reliable abstraction of useful symbols from continuous, noisy
perceptions of the environment, i.e. how to reliably detect and
recognize places and paths. This is an instance of the more
general symbol grounding problem (Harnad 1990) that has
troubled the Artificial Intelligence (Al) community for many
years. Probabilistic approaches are good at overcoming the
kinds of local uncertainty and systematic noise that can hin-
der reliable symbol extraction. Incorporating probabilistic data
association techniques into the topological map-building par-
adigm has sparked interest in hybrid map-building, including
the HSSH approach presented in this paper.

2.3. Hybrid Approaches

Metrical and topological representations for space are very dif-
ferent in character, or, more precisely, in ontology. The topo-
logical map describes the structure of large-scale space. It
abstracts away the specific nature of sensory input and the
specific methods used for matching sensory images when the
topological map is created. Metrical mapping techniques that
rely on local overlap of successive sensations, on the other
hand, precisely capture the structure within the local sensory
horizon: small-scale space.

Recently, robotics researchers have begun to look at hybrid
topological/metrical representations in order to try to leverage
the benefits of both approaches. There are too many hybrid
implementations to mention here, many with only very subtle
differences, but publications about hybrid metric/topological
representations fall into three basic categories, all of which
are addressed by the work in this paper. We refer the reader
to the survey of specific hybrid mapping implementations by
Buschka (2005), as we refer to well-known or prototypical ex-
amples in this discussion.

In one category of hybrid map-building approaches, a robot
uses local metrical models as local observers that help filter
out sensor noise, aggregate observations over time, and cre-
ate plans that avoid nearby obstacles. Much of this research is
specifically interested in using metrical models to try to deter-
mine qualitatively distinct or interesting places as the robot ex-
plores a new environment (Yeap and Jefferies 1999; Lankenau
et al. 2002; Tomatis et al. 2002; Ko et al. 2004). This is related
to our work on grounding places and paths in local metrical
models.

The second category of hybrid approaches focuses on us-
ing “places” in order to reduce the number of locations in
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the world that must be considered when hypothesizing met-
rical loop closures. That is, the goal of most hybrid mapping
techniques is still to achieve a global metrical map; however,
they use some “topological” (i.e. graph) constraints to make
the closing of loops more efficient. Many of these implemen-
tations record places arbitrarily (Duckett and Saffiotti 2000;
Zimmer 2000; Blanco et al. 2008), e.g., every 5 m traveled,
in order to reduce the number of locations in the world where
loop closures can occur. Others use a feature buffer, so the ro-
bot creates a new place at every n corners or wall segments
(Bosse et al. 2003). Some approaches simply have the re-
searchers press a button to define places in the world (Thrun et
al. 1998). Our research is related to these approaches as well,
in that, given autonomous place detection at qualitatively dis-
tinct and metrically distant places, we can provide a compact
graph representation of an environment that makes global met-
rical mapping extremely efficient.

Finally, a third category of hybrid mapping has only re-
cently been investigated. There has been research looking at
modeling the full Bayesian distribution over topological hy-
potheses (Ranganathan et al. 2006; Blanco et al. 2008). These
methods are still strongly grounded in using odometry knowl-
edge (which can be unreliable over large distances (Cummins
and Newman 2007)) and/or aligning raw lidar measurements.
As mentioned above, the “places” they utilize are determined
by ad hoc means: by the researcher via button presses or by
using distance thresholds or finite-sized feature buffers. We
believe our topological representation is useful here as well.
Section 10.2 discusses how this new area of hybrid research
should mesh with the HSSH framework.

The Hybrid Spatial Semantic Hierarchy is, to our knowl-
edge, the first framework and implementation to fully describe
the process of going from metrical sensations to both metrical
and symbolic models of both small-scale and large-scale space
— moving from metrical models of small-scale space to sym-
bolic representations of small-scale space, inferring large-scale
structure via symbolic inference, before producing a consistent
global metrical model from the symbolic structure. Our ap-
proach autonomously detects and describes qualitatively dis-
tinct places, creating far fewer places than other “hybrid” ap-
proaches. Additionally, these places are meaningful to humans
as the SSH representations are inspired by human cognitive
maps.

3. The Spatial Semantic Hierarchy

This section overviews the basic SSH (Kuipers 2000; Re-
molina and Kuipers 2004; Kuipers 2008)." The concepts and

1. In order to combine the SSH theory with a probabilistic mapping frame-
work, it is necessary to use a slightly different vocabulary and symbol set than
in previous SSH publications.

Qualitative Quantitative
Continuous Analog
Attributes Model
Sensory names Sensor values
Control laws Local 2-D
Control HC and TF geometry
Distinctive states
Views
A » Turn angle
Causal Actions Travel distance
Causal schemas
Places :
Topological Local headings
polog Paths . 1-D distances
Connectivity
Order
Metrical Global 2-D
geometry

Fig. 2. The Spatial Semantic Hierarchy. Closed-headed ar-
rows represent dependencies; open-headed arrows represent
potential information flow without dependency. (From Kuipers
(2000).)

notation introduced here will be important for extension to the
HSSH, which is presented starting in Section 3.5.

The SSH represents knowledge of large-scale space with
four distinct representations. Figure 2 illustrates the frame-
work. At the SSH Control Level, control laws provide reli-
able motion among distinctive states (dstates) g;. At the SSH
Causal Level, state—action—state schemas {(q, a, q’) explain
how the distinctive states are linked by turn and travel ac-
tions, and relations o(q) = v between a state and its observable
view describe the potential experiences of the robot. Thus the
Causal Level abstracts the continuous world to a deterministic
finite automation (DFA) (Rivest and Schapire 1989; Dean et
al. 1995), related to the way humans utilize route instructions
in navigation. At the SSH Topological Level, a map consisting
of discrete places, paths, and regions, describes the connectiv-
ity, order, containment, and boundary relations of large-scale
environments. At the SSH Metrical Level, local metrical infor-
mation about the location of obstacles, the magnitudes of ac-
tions, the lengths of path segments, and the directions of paths
at place neighborhoods are incorporated into local and global
metrical maps. One contribution of the HSSH is to clarify the
relation between the metrical information and the symbolic ab-
stractions of the basic SSH levels.

The SSH factors spatial uncertainty into distinct compo-
nents, controlled in distinct ways. Movement uncertainty is
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controlled by the behavior of feedback-driven motion control
laws. Pose uncertainty is controlled in the basic SSH by hill-
climbing to dstates (and in the HSSH by incremental localiza-
tion within a local metrical map). Structural ambiguity about
the large-scale topology of the environment is controlled by
search in a space of alternative topological maps. Global met-
rical uncertainty is controlled by relaxing metrical information
from separate local frames of reference into a single global
frame of reference, guided by the topological map.

3.1. The SSH Control Level

The SSH Control Level describes the system consisting of the
agent and its environment as a piecewise continuous dynam-
ical system. The agent’s experience is represented as a fine-
grained sequence of time-steps 0 < ¢t < N. At any time ¢,
the agent—environment system is described by the state vector
X, (the agent’s pose in a static world), the agent’s sense vector
Zs, and its motor vector u,. We assume that both the environ-
ment and the agent’s sensory system are very rich, so the sense
vector z; is very high-dimensional.

The dynamical system is described by the following equa-
tions, in which the functions F and G represent the physics of
the agent’s body in the environment and its sensorimotor sys-
tem, respectively. These two functions are not explicitly known
or available to the agent. The control law H;, on the other hand,
can be selected by the agent:

Xy = F(xp,uy),
Z[ = G('x[)s
ur = I'Ii(zt)'

The agent acts by selecting a control law H; to determine
its motor output signals as a function of its sensor input. In the
basic SSH (Kuipers 2000), motion is controlled by alternating
between two types of controllers. Trajectory-following control
laws take the robot from one distinctive state (dstate) to the
neighborhood of another. A hill-climbing control law guides
the robot to the destination dstate x from anywhere in its sur-
rounding neighborhood.

Hill-climbing localizes the agent by moving it reliably to
a distinctive state within the local neighborhood, preventing
the accumulation of position error, and paving the way for
a discrete abstraction of the continuous space. Furthermore,
hill-climbing control makes very weak assumptions about the
properties of the sensors and the agent’s knowledge of those
properties. For example, a robot may hill-climb to a distinctive
state, or follow a trajectory down a hallway, based on features
extracted from sonar or laser range-finders, from monocular
or stereo vision, or from sensors for luminance or electromag-
netic fields. The robot’s map is determined by the behaviors of
its hill-climbing and trajectory-following control laws. It need

Trajectory-following

\

Hlll—
B /\_/\/\_/,2 climbing
= ¢
FTIEN 2y S

Fig. 3. SSH Control/Causal Level abstraction. In the SSH,
dstates are defined by pairs of trajectory-following and hill-
climbing control laws. These sequences are abstracted into ac-
tions, and the observations at dstates are abstracted into views.
(Adapted from Kuipers (2000).)

never know how its sensory features correspond with environ-
mental states.

Despite their simple conceptual definition, hill-climbing
control laws can be difficult to define and may vary across
domains. An agent often does have stronger knowledge of
the properties of its sensorimotor system, and physical mo-
tion to distinctive states seems awkward and unnecessary in
light of that knowledge. A key insight behind the HSSH is
that accurate localization in the small-scale space model of a
place neighborhood can substitute for the physical motion of
hill-climbing to a particular distinctive state in that neighbor-
hood. In Section 4, we discuss how the HSSH exploits metrical
knowledge of small-scale space to build local perceptual maps
(LPMs) of place neighborhoods, within which localization is
reliable and effective.

3.2. The SSH Causal Level

Given pairs of trajectory-following and hill-climbing controls
that represent motion between neighboring dstates at the Con-
trol Level, we begin to represent the robot’s experiences as a
set of symbolic abstractions (Figure 3). First, we define an ac-
tion a € A to represent a pair of trajectory-following (TF)
and hill-climbing (HC) controls that connect dstates. Since the
sensory image at a dstate z = G(x) is a point in a very high-
dimensional space, it will, in general, never be experienced
twice. We will therefore assume that each distinctive state x
has an associated view, o(x) = v € V, which is an abstracted
description of the sensory image Z.

The actual content of a view will depend on the properties
of the environment and of the robot’s sensors. Views could
include such things as: the direction and distance to nearby
obstacles as detected by a range sensor; color, texture, and cat-
egory of nearby objects as identified in a camera image; the
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number and identity of accessible wireless routers or cell tow-
ers; or any of a number of other sensory features. Kuipers and
Beeson (2002) describe a bootstrap-learning method for learn-
ing a view representation suitable for high-performance place
recognition; however, for this paper, we will not require that
the observation function o be discovered autonomously. As
discussed in Section 5, the HSSH defines views by extract-
ing a specific symbolic description of the local environmental
structure.

The SSH Causal Level describes the agent’s experience as
a deterministic finite automaton (DFA) (Rivest and Schapire
1989; Dean et al. 1995). The Causal Level DFA,

M€ =(0Q,A,V,R,o0),

consists of sets of states Q, actions A, observable views V,
a transition function R : Q x A — @, and an observation
function o : Q — V. As the robot travels from one distinctive
state x to the next, its experience is an alternating sequence
of views and actions. Some actions are turns, while others are
travels:

Vo ap Vi ay W Vn—1 dn Vp.

At the SSH Control Level, a view v; is experienced only when
the agent is at a distinctive state x;, so the view v; is an observ-
able manifestation of the distinctive state, v; = o(X;):

Xo dp Xp 4z X2 Xn—1 dn  Xp

Vo V1 1% Vi—1 Vy.

At the Causal Level, each state ¢ € Q represents an equiva-
lence class of distinctive states X in the physical world.”? Two
distinctive states x; and x; are equivalent if they represent dif-
ferent experiences of the same distinctive state g € Q. (We use
the notation [x;] = [x;] = ¢ for this.) The set Q of distinctive
states thus represents a specific hypothesis about which expe-
riences x; represent repeated encounters with the same state g
in the environment; that is, Q specifies data association for
loop closures.

All distinctive states in the same equivalent class g must
have the same view:?

[¥] = [¥'] = 0(F) = o(x").

2. The term distinctive state, abbreviated dstate, is thus overloaded. It refers
both to the state X resulting from a hill-climbing control law at the SSH Con-
trol Level, and to the state ¢ = [x] at the SSH Causal Level which is part of
the discrete abstraction of the continuous environment. It is this abstraction
from continuous to symbol that facilitates causal/topological mapping in the
basic SSH.

3. The axioms provided here describe the nature of the spatial knowledge rep-
resented at each SSH level, but we omit auxiliary axioms required for logical
completeness (e.g., unique names axioms, etc.). A complete set of axioms is
provided by Remolina and Kuipers (2004). For clarity and conciseness, we
use a typed logic in which variable names encode their types, and we assume
that all free variables in axioms are universally quantified.

Thus, o(q) is well-defined, and we can write
q=q" — o(q) = o(q").

The full sensory input from high bandwidth sensors in a real-
istically complex environment is so rich that sensory images
will never match exactly. Views must be defined in terms of
some observation function that allows the same dstate to be
reliably detected on separate occasions. Thus, an experience
with repeated states such as

g0 a1 4q1 ax q2 - 4o an 41
| I I I I
Vo Vi V2 Vn—1 Vn

can only be consistent if v,_; = vy and v, = v;. However,
abstracted views are subject to perceptual aliasing (different
places look the same), leading to ambiguities about the topo-
logical structure of the map: o(g) = o(q’) A q =¢’.

The transition function R : Q x A — Q is represented
as a set of schemas r = {(q,a,q’), where context(r) =
q, action(r) = a, and result(r) = ¢’. As new obser-
vations are added to the robot’s experience, new schemas
([x.], an+1, [Xns1]) are learned by the transition function R.
The causal map is constructed by searching for an appropriate
set Q of states (i.e. equivalence classes of distinctive state ob-
servations), such that M€ has a deterministic transition func-
tion R, predicted and observed views are consistent, and M ¢
is consistent with the axioms for topological maps (Remolina
and Kuipers 2004).

For the purpose of building the SSH Causal Level from ex-
ploration experience, building and using a DFA is far more
tractable than building and using a probabilistic state model,
such as a hidden Markov model (HMM).* The key benefit
of a DFA over HMMs (or stochastic finite automata in gen-
eral) are that both the transition function and the observation
function are deterministic. The deterministic transition func-
tion follows from the nature of the abstraction that results from
moving reliably between dstates via trajectory-following and
hill-climbing control laws. The deterministic observation func-
tion follows from the abstraction that defines the observation
function 0. One improvement of the HSSH over the SSH is
that local small-scale space models make place detection and
observational classification of states deterministic without the
need for hill-climbing (Section 5).

4. Finding the minimal DFA in the general case, like finding the minimal
HMM, is NP-Complete (Angluin 1978; Gold 1978). However, given non-
symmetries in the environment, it is possible to use active exploration routines
to eliminate many DFA hypotheses. Active exploration routines that eliminate
ambiguity among DFA hypotheses are closely related to adaptive distinguish-
ing sequences, which can be computed in polynomial time (Yannakakis and
Lee 1991), and should allow the robot to find a minimal DFA in polynomial
time (Schapire 1991) in future work on active exploration.
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The effect of the SSH hill-climbing (and HSSH place de-
tection and localization) is that the Causal Level representa-
tion can assume that actions are deterministic. The determin-
ism of the observation function rests on the abstraction from
sensory images to views being sufficiently aggressive to elim-
inate perceptual variability. Although observations are deter-
ministic, they are not necessarily unique since there may still
be perceptual aliasing. This ambiguity is handled by creating
multiple hypotheses of topological (thus causal) models, as ex-
plained in Section 3.3. In general, it is not possible for a robot
to recover the complete spatial structure of any arbitrary en-
vironment (Dudek et al. 1991); therefore, keeping around the
tree of possible maps allows the robot to continue navigation
when the best hypothesis is refuted by an experienced counter
example.’

3.3. The SSH Topological Level

In the SSH, a topological map is an instantiated model for two
sets of axioms: one that describes topological maps in general
and another that describes the exploration experience of the
agent in a particular environment. We identify the global topo-
logical map by generating potential models of these axioms,
discarding those that violate the axioms, and applying an or-
dering on the remaining ones so that a single best model can
be selected. If there is no single best model, then a few closely
competing models can be identified and can be used to make
an exploration plan to help discriminate between models.

The SSH Topological map MT describes the environment
in terms of dstates, places, paths, regions, and the qualitative
relations among them such as connectivity, order, and contain-
ment. A dstate ¢ € Q represents a distinctive state or pose
of the agent in the environment, a place p € P represents a
zero-dimensional location, a path # € II represents a one-
dimensional structure, and a region » € R represents a two-
dimensional subset of the environment. In this paper, we will
not discuss regions or their relations, which are described by
Remolina and Kuipers (2004).

We formalize a topological map as

MT = M€ U Objects U Relations.

Here Objects = (P, II, R), where P is a set of places, II is
a set of paths, and R is a set of regions. M7 thus includes (via
M) the sets of states, actions, and views. Relations encodes
the relations over this set of objects. These relations, including
at, along, on, order (and the local topology “star” relations
introduced in Section 5), allow for a richer description of the

5. Long-term experience with the HSSH has yielded deterministic actions and
views in research settings, but we can envision rare scenarios, e.g., an inter-
section crowded with people, that could lead to an undetected or misclassified
place. Detecting and understanding these unusual events should allow us to
still assume deterministic actions (100 — £)% of the time.

connectivity of places and paths, and are introduced below as
needed.

At the SSH Causal Level, the experience is represented as
an alternating sequence of states (¢; € Q) and actions (a; €
A).

qgo a1 q1 a2 g2 qn-1 Aan  qn.

At the Topological Level, each distinctive state ¢ € Q corre-
sponds to being ar a place, and facing along a path in some
direction. Since a path is one-dimensional, it has two direc-
tions d € {4+, —}, for which opp(+) = — and opp(—) = +.
We define a directed path, 7¢, to represent facing along a path
in a particular direction:

Vg €e Qdpe P, r €11,
d € {+,—}lat(q, p) A along(q,n,d)], )]

along(q, %) = along(q, ., d).

Additionally, there are two kinds of basic actions, turns and
travels, and there is a TurnAround action:
A = Turns UTravels, TurnAround € Turns.

A place p € P corresponds to a set of states linked by turn
actions:

(g,a,q'y € SAa e Turns Aat(q, p) — at(q’, p). )

Similarly, a path =z € II corresponds to a set of states linked
by travel actions, or by a TurnAround:

(g,a,q") € SAae Travels A
along(q,n,d) — along(q’,m,d), 3)

(g,a,q"y € SAa=TurnAround A
along(q, m,d) — along(q’, m,opp(d)). 4)

The relation on(z, p) means that the place p € P is on the
path = € II:

at(q, p) ANalong(q, ,d) — on(x, p). &)
A path defines an order relation over the places on it:

(g,a,q") € SAa e Travels A at(q, p) A

at(q’, p") nalong(q,w,d) — order(m,d, p, p'),(6)

order(n,d,a,b) = on(z,a) Aon(r,b), 7
—order(n,d, p, p), 3
order(w,d,a,b) < order(n,opp(d),b,a), (9)
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Causal schema

s ds . qa (q1,travel, q2) € S
mt

ay

; il (g2, turn, q3) € S

-

(g3, travel, q4) € S

Equation # Topological relation
H—- at(qi, p1), along(qy, 7, )
5)— on(7q, p1)

(3)— along(qy, 7} ), along(qa, ;)
- at(q2, p2)

5)— on(,, p2)

6) = order(T}, p1, p2)
@) — P17 P2

2)— at(qs, p2)

1) - along(qs, ;)

(5 — on(y, p2)

3)— along(qa, 7, )

1) — at(qa, p3)

5 - on(my, p3)

6) > order(m, , p2, p3)
®)— P27 p3

Fig. 4. Topological abduction example. Here we illustrate the abduction process, using the topological axioms to model explo-
ration. Starting at dstate ¢, the agent reaches dstate g, at a place p, having traveled along directed path z . It then turns to dstate
@3, still at place p», and is ready to travel along another path, say «,, from g3 to dstate g4 at some other place.

order(m,d,a,b) Aorder(n,d,b,c) —

order(z,d,a,c). (10)
In order to create a Topological Level map from a Causal
Level experience, such as (q,travel, qs), (qa,turn,qs),
(g3,travel, q4), the agent uses abduction to hypothesize the
existence of several places and paths at which these distinc-
tive states occur. Figure 4 shows an example of the abduction
process.

Remolina and Kuipers (2004) provide a non-monotonic ax-
iomatization of the SSH topological map, including additional
elements of the theory (regions, boundary relations, and met-
rical relations), along with more details and motivating ex-
amples. This theory provides a precise specification of the
possible logical models (topological maps) that are consistent
with the axioms and the sequence of actions and views ob-
served while exploring. A prioritized circumscription policy
(expressed as a nested abnormality theory (Lifschitz 1995))
specifies how distinct consistent logical models are ordered by
simplicity. Furthermore, Savelli and Kuipers (2004) have de-
veloped the non-local planarity constraint, which enforces the
requirement that a topological map is a graph embedded in the
plane. Figure 5 presents an algorithm for constructing all pos-
sible topological maps by generating all possible sets Q.

3.4. The SSH Metrical Level

The SSH, often thought of as a framework for creating purely
topological maps, has always allowed for local metrical knowl-
edge to be utilized at the Control Level (Figure 2, right col-
umn). Additionally, the SSH Metrical Level has always sup-
ported a global metrical map to be created after the topological
map — it is our belief that such a global metrical map is often
unnecessary for navigation in and communication about large-
scale environments. However, the SSH theory has lacked a for-
mal description of exactly how metrical information influences
the hierarchical abstractions of space. One contribution of this
paper is to clarify the relationships between metrical and sym-
bolic knowledge in a navigational agent.

In work leading to the development of the SSH, Kuipers and
Byun (1991) created a “patchwork metrical map”. Their map-
ping implementation annotated topological places and paths
with metrical data gathered during exploration. Given a topo-
logical map hypothesis, the global place layout was relaxed
to minimize errors with respect to the annotated metrical data
before adding stored range information to create the obstacle
map. This approach is similar to the probabilistic techniques
we define formally in Section 7.3.

3.5. Extending the SSH

The SSH depends on the assumption that the environment nat-
urally decomposes into place neighborhoods, connected by
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0. Perform initial action a that brings the robot to a place along a directed path.
Initialize the tree of maps with the map hypothesis (Mo, go), where Mg contains the
single dstate go with its observed view vq, and MOT contains the single place pg and

path 7.

After performing a new action a and observing the resulting view v, for each
consistent map (M, g) on the fringe of the tree:

1. If M€ includes {(g,a,q’) in R and v = o(q’),

o if match(v,v'), then (M,q’) is the successor to (M, q), extending the tree;

e if not, then mark (M, g) as inconsistent.

2. Otherwise, M€ does not include {(g,a,q’) in R. Let M’ be M extended with a
new distinctive state symbol ¢’ and the assertions v = 0(q’) and {q,a,q’).
Consider the k > 0 dstates ¢ ; in M with v; = 0(q;), such that match(v;,v). Then

(M, q) has k+ 1 successors:

° (M},q’) for 1 < j <k, where M; is M’ extended with the assertion ¢’ = ¢;;

® <Ml/<+17

forl1 <j<k.

q'), where M| is M’ extended with the k assertions that ¢’ # q;,

3. Mark a new successor map inconsistent if it violates the axioms of topological

maps.

4. Define a preference order on the consistent maps at the leaves of the tree.

In the Basic SSH:

M=M".
A view is a simple symbol.
match(v,V') iff v=1"

Both a € Turns and a € Travels can reach step 2 and cause a branch.
Preference order from prioritized circumscription policy (Remolina and

Kuipers 2004).
In the Hybrid SSH (Section 6):

M= (MT" MP).

A view is a structure (S,,#?), where p = place(q), consisting of a local
topology and the directed local-path the robot arrived upon.

match(v,v') iff there exists an isomorphism ¢ : S, — §" where ¢(q) = ¢’

/

Only a € Travels can reach step 2 and cause a branch.
Future work: Preference order from map probabilities (Section 10.2).

Fig. 5. Building the tree of topological maps. This pseudo-code framework describes the algorithm for building a tree of all
possible topological consistent with a sequence of actions and observations at discrete places. The different instantiations of this

framework for the basic SSH and HSSH are also described.

path segments, which can then be abstracted to a topologi-
cal map. That is, it uses the sparse structure of man-made en-
vironments (or man-made paths in natural environments) to
define a small number of discrete places and connecting paths.
Obviously, topological structure may be imposed even in un-
structured environments. Defining places at visually distinc-
tive locations along a single path (e.g., a water tower on the
side of a highway) or even based on metrical path-integration

in wide-open spaces (as the Puluwat navigators do when pi-
loting dugout canoes between distant islands (Gladwin 1970))
are currently not handled by our SSH hill-climbing controllers
or the HSSH place detection methods. We believe these type
of places can be represented within the SSH framework, but
we leave this problem for future work.

The basic SSH makes weak (i.e. very general) assump-
tions about the sensory capabilities of the navigational agent;
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thus, abstraction from continuous sensations to discrete mod-
els of the environment depends on well-crafted control laws
that move the robot reliably between distinctive states. The
HSSH makes stronger (i.e. more specific) assumptions about
the types of sensors available to the agent, e.g., range sensors.
This allows the HSSH to extend the basic SSH by using ex-
isting metrical mapping techniques to create precise observa-
tional models of the local surround.

The HSSH has four major levels of representation that cor-
respond to the four SSH levels (Figure 6). At the Local Met-
rical Level, the agent builds and localizes itself in the LPM,
a metrically accurate map of the local space within its sen-
sory horizon. The LPM is used for local motion planning and
hazard avoidance. At the Local Topological Level, the agent
identifies discrete places (e.g., corridor intersections, rooms,
etc.) in the large-scale continuous environment, and symboli-
cally describes the configuration of the paths through the place
— its local decision structure. At the Global Topological Level,
the agent resolves structural ambiguities and determines how
the environment is best described as a graph of places, paths,
and regions. The Global Metrical Level specifies the layout of
places, paths, and obstacles within a single global frame of ref-
erence. It can be built on the skeleton provided by the topologi-
cal map. Figure 6 diagrams the basic flow of data in the HSSH,
from sensors, through the local metrical model of small-scale
space and the local and global symbolic models of the large-
scale environment, finally creating the global metrical model
if desired.

Having small-scale space models of the local surround cre-
ates several advantages when implementing the HSSH versus
the basic SSH. First, the robot represents the local environment
using a local perceptual map (LPM) (Section 4). The robot
can therefore use algorithms for local metrical motion plan-
ning and obstacle avoidance instead of relying on behavior-
based controllers. Second, metrical localization can be done
quickly after entering a place neighborhood, rather than re-
quiring physical hill-climbing to a distinctive pose.

A symbolic description of the local topology is extracted
from this precise small-scale-space model of the local sur-
round via gateways (Section 5). Thus, the view of a distinc-
tive state no longer need be some user-defined function of the
perceptual inputs. Instead, the method relies on the local topol-
ogy extracted from the LPM to describe places, thus describing
all distinctive states at each place. Using local topology to de-
tect and describe places allows the robot to model more com-
plicated intersections of paths than with hill-climbing. Addi-
tionally, using local topology constrains the global topological
model search (Section 6), as branching in the tree of possible
maps occurs only when arriving at a place, not when visiting
the various dstates of a place (Section 8).

Stored metrical information along topological connections
between places can be used to efficiently obtain a global met-
rical layout of places (Section 7), which provides the “back-
bone” for a global map if desired. The HSSH also improves

Effectors, Sensors

Motor
Commands|
Hardware Observations Data Flow: —=
Control Control Flow:=>
Motion
Commands
Local Metrical
7| Representation
LPM with
X,y,0
(x.7:8) Robot Pose
Local Symbolic
Representation

Place LPM, Small Scale Star,
Travel, Turn Last Gateway, Action Type,
Path Hazards/Metrical Annotations

Global Symbolic
Representation

Topological Map,
LPMs of all Places,

Place, Path ; -
Metrical Annotations
Likelihood of
(x,y.6) Global Metrical | Place Layouts
Representation

Fig. 6. HSSH description. The HSSH is an integrated frame-
work of multiple, distinct representations of spatial knowl-
edge. Each level of abstraction uses its own ontology with con-
cepts motivated by human cognitive abilities and grounded to
the environment via local metrical observations. The four ma-
jor components here correspond to the four levels of the basic
SSH shown in Figure 2.

navigational behaviors and facilitates multi-modal human-—
robot interaction (Beeson et al. 2007; MacMahon et al. 2006).

The rest of this paper is focused on discussion of the in-
dividual components of the HSSH. Section 4 describes local
metrical modeling of small-scale space using existing SLAM
methods, as well as local motion planning. Section 5 describes
how the local topology of a place is abstracted from the local
metrical model and how this abstraction leads to reliable place
detections and descriptions. Section 6 describes how the global
topological map is created and maintained as exploration pro-
vides a sequence of actions and local topologies of places en-
countered during travel. Section 7 describes how the global
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metrical map is built on the qualitative skeleton provided by
the global topological map. Section 8 discusses computational
complexity issues for each level of the HSSH. Section 9 sum-
marizes the paper, and Section 10 discusses future research on
optimizing the HSSH.

4. HSSH Local Metrical Level

The critical difference between the basic SSH and the HSSH
is the use of a local metrical model of small-scale space sur-
rounding the robot. In our current work, we call this model a
Local Perceptual Map. The LPM is currently built using sen-
sor input from laser range sensors that see walls, but the LPM
could be built from visual sidewalk (or road) detection or other
sensor modalities. Similarly, the current LPM representation
models occupied, free, and unknown regions of space. Work
by Murarka et al. (2006) investigates incorporating semantic
labels into the LPM to denote drop offs, pedestrians, and other
types of hazards.

4.1. Local Perceptual Map

The LPM is a bounded-size metrical description of the small-
scale space surrounding the agent. It functions as an observer,
integrating sensor values over time to determine the locations
of obstacles and other hazards, for localization, motion plan-
ning, and the derivation of local features for larger-scale map-
ping. The LPM represents the small-scale space within the ro-
bot’s sensory horizon, not just what is currently in view. It is
small enough to avoid the problem of closing large loops. The
frame of reference of the LPM is local. Its relation with the
world frame may be unknown, and will drift over time due to
accumulating errors.

When the agent travels from one place to another, the LPM
acts as a scrolling map, m, that describes the robot’s imme-
diate surround. Information that scrolls off the LPM is dis-
carded, and new cells that scroll onto the map are initialized
as unknown.® Because the LPM has a fixed, bounded size, the
cost of updating it is constant in both time and space.

The full task of building metrical maps from exploration
data can be described as finding the joint posterior over maps
m and trajectories x = (X, Y, d) in P(x, m|z, u) with the fol-
lowing symbol definitions.

t : The time-steps 0 < ¢t < N of the agent’s experience.

x = xo.y : The sequence of agent poses x; at each time-

step t.

6. Our rectangular LPM scrolls, horizontally or vertically, as needed to keep
to keep the robot’s pose in a central cell. Information in the occupancy grid
is only shifted by integral numbers of cells to avoid blurring the model by
rotations or partial-cell translations.

Actions : Up s uy
| |
Poses : Lo T con TN
| |
Observations : 20 21 g ZN
|/
Map : m

Fig. 7. Markov localization. The standard graphical dy-
namic Bayesian network (DBN) for Markov localization
within a single frame of reference, which combines belief
about actions P (x;|u;, x;—;) and observation P (z;|x;, m).
SLAM algorithms combine localization, P (x|z, u), with one
of a number of mapping methods to estimate P (x, m|z, u).

z=12zon : The sequence of observations z;.

u=upy : The sequence of actions u, between time-steps.

m : The set of map elements, which may be landmarks or
occupancy grid cells. m (the scrolling LPM) is a partic-
ular example of a metrical map m.

The joint probability of the pose history x and the metrical
map m can be decomposed as

P(x,m|z,u) = P(mlx, z,u) - P(x|z, u)

by the chain rule for probabilities.

For simple, local regions, the maximum-likelihood map can
be estimated incrementally given knowledge of x and z, so we
really just need to solve for P (x|z, u). Additionally, we are not
concerned with the full distribution over pose trajectories, as
we are updating the map from the maximum-likelihood pose
at each time step. Thus, for our online metrical mapping we
only need to determine the distribution over the current pose:

Bel(x;) = P(x¢|zo:, U1:)

= nP(z|x, m)/P(x,lx,_l, u)Bel(x,—1)dx;—1,

where # is a normalization constant. Figure 7 illustrates the
basic structure of Markov localization (Fox et al. 1999), which
allows us to determine in an efficient and incremental algo-
rithm the distribution of poses that best fit the current map.
Although multiple metrical mapping methods might be
used for the LPM, we utilize the well-known occupancy grid
representation (Moravec 1988; Elfes 1989), along with parti-
cle filter Markov localization (Fox et al. 1999) to overcome
noisy odometry information. Stated more plainly, we model
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the world as a discretized grid, where each cell contains a prob-
ability of being occupied by an obstacle, as measured by a li-
dar sensor. Localization is performed by comparing hypothesis
poses to the current map, and the map is updated accordingly.
This is a well-known version of SLAM (Thrun et al. 2005).
Discussions in this paper that refer to this implementation gen-
eralize to many SLAM implementations.

4.2. LPM Benefits

LPMs provide the HSSH with various information that allows
both local and global abstractions of space. In Section 5, we
discuss how the LPM supports the abstraction of a symbolic
small-scale space description of the local-paths in the sur-
round. Section 7 discusses how the local metrical information
is used, along with the topological map, to find the global met-
rical place layout of an exploration trace and, if desired, the
entire global metrical map of an explored environment. In ad-
dition to providing useful local metrical information for place
detection, categorization, and layout, the LPM is a reliable ob-
server for local control at the SSH Control Level.

Given a target pose in the LPM, the robot can compute a
trajectory to reach the target without colliding into obstacles.
This can be done using the Vector Field Histogram (Boren-
stein and Koren 1991), the Dynamic Window approach (Fox
et al. 1997), gradient methods (Konolige 2000), or even a sim-
ple search (using A* or rapidly exploring random trees [RRTs]
(Kuffner and LaValle 2000)) over the cells of the occupancy
grid. The potential function (for gradient methods) or the cost
function (for A*) reflects the distance of the agent from an ob-
stacle or other hazard represented in the LPM. Object tracking
may be implemented at this level, but our current robot imple-
mentation simply avoids obstacles by taking the first few steps
along the planned trajectory before replanning. We discuss the
selection of target poses as they apply to Causal Level Travels
and Turns in Section 5.3.

In the basic SSH (Kuipers 2000), an agent localizes itself
in a place neighborhood by hill-climbing to a distinctive state.
Localization by physically moving to maximize a “distinctive-
ness measure” requires very little knowledge about the nature
of the environment or the sensors. In the HSSH, on the other
hand, the agent uses an online SLAM method to localize it-
self unambiguously within the LPM. SLAM methods depend
on stronger knowledge about the relation between sensor in-
put and the agent’s location in the local frame of reference —
P(z;|x;, m). In return for these stronger assumptions, the agent
does not need to move to a particular location to be adequately
localized.

Finally, when the agent is in the neighborhood of a partic-
ular topological place p, a snapshot of the LPM m serves as a
small-scale space description of the place neighborhood that is
stored as a place annotation m , in the topological map. When
a place p is first encountered, the local map m , for its neigh-
borhood is initialized with the information from the scrolling

map . The frame of reference defined for m, may be dif-
ferent from that of m, appropriate to the characteristics of the
place neighborhood. When the neighborhood of p is encoun-
tered on subsequent occasions, the agent may localize itself
with respect to the stored map m, and may update m , with the
more recent information in 7.

5. HSSH Local Topological Level

As the robot and its scrolling LPM move continuously through
the environment, the robot identifies a discrete set of isolated
places and the path segments that connect them. In the small-
scale space of the LPM, a place neighborhood is an extended
region. In the large-scale space representation, a place is a node
in the topological graph, and is connected by paths to other
places. These are the local elements from which a global topo-
logical map is constructed. We abstract the structure of a place
neighborhood to the local topology description of the place.
Just as a path describes the linear order of places on it, a place
describes the circular order of directed paths radiating from it.
We call this the local topology S, of a place p, and describe
the circular order with a structure called a star (Kuipers et al.
2004). This section discusses how this symbolic representation
of a place (in large-scale space) is grounded in the metrical de-
scription m, of the place neighborhood (in small-scale space).

A local-path 7 at a place p is the fragment of a topolog-
ical path that is visible within the stored LPM, m, of the
neighborhood of p. A directed local-path is of the form 7,
where d € {4, —} represents the direction along 7 moving
away from p. Upon arriving at a new place, a local-path and
its directions may not yet have been matched with a global
topological path and its directions.

A star S is a set of directed local-paths such that 77 €
S & =7~ € S. There are two functions that describe stars.

next : S — S induces a clockwise circular order over
7l e S. next (ﬁd) is the next element from 7¢ in the

clockwise order.

o : S — {0, 1} associates an attribute value a(ﬁd) toz? e
S, where a(79) = 1 means that travel is possible along
7! away from p, and « (ﬁd) = 0 means that travel away
from p along 7% is not possible.

The star is naturally encoded as a sequence of pairs, where
the sequence encodes the next relation (next of the last ele-
ment being the first element), and the second element of each
pair is the value of a applied to the first element. For exam-
ple, consider the following local topology (star) descriptions
of familiar intersection types’ including local-paths 7., 7y,

7. Note that we do not have a fixed set of equivalence classes for local topology
abstraction. Although there is an upper bound on the number of paths that can
fit into an LPM, this is determined by the path width and the LPM size. Thus,
many types of intersections can exist that cannot be “named” using a letter.
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and sometimes 7 .. (For ease of visualization, the first directed
local-path in the circular order is the one directed upward.)

+ Uah 0, @50, &0, 7, )]
(7,00, (@f, 1), (@), 1), (7, 1)]
Wzl 1), (&), 1), (7, ,0),(7,,0)]

(7,00, (@), 1), (7.,0), (7, 1), (7,00, (7, 1)]

~ < - 4

(75, 1), (@, 1), (@510, (@, 1), (7,0, (7, 0)]

c

y Uzi 0, @b, 0, (&,0), 7, 1), (7@,,0), (7 1)]

An isomorphism ¢ : S — §’ between two stars S and S’ is
a bijective function such that

next(p(z")) = p(next (@),
a(p@) = a@),
path(¢p(@?)) = path(p@" DY),

where path(ﬁd) = 7. An isomorphism means that the two
stars have the same local topology under a suitable rotation of
the circular order. Note that two stars may have multiple dis-
tinct isomorphisms. For example, there are four distinct iso-
morphisms between two + intersections.

The local topology description provides a purely qualita-
tive account of “left” and “right”, avoiding the need to define
them in terms of thresholds on some angular variable. A par-
ticular directed local-path at a place p, 7, and its opposite,
7, partition the other directed local-paths in the star into two
groups. Those that are between 7 and 7~ in the clockwise
direction can be described as being “to the right” of 7 . Those
between 7+ and 7 ~ in the counter-clockwise direction can be
described as “to the left” of 7 *. This also defines the appropri-
ate destination for a route instruction such as “turn right” when
the agent is at a place p, facing along a directed path 7?;L The
pragmatics of natural language requires that “turn right” must
uniquely specify a directed local-path ﬁ‘,f that is “to the right”
of 7., such that a(7%) = 1 (i.e. #¢ is navigable from p).

5.1. Grounding Local Topology in the Local Perceptual Map

We have illustrated how to describe a place symbolically as a
circular order of directed local-paths. Here we discuss how to
use gateways to ground local-paths in the LPM. Gateways
allow the robot to ground large-scale actions in the small-
scale metrical models, abstract a symbolic local topology de-
scription from the small-scale model, and detect and compare
places in the environment.

5.1.1. Gateways

The term “gateway” is adapted from Chown et al. (1995), who
define gateways as the locations of major changes in visibility.

In buildings, these [gateways] are typically door-
ways. ... Therefore, a gateway occurs where there
is at least a partial visual separation between two
neighboring areas and the gateway itself is a vi-
sual opening to a previously obscured area. At
such a place, one has the option of entering the
new area or staying in the previous area. (Chown
etal. 1995, p. 32)

We define a gateway as a boundary in the LPM that sep-
arates the local place neighborhood from the larger environ-
ment. That is, a gateway is the boundary where control shifts
between localization within the local place neighborhood and
travel from one place neighborhood to another. A gateway has
two directions, inward (looking into the place) and outward
(looking away from the place), according to the direction of
that shift. The location, extent, and orientation of gateways at
a place are saved as annotations of the local place neighbor-
hood map m,,.

In much of human experience with large-scale environ-
ments (both natural and man-made) local place neighborhoods
are separated from each other (either by boundaries or by dis-
tance), and they are connected by travel actions along paths.
Navigation in large-scale space is thus typically an alternation
between motion along travel paths and motion within place
neighborhoods. The existence of gateways, as interfaces be-
tween the two types of travel, is therefore a requirement for the
abstraction from small-scale to large-scale space. Certainly ex-
treme situations occur, such as place neighborhoods that over-
lap or are immediately adjacent, or environments with (appar-
ently) no distinctive states at all. These will be discussed in
appropriate sections below.

Schroter et al. (2004) and Yeap (1988) discuss finding
gateways by looking for occlusions from laser data or local
models.? Schréter (2006) also details a visual door recognition
system for determining gateways. Below, we describe an al-
ternative algorithm for identifying gateways within the small-
scale space of the LPM. This algorithm relies on a Voronoi
skeleton computed from the free space in the LPM. Our imple-
mentation first prunes the Voronoi skeleton, using the fact that
we have a bounded LPM to determine the true skeleton of free
space in the local surround. It then defines the “core” of the lo-
cal region by grouping nearby Voronoi junctions, if they exist.
Walking along the graph, from the core, to the frontiers of the
local map, the algorithm looks for constrictions as locations
for gateways. Constrictions can be defined several ways, e.g.,
local minima in the distances to the closest obstacles (what

8. Gateways are called exits by Yeap (1988); Yeap and Jefferies (1999).
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Thrun and Biicken (1996) call “critical points™). Gateways are
then defined as line segments that separate distinct regions of
free space in the LPM.

Pruning the Voronoi graph. A Voronoi graph is the set of
points equidistant from the two (or more) closest obstacles.
It lies on the boundaries of Voronoi regions (Fortune 1992).
Using a Voronoi graph to describe the free space of a metri-
cal model can be useful; however, given noisy measurements,
a Voronoi graph can contain many branches and spurs that
do not contribute to the “base” skeleton that describes the
“backbone” of the modeled environment. As a result there has
been work on pruning of Voronoi graphs (Choset and Nagatani
2001; Wallgriin 2005) and on using thinning-based approxi-
mations of Voronoi graphs for mobile robot navigation (Choi
et al. 2002). Thinned skeletons often have far fewer spurs into
concave corners; thus, they represent an approximation of a
partially pruned Voronoi skeleton.

In order to determine the “critical” skeleton of a noisy
Voronoi graph, we assume that the robot is computing a
Voronoi graph in the LPM. Currently, we also remove “island”
obstacles by removing occupied or unknown cells in the
occupancy grid that are completely surrounded by free cells.
This reduces drastic changes in the skeleton due to pedestrians.
The Voronoi graph is computed by treating occupied cells in
the occupancy grid as obstacles.

Because we use a small, bounded LPM, there is always
some region of free space that touches the edge of the occu-
pancy grid or some region of “unknown occupancy” (gray cells
in the figures) that may provide an option to leave the current
region. We define a terminal point of the Voronoi graph that
reaches the edge of the LPM or reaches unexplored cells to be
an exit. We can then define the branches of the Voronoi graph
that contain exits to be “critical” branches. Instead of actively
pruning away branches, a better approach is to include only
the union of all shortest paths that connect each exit to all other
exits in the LPM.’ Figure 8 shows how this spanning tree elim-
inates all spurious junctions and branches in these small-scale
models.

Determining Gateways. Gateways can be grounded in an
LPM by using the Voronoi graph. Although the full, contin-
uous generalized Voronoi graph can be computed using For-
tune’s algorithm (Fortune 1992), it is usually more efficient
to approximate the Voronoi graph of an occupancy grid, us-
ing pixel-based “brush-fire” algorithms: imagine a brush fire
along all defined obstacle pixels, burning inward at a constant
speed, and the skeleton is marked by all points where two or
more fires meet. Similarly, there exists a thinning algorithm
(Zhang and Suen 1984) that gives a pixel-based skeleton, but

9. Dead-ends are a special case, where only one exit exists. Here we just keep
the branch that connects the exit to the Voronoi junction at the dead-end.

with many spurious terminal branches pre-pruned. As both the
brush-fire approaches and the thinning approach are linear in
the grid size, we utilize the thinned skeleton, as it speeds up
the pruning process due to having fewer branches that need to
be examined.

Figure 9 shows a few steps of the gateway algorithm on a
thinning-based skeleton. The algorithm below has been tested
on both thinned skeletons and true Voronoi graphs, and works
well on both kinds of skeletons. Given a pruned skeleton, the
method for finding gateways is as follows:”

e [ is the location of the physical robot with respect to the
LPM.

e c is the point on the Voronoi graph closest to [ (Fig-
ure 9(a)).

e J is the set of Voronoi junctions j (Figure 9(b)).

e 1, is the “Voronoi radius”: the distance from the Voronoi
point p to the closest obstacle.

o K ={jeJ:dist(j,l) < r;} (the robot is within the
“radius” of the junction point).

e Two junctions j and j’ are neighbors if dist(j, j') <
max(rj,rj).

e Define the “core” of the place neighborhood as F': the
equivalence class of neighboring junctions that includes
K as the starting set of junctions. See Figure 9(b).

e If F = ) then define F = {c}.

e () is the set of all Voronoi points g, where 3f € F such
that dist(f,q) =ry AVf € Fdist(f’,q) > rp. This
selects the set of points on the border of the “core” of
the place.

e For each g € Q, walk along the branch that contains g
in the direction away from the “core” of the place (Fig-
ure 9(c)). Look for a point p that corresponds to a con-
striction.

e At each of these constrictions m, define a line segment
g of length 2 - r,,, centered on m, oriented normal to the
branch at point m. See Figure 9(d).

A recursive version of this algorithm was implemented that
runs quickly enough to recompute gateways in real-time (two
to three times a second for a 300x300 cell occupancy grid
with 10 cm cells using an older 450 MHz research robot

10. Symbols used in the discussion of the gateway implementation are local
in scope and have no relation to symbols used elsewhere in this paper, even if
they are spelled the same.
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Fig. 8. Pruning a Voronoi graph using the LPM boundary. (a),(b),(c) Examples of Voronoi graphs at common places. (d)
Pruning the skeleton at an L leaves no junction, which means methods that rely on junctions in pruned graphs to define places
(Choset and Nagatani 2001) ignore these types of intersections. (e) Small bits of noise around objects can cause spurs and
hierarchical branches in the Voronoi skeleton. Methods that use fixed-depth or distance-based pruning (Choset and Nagatani
2001) can leave junctions in the graph, while the LPM pruning eliminates all non-critical branches. (f) Dead-ends are a special
case where we keep the minimal branch that connects the single exit to the junction closest to the robot.

computer).!! This implementation was used to produce Fig-
ures 9(d), 10(a), 11(a)—(c), and 12(b),(c), and it was the im-
plementation used to detect the places in Figure 15(a). A con-
striction is currently a local minimum over r, € R. Defining
gateways where the change in distance to nearby obstacles is
minimal (or plateaus) provides useful gateways at the begin-
ning of hallways and doorways in corridor environments.

5.1.2. Local Topology

Given an implementation for detecting gateways in a stored
map of a place, m ,, we can ground the local topology concepts
of local-paths in our small-scale model of the surrounding en-
vironment.

e For each outward-facing oriented gateway (g, out),
define a directed local-path fr; that leads away from
the current place.

e Initialize a circularly ordered star S, with a list (clock-
wise from an arbitrary starting point) of associations
between directed local-paths and oriented gateways,
((fr;, 1) <> (g, out)). Since these are traversable paths,

eacha(7y) = 1.1

e Test each pair of gateways, g and g’, via a path continu-
ity test, to determine whether their directed local-paths
belong to a single continuous path. If so, give both di-
rected local-paths the same path name (e.g., 7, below
and in Figures 10(b),(c)), and include the inward ori-
ented gateways in the association. For example, change

11. Note that the gateway algorithm is useable on LPMs with quite low resolu-
tion (Beeson 2008). Because higher resolution LPMs do not improve the reli-
ability of gateways and because the thinning algorithm is linear in the number
of cells in the LPM, we chose LPM parameters that facilitate reliable SLAM
and local motion planning, while still fitting nicely within the cache of our
robot’s onboard computer.

12. In future implementations, a : S — {MIDLINE, LEFTWALL, RIGHT-
WALL, DEADEND, NONE} should associate directed local-paths with at-
tributes representing the control laws for traversing the path in that direc-
tion. (LEFTWALL and RIGHTWALL imply coastal navigation scenarios.
For terminating local-paths, DEADEND means that further travel is blocked,
while NONE means that no control law is applicable.)
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Fig. 9. Example of gateway detection. Here we show certain steps of the gateway algorithm. We begin with a model of the local
surround. (a) We then calculate a pruned Voronoi skeleton. Here we use a thinning-based approximation of the Voronoi skeleton
(Zhang and Suen 1984), which we have found to be much faster to calculate on slower processors. We then locate the closest
point on the skeleton to the robot. (b) The robot then determines the “core” of the local region. (c) The algorithm ignores all
portions of the skeleton inside of the core, only looking for gateways along portions of the skeleton outside of the core. (d) The
algorithm looks for a local minimum in the rate of change of the Voronoi radius. These constrictions define the locations of
gateways, while the skeleton itself defines the orientation of the gateway.

(77, 1) &

g’

(@5, 1) &

(7T . 1)

(z,, 1)

(8, out)) (g',in), (g, out))

to
(g', out)) (g,in), (g, out)).

e For each fr; € S, such that frgf & S, insert the associa-
tion ((frg, 0) <> (g, in)) into the circular order of S, in
a position determined by its failure of the path continuity
test.

In our current implementation, the gateways g and g’ be-
long to a single continuous path if: (1) a ray normal to the ori-
entation of gateway g and centered at the midpoint of gateway
g intersects the line segment that defines gateway g’; and (2)
vice versa for a ray from g’ towards gateway g. (Note that the
failure of this test should determine a pair of gateways where
the non-traversable path continuation falls between.)

At this point, the star S, is a complete representation of
the local topology of the neighborhood described by the LPM.
Since this representation is expressed completely in terms of
small-scale space (the gateways g and the directed local-paths
frg), we refer to this as the small-scale star (Figure 10(c)).

Binding the directed local-paths to directed paths in the topo-
logical map of large-scale space implies the appropriate large-
scale star (Figure 10(d)). This binding is part of the HSSH
topological mapping process, and is discussed in Section 6.1.

5.2. Detecting Places

To explain local topology extraction, we provided examples
where the robot was already at a place. Perhaps surprisingly,
the method for constructing the local topology of a place
neighborhood does not actually depend on being at a place
neighborhood. Gateways can also be defined along paths, as
they separate the robot from the “frontier” of the LPM. There-
fore, if we recalculate gateways and local topology at each time
step, we can very easily defect places.

We define the robot to be on-path when the local topol-
ogy of the LPM contains exactly two gateways and exactly
one path (e.g., Figure 11(a)). When the agent is on-path, it is
selecting and executing control laws (and hence primitive mo-
tions) to perform a travel action. The LPM scrolls as the agent
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Small-scale star An example large-scale
description star abstraction
(7, 1) = (ga,in), (g1, 0ut)) (((71:1 1 o q)
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(.0)  (gs.in) (m0) < q)
(7], 1) < (g3,0u)) (1) — qu)
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(Z7.1) < (gs.our)) (5, 1) < a7)
(7, ,0) < (g2,im))) (my,0) < gs))
(c) (d)

Fig. 10. Identifying gateways and local topology in the LPM. The LPM is implemented as a bounded occupancy grid. The robot is
shown as a circle in the center of the LPM. (a) The gateways separating the core from the exits are defined. In our implementation
this is done using a pruned Voronoi skeleton. (b) Gateway locations and directions are used to identify the directed local-paths
and to determine which pairs satisfy the path continuity requirements. (c) The small-scale star enumerates directed local-paths
in clockwise order, describing their traversability and association with gateways. Note: the robot entered the place via gs; thus,
it arrived on directed local-path 7 . (d) The large-scale star (Section 6.1) replaces local-paths with topological paths from the
global topological map, and defines a distinctive state for each directed path at this place. This environment has five gateways,
four paths, and eight distinctive states.

(a) (b) (©)

Fig. 11. More real-world gateways. Our current gateway algorithm uses a Voronoi skeleton to find the gateways surrounding a
location. (a),(b) Even at locations with no Voronoi junction points, the gateway algorithm works. Example (a) shows the robot
on a path, where two gateways on either side of the robot give a stable topology, and (b) shows the robot at a place. (c) At dead
ends, there is only a single gateway.

moves, keeping the agent near its center cell, and serving as an When the agent is not on-path, it is in a place neighbor-
observer for the local small-scale space. hood. In this situation, the agent establishes a fixed correspon-
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dence between the LPM and the structure of the place neigh-
borhood. Here, the LPM serves as a local metrical map m, of
the place neighborhood (and does not scroll with the agent’s
motion within the place neighborhood). Thus, the number and
location of places in an environment depends in part on the
predetermined size of the LPM!3, although places are not sen-
sitive to small changes in LPM size.

When the robot is not on-path, it either has more than one
local-path, which occurs at intersections or open doorways, or
one local-path with only one gateway, which occurs at dead
ends. These are all places (Figure 11). There is a degenerate
case where no gateways exist. Due to our implementation of
gateways, this situation means there is no way out of the cur-
rent location, so the robot’s entire world is simply modeled by
a single place and LPM.'#

When traveling along a path, the robot may see multiple un-
aligned gateways and suspect it is at a place. Sometimes, false
gateways appear in the LPM due to the boundary between ob-
served free space (i.e. white cells in the occupancy grid) and
unknown space (i.e. gray cells in the grid). This is often the
case when the robot’s sensors do not provide a 360° field of
view, as with SICK-brand lidars. Before the robot commits it-
self to being at a place, it must perform some local exploration
in the fixed map of the potential place to eliminate any false
gateways. We have found that, for a robot with a 180° field of
view, simply rotating in place eliminates most false gateways.

Using the local topology defined by gateways allows the
robot to detect places more reliably than when using methods
that simply look for Voronoi graph junctions. First, Voronoi
graphs can have many spurious junctions. This is especially
true given noisy sensors or environments, but even occurs in
the face of no noise at small alcoves and other common ar-
chitectural features. Similarly, complex intersections can have
multiple junctions. The gateways and local topology can see
one place, whereas a junction-based approach (including De-
launay triangle approaches (Silver et al. 2004)) must define
multiple strangely connected places. Figures 9(b) and 10(a)
both show multiple junctions at a single place. Additionally,
there exist important places detected via the gateway approach,
like L intersections, that contain no junctions at all after prun-
ing the Voronoi graph (Figures 8(d)—(f)).

5.3. Selecting Local Motion Targets

Instead of relying on the dynamical system approach to motion
used in the basic SSH, we introduce gateways as an alternative
approach. Gateways provide a geometric method for control
of motion — where midline or coastal navigation along paths

13. One interesting avenue of future research is to try adapting the LPM size
by environment characteristics.

14. There is another degenerate case when the robot is in the middle of a
featureless environment. As mentioned in Section 3.5, the HSSH currently
does not handle these types of environments.

is applicable. The motion of the robot in large-scale space can
be adequately captured by noting which oriented gateways the
robot passes through. Reconsider the example of abductive in-
ference for a topological map in Figure 4 that modeled the
world as points connected by lines. Compare this to the HSSH
approach illustrated in Figure 12 where turns and travels cor-
respond to moving towards gateways.

As discussed in Section 4.2, local motion planning consists
of selecting a target pose in the LPM, computing a safe trajec-
tory to it, executing the first step of that trajectory, sensing the
environment, updating the LPM, and repeating the cycle. The
selection of target poses for local motion control corresponds
to the action or goal being pursued. There are three distinct
cases.

e If the agent is not in a place neighborhood, it is on-
path, in which case it is moving along the local-path in
the LPM toward one of the two gateways. Just beyond
the forward gateway, in the outward orientation, is an
appropriate target for local motion planning; however, a
more robust approach with respect to obstacle avoidance
is to aim at a point well beyond the gateway, like the
edge of the LPM. As the LPM scrolls, the gateway loca-
tion is constantly refreshed. The robot never reaches the
gateway until its location becomes stable (which only
happens when the agent arrives at a place).'?

e If the agent is in a place neighborhood, the LPM is
fixed to the local environment, so motion planning is
confined to the small-scale space of the place neigh-
borhood. The agent may have a pragmatic destination
within the place neighborhood, for example an intelli-
gent wheelchair may have the goal of bringing its driver
to her desk after entering her office, in which case the
local motion target is a pose associated with that desti-
nation. Such motion targets can also be generated when
exploring the fixed LPM of a potential place.

e The agent may be executing a turn action as part of
a route through large-scale space. In this situation, the
LPM is fixed in the local frame of reference, and a large-
scale turn action corresponds to moving from an inward-
facing oriented gateway to a location just beyond an
outward-facing oriented gateway. After passing through
the outbound gateway, the robot is in position to begin
following another path. Note, that the TurnAround ac-
tion simply corresponds to traveling past the same gate-
way the robot entered the place through, facing the out-
ward instead of the inward orientation. Continuing along
a path that passes through a place (no turn) also falls into
this case.

15. Lee (1996) calls control algorithms that continuously re-plan for a moving
point ahead as “red wagon” controllers.
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(b)
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Fig. 12. Grounding control using gateways. (a) The example from Figure 4 is further examined in a simulated 3D office en-
vironment with obstacles. The gateways are found and drawn on the LPM in real-time, with arrows representing the outward
orientations that leave the current area. The gateway associated with the robot’s past motion is depicted using an arrow pointing
in the inward orientation. (b) Traveling along directed path 7} corresponds to aiming for an oriented gateway, e.g., (g2, out), in
the appropriate direction. The gateway is continually recomputed, which keeps moving the local motion target along the path,
until it becomes stable at the entrance to a place. (c) Arriving at dstate g, at place p, corresponds to arriving at a gateway (g3, in)
associated with a directed local-path 7?: in the LPM for place p,. The turn action from dstate g; to g3 corresponds to local motion
within the LPM through outward-facing oriented gateway (gs, out) on directed local-path 7, . (d) In calculating local topology,
“island” obstacles that are surrounded by free space are removed to ensure reliable gateway detection. Planning to move through
a gateway requires consideration of these obstacles. Once the robot moves past gateway (ge, out), two new aligned gateways
appear that will flank the robot throughout the next travel action, as in image (b).

In certain scenarios, such as two large rooms connected by
a doorway, it may be possible for an agent to move directly
from one place neighborhood to another, moving between two
distinct local topologies, without ever being significantly on-
path. The SSH can accommodate this transition with a dummy
travel action whose effect is simply to transition between the
reference frames of two adjacent, or even slightly overlapping,
places.'®

16. Taking this idea to an extreme, the Atlas system (Bosse et al. 2003) cre-
ates new frames of reference based on feature counts, building a “patchwork”
map of overlapping frames of references. However, if the entire environment
is described in terms of overlapping place neighborhoods, the benefit of the
topological map as a concise description of large-scale space is decreased.
Likewise, the local and global distinctiveness of places is sacrificed.

6. HSSH Global Topological Level

The next two sections will address the problems of building
a global topological map to describe the qualitative structure
of large-scale space and building a global metrical map to de-
scribe its geometric structure within a single global frame of
reference. We describe these two map-building problems sep-
arately, but their solutions benefit from each other and should
be interleaved in future research (Section 10.2).

The first problem is to identify the best global topologi-
cal map consistent with exploration experience. The process
of generating possible topological maps from experience and
testing them for consistency can provide formal guarantees
that the correct map is generated and never discarded (Dudek
et al. 1993). A logic-based theory of topological maps (Re-
molina and Kuipers 2004) makes explicit the assumptions
upon which those guarantees depend.
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If the robot knows it is in an environment with no loops,
creating a topological map is quite easy. This is especially true
given deterministic actions, as the robot simply moves deter-
ministically between known places when it revisits parts of
the environment. Even with non-deterministic actions, creat-
ing the topology of such environments is still possible (Toma-
tis et al. 2002). The difficulty in map-building arises from clos-
ing loops: determining when a newly-encountered place is the
same as a previously-experienced place, and creating a hy-
pothesized new loop in the topological map. When large loops
in the environment result in structural ambiguity, a topologi-
cal representation can concisely represent the loop-closing hy-
potheses by generating a single topological map for each qual-
itatively distinct alternative.

6.1. From Small-scale to Large-scale Star

In small-scale space, the LPM is used for the detection of gate-
ways, local-paths, and places, and to create the local map m,
that is stored at places. The small-scale star describes both
a circular order on the set of directed local-paths in a place
neighborhood and also the correspondence between directed
local-paths and oriented gateways. A place p in large-scale
space is associated with the local map m ,, a model of the place
neighborhood in small-scale space. At a place, each directed
local-path #¢ in small-scale space corresponds to a directed
path 7¢ in large-scale space. This allows us to determine the
large-scale star that describes the circular ordering of topolog-
ical directed paths at the place.

Assimilating the local topology of a place into the global
topological map requires a one-to-one mapping between the
directed local-paths in the small-scale star and a set of directed
paths from the global topological map. In Figures 10(c),(d),
we illustrate such a mapping between the local-paths, 7 4, 75,
7., and 7 4, and the corresponding global topological paths 7z 1,
7y, T3, and 7 4, respectively. To keep this example simple, we
specified 4+ and — on the directed paths to correspond consis-
tently, but of course this need not be true in general.

In large-scale space, a distinctive state g corresponds
uniquely to a place, a path, and a direction on that path (Equa-
tion (1)). Thus, the dstate ¢ is at a particular place p, and there
is a bijective association between a dstate and a directed local-
path: v ,(q) = 7 where 79 Sp. This implies that in the
case where the directed local-path passes through the place,
the distinctive state g will correspond with two different ori-
ented gateways, one (g, in) entering the place neighborhood,
and the other (g’, out) departing from it.

An isomorphism ¢ : S — §’ between two stars implies a
bijective mapping between the associated dstates as well. We
will extend ¢ to write these implied mappings as ¢(q) = ¢’.
For a topological map M7, and the set P of places in M7, we
can now define the set of local place maps,

MP ={(p,m,, Sy, y,): peP}

associating each place p € P with its local metrical map m,,
its local topology S, and w o the association between dstates
and directed local-paths in the local topology.

Assuming that the LPM is sufficiently well explored, the
set of directed local-paths and gateways in the small-scale star
is complete, so the description of the distinctive states and di-
rected paths in the circular order of the large-scale star is also
complete. A turn action in large-scale space corresponds to
motion in small-scale space within a place neighborhood from
the inward-facing oriented gateway the robot arrived upon to
an outward-facing oriented gateway (Figure 12(c)). Thus, for
every pair of dstates ¢; and g; at the place, a causal schema for
the turn action (g;, turn, q;) is implicitly defined. Exploration
experience can now be described as an alternating sequence of
travel actions and place neighborhoods, which simplifies con-
struction of the global topological map (Figure 5).

6.2. The Tree of Possible Topological Maps

The topological map-builder maintains a tree whose nodes are
pairs (M, q), where M is a topological map (augmented below
for the HSSH), and ¢ is a distinctive state within M represent-
ing the robot’s current position. The leaves of the tree represent
all possible topological maps consistent with current experi-
ence (Dudek et al. 1993). The algorithm for growing the tree
of possible topological maps was presented in Figure 5. This
figure also describes the differences between map-building in
the basic SSH and HSSH.

After each action a and resulting view v, we extend each
map hypothesis at a leaf of the tree. If the current action moves
within known territory, the map (M, g) will predict the result-
ing dstate ¢’ and the view to be observed, so the hypothesis
can be updated or refuted according to whether the prediction
was correct or not. If the current action explores new terri-
tory, then either the resulting dstate is also new, or the action
closes a loop and connects with a previously known dstate.
Since there may be multiple possibilities that all match view
v, the tree of topological map hypotheses will branch. For pur-
poses of generating and testing candidate topological maps in
the HSSH, we will extend the basic SSH topological map M’
with M = {(p,m,, S, v ) p € P}, the set of local
metrical maps and local topologies of individual place neigh-
borhoods,

M=M", M".

In the SSH, a view v is an abstracted description of the
agent’s perception of the local environment from a distinctive
state g. We select the level of description to ensure that the
view is a deterministic function of the dstate (v = o(g)), al-
though we allow perceptual aliasing (different states with the
same view) (Kuipers and Beeson 2002). In the basic SSH, a
view is a symbol, abstracting away the nature of the percep-
tual system, and views are matched only for equality. In the
HSSH, we define a view to be the local topology S, of the
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Fig. 13. An environment with multiple nested loops. In the CAD drawing (a), we show the path traveled between places in
the environment. We enumerate the sequence of places as experienced by the robot. (This exploration trace was also used for
Figure 1.) In (b), we show the LPMs created at the places during the travel. We constrained the gateway algorithm in order to
ignore open office doors and cubicle openings, which ensures places only at hallway intersections. The stars generated from these
LPMs are used to search through the space of consistent topological maps. In (c), we show the unique topological map generated
after matching local stars and LPMs. The map is overlaid with the LPMs generated at the places, with the gateways, and with the

connections between gateways which lie on the same path.

current place p and the current directed local-path the robot
is on; thus, the new view description is derived from the local
topology, which is grounded in LPM m ,:

= (S,, 79) where d € {+, —}

= <S[7’ l//p(q)>

Given two views v and V', we say that match(v,V') holds iff
there is an isomorphism ¢ : S — §’ such that ¢(q) = ¢’
That is, from the perspectives of the specified dstates, the local
topologies match.

As exploration progresses, the map M is extended with new
information. For example, after an exploration step that closes
a loop in the map, the resulting map M’ is M extended with a
new dstate ¢ and assertions (g, a, q’), v=0(q’), and ¢’ = ¢q;.
A new version of M€ = (Q, A, V, S, 0) is created, and the
implications of the loop-closing assertion ¢’ = ¢; propagate
through new versions of M7 and M” to unify place and path
labels as necessary. Because we are matching complete local
topologies in the HSSH, the tree of maps only branches on
travel actions. Turn actions are already fully described by the
large-scale star.

6.3. Topological Mapping Example

We applied an implementation of the HSSH map-building to
a pre-specified route through an office environment includ-
ing multiple nested loops. This office had a large number
of cubicles and office doorways. To respect student and fac-
ulty privacy, we pruned the Voronoi skeleton so that Voronoi

branches, thus gateways, were defined only for large hallway
intersections, not at doorways or cubicle openings. The envi-
ronment, as defined by the robot, contained six paths and nine
places with four distinct local topologies. Figure 13 shows the
exploration route as a sequence of place visits, the sequence
of LPMs observed at successive place neighborhoods, and the
unique simplest topological map that resulted from the map-
ping algorithm, with LPMs overlaid at corresponding places
in the correct topological map.

After a sequence of 14 travel actions, the topological map-
per finds 83 possible configurations of the environment that
are consistent with the observed local topologies and the topo-
logical axioms — that is there exist 83 leaves in the tree of maps.
The prioritized circumscription (Remolina and Kuipers 2004)
on this set of maps produces four minimal models. All but one
of these can be eliminated with further exploration or by sim-
ply matching LPMs using the alignments specified by the four
minimal maps. This final map model is the correct topological
representation of the environment.

If we assume planarity of the environment, we can use a
more sophisticated version of the topological map-building al-
gorithm (Savelli and Kuipers 2004) that rules out many more
models as inconsistent. Here, there are only 46 consistent
configurations of the exploration experience, and the circum-
scription policy produces a single minimal model, which is
the correct topological map of the environment (Figure 13(c)).
Currently, our implementation can build the complete tree of
maps for this exploration trace and determine the unique min-
imal map of this environment in ~200 ms on the robot’s Pen-
tium IIT 450 MHz processor. Notably, the results presented on
this office environment would be unchanged if the path seg-
ments were longer or even very convoluted, as the number of
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places and paths would not change. Additionally, the tree of
maps ensures the correct map is never discarded.

6.4. Levels of Spatial and Temporal Granularity

At this point, we summarize the three different levels of gran-
ularity, with different ontologies, that we are using to describe
space and time.

The agent’s experience is a trajectory through the environ-
ment. At the SSH Control Level and in the LPM, the trajectory
is represented using a fine-grained representation for time ¢,
pose x, motor signal u, and sensory image z. These are used
both for control laws, and for simultaneous localization and
mapping to build the LPM. Expanding Figure 7, the agent’s
exploration experience is described by

Ur—1 Uy Urt te Un

{ \ { \

Xg = 0 ™ X1 —> Xt —> Xty — - —> XN
{ { \ { \
20 T -1 <t 41 s IN-

At the SSH Causal Level (which is part of the topological
map), exploration experience is described by an alternating se-
quence of actions and distinctive states, with each distinctive
state associated with a view:

qgo a1 q1 ax qz qn-1 Gn  qn
I | I I I
Vo V1 V2 Vi—1 Vu.
In both the basic and hybrid versions of the SSH, distinctive
states g correspond to being at a place, facing along a directed
path. In the basic SSH, the distinctive states g are grounded by
isolated distinctive states X where hill-climbing control laws
terminate. In the HSSH, dstates are grounded by a directed
local-path extracted from the LPM of a place neighborhood.
At the SSH Topological Level, a particular place p; can
correspond to several distinctive states, say ¢;—; and ¢; and the
turn action a; between them. A travel action ;| from ¢; at p;
to g;+1 at a different place p;, can be used to infer the dis-
placement /1, (, which is the pose of place p;, in the frame of
reference of place p;. This lets us abstract the sequence of dis-
tinctive states and actions to an alternating sequence of place
p; and displacements 4 ; as follows:

Po /Il P1 /IZ P2 Pm—1 /Im Pm-

As described in Section 7 and illustrated in Figure 14, in
order to define the 4;, each place neighborhood must have
its own frame of reference and we must select a set of dis-
tinguished time-points 0 < 7y < #; < --- < ty = N such that

m; at t+j

Xi+l,0

place(t;, ;)

place(t;)

Fig. 14. Defining local frames of reference. The agent cre-
ates the local scrolling map 71; when traveling between places.
The agent’s poses at the distinguished time-points #; and #;y;
are L; = [xi,O]place(t,-) and Ly = [xi-I-l,O]place(liH)- The
displacement between the two place frames of reference is
Aiv1 = Li @ [xiy1,0lm; ® (©Lit1).

adjacent time-points belong to different place neighborhoods,
and the pose x;, at each time-point # can be unambiguously
localized in its place neighborhood. To fit this into the SSH
causal framework, we select distinguished time-points at the
termination of each travel action: in the basic SSH, this is af-
ter hill-climbing terminates, and in the HSSH, this is after a
place is detected. In the HSSH, the dividing poses are near
the incoming gateways in place neighborhoods. The net effect
of the turn and travel actions between these dividing points is
used to estimate the displacements 1; between the frames of
reference of adjacent place neighborhoods connected by path
segments.

7. HSSH Global Metrical Level

The topological map identifies a discrete set of places, each
with its own local metrical map within its own frame of refer-
ence. The topological map also encodes decisions about how
loops are closed and which aliased local neighborhoods rep-
resent the same places. The global metrical map is built on
the structural skeleton provided by the topological map (Mo-
dayil et al. 2004). The steps in building the global metrical map
are: (1) describe the displacements A = {4;}, each describing
the change in pose from one place neighborhood to the next
in the frame of reference of the first; (2) describe the layout
x = {x p}, specifying the poses of places in a global frame of
reference; (3) describe the trajectory x = {x;} of robot poses
within the global frame; and (4) create the global map m* from
sensor readings given the trajectory.

7.1. Terminology
The global topology 7, used below, consists of the set MF =

{{p,mp, Sp, w,) : p € P} of places with their local informa-
tion, the set of distinguished time-points 0 < fp < f; < --- <
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t, < N that divide the fine-grained sequence of exploration
experience into segments corresponding to travel between ad-
jacent place neighborhoods, and the relation place(t;) = p;
between them. It is convenient to relabel the variables x, z,
and u, defining x; ; = x;,4;. At each distinguished time-point
t;, where place(t;) = p; € P and place(ti11) # place(t;),
the agent is localized in the local metrical map m, .

Much of our metrical inference consists of defining an ap-
propriate set of reference frames, and estimating the values of
local and non-local metrical quantities. Many of these concepts
can be simply understood by examining Figure 14.

[x], : The coordinates of the pose x in the frame of refer-
ence of place p.

O, : The pose x such that [x], = (0, 0, 0).

L; = [x;1piace¢;y © The coordinates of the pose x;, in the
reference frame of place(t;).

m; : The scrolling map that models the agent’s surround-
ings between distinctive time-points #; and #; ;. The
map’s origin is defined as the agent’s pose at time ¢;.
That is, O, = x4,

Ai = [Opiace)lplace;_y) ©  The location of O pjaces;) in the
reference frame of place(t;_), estimated using the ex-
perience from #;_; to ;.

Xp = [Opln~ : The pose of O, in the global reference
frame of m*.
m* : The global metrical map.

7.2. The Theory of the Global Metrical Map

To build a global metrical map m*, we want to find the
maximum-likelihood path the robot traveled, using the topo-
logical skeleton in addition to odometry. As discussed in Sec-
tion 4.1, the joint probability of the pose history x and the
global map m* can be decomposed as

P(-x’m*lz’u) = P(m*l-x: Zau) : P(le,l/l)

by the chain rule for probabilities. This decomposition is valu-
able since P (m*|x, z, u) (map-building given accurate local-
ization) can be computed analytically and incrementally for
popular map types, so we can focus our attention on P (x|z, u)
(pose estimation).

To include the effect of possible global topologies 7 on pose
estimation, we marginalize over the space of topologies. If we
assume that the correct global topology 7 has been identified,
only one topological hypothesis 7 = 7 has non-zero probabil-

1ty:
P(xlz,u) =Y P(xlz,u,7) - P(t]z, u)

= P(x|z,u, 7).

On the other hand, suppose there are multiple topologies
with significantly non-zero values of P(r|z,u). While the
weighted sum provides a mathematically correct characteriza-
tion of the probability distribution P (x|z, u), it can easily lead
to a nonsensical metrical map due to the dramatic qualitative
impact of topological structure on the metrical map. Thus the
summation should be regarded as describing a disjunction over
topological maps, with P(z|z, u) being the likelihood of each
map. This is exactly the tree of possible topological maps we
have already constructed. Therefore, even in the case where
there are multiple plausible topological maps, we will con-
struct global metrical maps for each one individually.

Given a particular topology 7, we can marginalize over the
global poses of all topological places y = y; and their esti-
mated relative displacements A:

P(xlz,u,%)=//P(x|){,,1jzju’ 7) -
P(X|/17za u, %) ° P(/”Z, u, %) d/l dX

Because x is conditionally independent of A given y, and y is
conditionally independent of z, u given A, we can simplify this
equation:

P(xlz,u,f)=/P(XIX,z,u,f)‘

/P(XM, T)- P(Alz,u,7)dAdy.

We divide this equation into simpler components, defining the
following functions representing probability distributions over
their arguments:'”

F() = P(Alz,u, 1),

G(x) = / P(x1i.7) F() i,

Hx) = /P(xl)(,z,u, 7)G(x)dy.

Thus, we use the topological map 7 to factor the localiza-
tion term P(x|z,u) = H(x) into three separate probability
distributions: place-to-place displacements F (1) derived from
local metrical maps; the metrical layout G () of places in the
global topological map; and the global metrical layout H (x) of
the robot’s pose trajectory. Finally, we can combine the pose
trajectory with P(m*|x, z, u) to define the joint distribution
P(x,m*|z, u).

17. We assume that there is no opportunity for confusion between these prob-
ability functions F, G, and H, and the dynamical system functions F, G, and
H; used in Section 3.1.
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Fig. 15. Global map-building process. (a) The sequence of local place maps m , experienced. (b) The unique topological map
consistent with topological and planarity constraints. (¢) We determine A; for loop closures by finding the offset between the
current pose and the place origin (defined on the initial place visit). (d) The layout y derived from the topological map and the
place-to-place displacements 1. (e) The pose trajectory x(¢) anchored at points where the robot is localized in place neighbor-
hoods in the layout y. (f) Given the localized pose trajectory x(¢) in the global frame of reference, the global metrical map m* is

created accurately and efficiently. Compare with Figure 1.

7.3. Global Mapping Example

Here we detail each step of creating the global map and dis-
cuss our current implementation, which runs offline. Figure 15
demonstrates the stages of creating an accurate global metrical
map of a large, complex environment using these methods.

7.3.1. Estimating F (1)

Given the topology 7, we can compute F(A). Each 1; corre-
sponds to a single experience of a path segment. Since closing
large loops is not a problem when considering a single path
segment, traditional SLAM methods may be employed to esti-
mate F (1) by decoupling it into a set of independent probabil-
ities:

Di = Zi,0, "'7Zi,niaui,15 ey

Li—l: Li)>

ui+1,0’

Fi(4i) = P(4i|Dji-1,

F(G) =[] R,
i=1

See Figure 14 to understand L. Our current implementation is
an incremental maximume-likelihood method (Fox et al. 1999),
modeling each F;(4;) as a Gaussian.

Using the notation of the compounding operator (Smith et
al. 1990), we compute the distribution of A; by composing
three uncertain vectors: the vector L;_; from Opiace;_,) 10
x;_1,0; the vector [x;0ls,_, from x;_; o to x;0; and finally the
vector —L; from x; o to 0,,1,166(,1.):18

Fi(4)) = P(4i = (Li—1 @ [xi0lm,_, @ (BLy))).

The essential connection is that the pose x; o at the end of a
path segment is described in the frame of reference of place
pi—1 by the expression L;_; @ [x;0l#,_,, and simultaneously
in the frame of reference of place p; by L;.

The problem of estimating [x;0ls_, is relatively simple
along individual path segments, since loops cannot be in-
volved. The more difficult problem arises from determining
O©L; after a loop closure. Here we need to align the map
mp, with a previously stored map m p, in order to determine

18. Given two poses a and b, we write [b], for the coordinates of b in the
frame where a lies at the origin and faces along the positive x-axis (Smith et
al. 1990). Then, [c], = [b], ® [clp. The inverse operator is [b], = Slalp.
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[0y, 15> which allows us to solve ©L;. Matching maps can
be expensive and can lead to false positives due to local min-
ima (e.g., two LPMs of a + intersection can be matched four
ways). To eliminate this problem, we first align the LPMs
based on the locations of corresponding gateways, consistent
with my, Sy, w,, and m;, S;, y;, before refining the alignment
using the obstacles and free space of the LPMs. (Figure 15(c)
omits this gateway alignment step in order to better illustrate
the process of LPM alignment.)

7.3.2. Estimating G(x)

The layout y = { ,} represents the poses of the places in the
topological map, with respect to the frame of reference of the
global metrical map m*. G () is a probability density function
over possible layouts y. Among other things, it reflects the
distortion in the place layout due to a loop-closing hypothesis,
compared with the observed displacements A.

Given the topological map, which specifies the data associ-
ation between observations and places, we can evaluate G(y)
for an arbitrary distribution of F(4). For a particular value of
x, P(x|4,7) will only be non-zero for a single value of 4,
namely when each 4; = (S piacet;_)) D@ X pracer;)- Hence,
P(x|A, 7) is a Dirac delta function, which gives us a simple
expression for G(y):

G(y) = / P(x14.7) F(2) di,

= H F; ((GX plaL-e(ti_l)) @ Xplace(t,-))'

i=l

When F(1) is represented as a Gaussian, an Extended
Kalman Filter (EKF) is a simple way to approximate G (y).
The idea is to consider place p to be a landmark with pose
X p- These landmarks are observed one at a time, linked by ac-
tions 4;. This is essentially the classic approach of Smith et
al. (1990). Given Gaussian uncertainty along each action u;
connecting the n robot poses, along with constraints that give
Gaussian uncertainty between poses taken from multiple vis-
its to the same place (to associate poses after loop closures),
we can solve for H (x) in time O (n logn) using the sparse ma-
trix methods of Konolige (2004). However, often we may only
want G (), which can be computed in O (m logm) time for m
places, where m < n.

In our current implementation, we utilize a hill-climbing
search to quickly converge to a local maximum of G(y)
(Figure 15(d)). The Levenberg—Marquardt algorithm for non-
linear optimization (Press et al. 1992) treats the 4; as “springs”
between the poses of the places p; in y, and relaxes their
configuration to reach a local minimum-energy configuration.
Efficient estimations of this non-linear optimization also ex-
ist (Olson et al. 2006). A good initial layout y for this hill-
climbing search can be derived from the displacements 4,

which represent SLAM-corrected odometry from the scrolling
map. We use the term y to denote the computed estimate of

G(x).

7.3.3. Estimating H (x)

An extended Kalman filter can be used to estimate H (x) us-
ing G(y) and individual pose covariances from the experi-
enced trajectory. Alternatively, if accurate pose covariances are
not available, a simple method can estimate the maximum-
likelihood trajectory through the environment. We calculate
the independent trajectory H;(x) along each path segment, as
each place location is fully determined by a global layout y. In
most cases, there will be some discrepancy between the mea-
sured distance A; along the path segment and the fixed distance
between the places in y. We transform the experienced motion
along the path segment to fit the global path segment distance
using a simple affine transformation. This process is similar to
methods of distributing odometry error after closing a loop in
a global metrical map (Thrun et al. 2000a).

For each trajectory between adjacent places p; and p; 41, we
transform the relative, incremental displacements A(X, Y, 6)
from the pose estimates in the scrolling LPM r; into relative
displacements ¢; ; in the global frame of reference. This uses a
simple affine transformation 7; to anchor the beginning of the
LPM experience to the global frame of reference:

[xi,O]m* = Xplace,i @ L;,

(i il = Ti(lxij)wy)s
=[x j—1]m.

ézi,j = [-xi,j]m*

We compute a final trajectory for x from the set of in-
cremental displacements & by satisfying the constraint that
the travel experience between the places must fit the globally
defined distance between the places. This uses another affine
transformation 7; to map the final pose along the path segment
(x; n;) to the global frame of reference:

[xi+l,0]m* = Xpluce,i+l @D Li+la

(it 1,0lm — [Xiolme = T ((Xin I — [Xi0lme)s
(HOPN)
=1

=T

Lo
Z
1

7.3.4. Creating a Map m*

The trajectory above can be used as a starting trajectory for
gradient descent methods to align the pose positions with map
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estimates to converge upon a locally optimal map (Lu and Mil-
i0s 1997; Thrun et al. 2000a). A more principled approach is to
run a Rao-Blackwellized particle-filtering algorithm, using the
maximum-likelihood trajectory as the mean of a proposal dis-
tribution: P(x,m|z,u) = P(m|x, z,u) - H(x). However, we
have found that in practice the x values defined by the above
scaling method adequately approximate the mode of the pos-
terior (Modayil et al. 2004); thus the global map can be built
by projecting the recorded range measurements from poses in
the new global coordinates. The final map produced from the
topological skeleton is shown in Figure 15(f). Compare this to
Figure 1(d) to see the improved map.

8. Complexity in the HSSH

The different components of the HSSH fulfill different com-
plexity requirements. The algorithms that pertain to small-
scale space operate in real-time on the robot, and are designed
for constant run-time complexity at each time step. The algo-
rithms that pertain to large-scale space depend on the number
of places and paths in the environment, and thus require more
computation with increased topological ambiguities. Nonethe-
less, the topological complexity terms are functions of vari-
ables with far smaller values than the number of poses during
exploration, due to the coarse granularity of the topological
map.

The theoretical run-time complexity for all small-scale
space operations is bounded by a constant due to the fixed
size of the LPM. Updating the map is a function of the ob-
servation size and the resolution of the grid, but these are con-
stant with respect to the number of actions and observations
gathered during exploration. Localization with the fixed-sized
LPM takes a constant amount of time since incremental local-
ization within a fixed-size LPM requires a bounded number of
particles. Computing the local topology for an LPM (generat-
ing a thinned skeleton, pruning the skeleton, and finding gate-
ways) is linear in the number of grid cells, so for a fixed-size
LPM this algorithm also has a constant run-time complexity.

In practice, the robot is able to update the LPM, use the
LPM for local motion planning, and compute the local topol-
ogy from the LPM in real-time for a grid size of 300x 300 with
10 cm cells. Although the LPM must have enough resolution
to support control, localization, and topological identification,
it must also be small enough to allow these algorithms to run
in real-time. Highly detailed models of the small-scale space
for visualization or other purposes can be generated along with
the LPM, but they are not required for the mapping process.

Topological maps for metrically large spaces can be com-
puted efficiently in practice since the complexity grows with
the size of the topological exploration instead of the distance
traveled; however, in general, the complexity of learning the
topological map can be exponential. Let n be the number of

poses in the exploration trajectory; let m (m < n) be the num-
ber of topological places; let k (k < m) be the maximum num-
ber of places matching an observed local topology; and let [
be the maximum number of directed local-paths in the local
topologies (often [ < 4). For example, for the environment in
Figure 13,n =~ 7,300, m =9,k =4, and [ = 4. In the HSSH,
the maximum branching factor in the tree of maps is k + 1.
Branches only occur when the robot travels between two con-
nected places for the first time, which can only happen at most
ml /2 times. This means the size of the tree of maps is O (k");
thus, computing the tree of maps is exponential in m (not in
n). In the HSSH, the exponent decreases by at least a factor of
three compared with the basic SSH version due to branching
only on travels, not on turns, and matching local topologies of
places."

Savelli and Kuipers (2004) show that the planarity con-
straint gives an additional improvement in the branching factor
k by rejecting many loop-closing hypotheses. They also point
out that, for each map m; in the tree to be expanded, the reduc-
tion of the branching factor k; due to the planarity constraint
is proportional to the number of closed loops already present
in m;. In other words, “the more loops [that] have been closed,
the more topologically compact the map must be, and therefore
the fewer ways there are to close new loops while preserving
planarity,” which reduces the branching factor further.

Once the topological map is known, the computation of a
global metrical map will be linear in the number of poses n in
the exploration trace. The work in generating the LPMs has a
constant run-time, so is linear in n for the complete trace. Com-
puting the distribution of the relative place displacements F is
linear in n. Computing the layout of the places G uses an iter-
ative non-linear optimizer whose computation is O (m logm),
which, for m < n, is bounded by O (n). Computing the pose
layout H, and inserting the scans along the poses in the final
map is again linear in n.

To summarize, the computation of the LPM and the local
topology is done in constant time per pose. Additionally, for a
specific global topological map, exploration and the construc-
tion of the global metrical map is linear in the length of the ex-
ploration. When constructing the global topological map, the
worst-case number of loop-closing hypotheses is the hyper-
exponential Bell’s number (Ranganathan and Dellaert 2005),
but this is a function of the number of topological places, not
the number of poses. In practice, this number can be made
much smaller by exploration strategies that close smaller loops
earlier. A detailed examination of how exploration strategy af-
fects the number of topological hypotheses is proposed for fu-
ture work (Section 10.2).

19. There are at most m/ /2 unique travel actions. There are at most / turns at
each of the m places. Thus, in the worst-case environment, we have m! turns
and ml /2 travels, resulting in 3ml/2 actions in the basic SSH.
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9. Summary

We have presented a hybrid metrical/topological framework
that processes information at both small-scale and large-scale
abstractions. Our Hybrid Spatial Semantic Hierarchy is in-
spired by human cognitive maps; thus, it represents the envi-
ronment using human-like concepts, such as places and paths,
which support hierarchical navigation, human-robot interac-
tion, and logical reasoning. Specifically, we have focused on
the problem of map-building — discussing how the HSSH
builds metrical representations for local small-scale spaces,
finds a topological map representing the qualitative structure
of large-scale space, and constructs a metrical representation
for large-scale space in a single global frame of reference by
building on the skeleton provided by the topological map.

Unlike many robotic implementations that attempt to build
a monolithic, Cartesian global metrical map, we propose an al-
ternative approach that handles closing large loops by hypoth-
esizing symbolic place matches. This ensures that all possible
loop closures are considered, not just ones where the robot,
with accumulated odometry error, happens to be near some
older portion of the map. The minimal topological map that
results from large-scale exploration is sufficient for navigation
and necessary for efficient planning, especially to rule out al-
ternative topological structures during exploration.

The thrust of this paper has been to formally describe how
concepts of large-scale space can be grounded in the robot’s
low-level observations. This problem has hindered topologi-
cal map-building research, as it is an example of the hard Al
problem of symbol grounding (Harnad 1990). Our innovation
has been to utilize metrical approaches to model the immedi-
ate, local surround of the robot in order to ground gateways in
small-scale space. Gateways provide the robot with local mo-
tion targets that facilitate control along paths. They also pro-
vide a local topology description of the local surround, useful
for detecting and describing places and the paths that emanate
from places.

We have demonstrated an implementation of the HSSH
within an environment with fairly large, nested loop clo-
sures. The results support our claims of efficient, online map-
building in the presence of multiple loop closures. We have
demonstrated that a global layout of places is easily achieved
given a topological map hypothesis, and a full global metri-
cal map can be accurately achieved by filling in exploration
experience along the path segments that connect places in the
environment.

10. Future Work

There are obvious avenues of future work at all levels of
the HSSH: creating semantically labeled LPMs using vision,
demonstrating a HSSH interface that improves human-robot
navigation tasks, and exploring very large environments to

demonstrate claims about scalability. Below we discuss several
specific issues that relate directly to the issues in this paper.

10.1. Gateways for Coastal Navigation

In Section 5.1.1, we describe an initial “constriction-based”
algorithm for gateway detection that works in well-structured
LPMs with boundaries on both sides of the underlying paths.
We are currently utilizing a new “anchor-based” gateway
algorithm that is essentially functionally equivalent to our
constriction-based algorithm in corridor environments; how-
ever, it also handles coastal navigation scenarios, where con-
strictions do not exist, as well as improving certain bound-
ary cases that can occur at places with no Voronoi junc-
tions. We refer the reader to the dissertation work by Beeson
(2008, Chapter 6) for a detailed discussion of the “anchor-
based” gateway algorithm, including an empirical evaluation
that shows the robustness of this new gateway algorithm under
noisy conditions and using low-resolution LPMs.

Given gateways that define paths along the perimeter of
walls, our robot can explore and map the areas around the out-
side of buildings or rooms that are larger than the LPM size.
When using the new gateway algorithm, upon entering a large
room, there will be paths to follow, at least around the edge
of the room (see Figure 16(a)). Even without a global metrical
map, the robot could find places at the corners of the room, and
paths between them (Figures 16(b)—(d)). By using the LPM
and the symbolic local topology of the detected places, the
robot has enough evidence from local information along the
paths to know that it was circumnavigating a large space.

For many navigation tasks such a model may be sufficient;
however, by, using the relative displacements A to calculate a
global layout }, a metrical map of the obstacles near the walls
of large rooms can be created. Starting with a global metri-
cal map near the walls of a large room, it should be possible
to define control laws that set off into unknown space, using
SLAM and/or dead reckoning to stay localized in the global
frame of reference. Such a strategy could estimate where the
robot should intersect the far side of the room, and compare
that with its observation when it actually arrived, in order to
create a new kind of “path” across the open space. This strat-
egy should make it possible to find “islands” of interest in
the middle of unexplored space in the middle of large open
rooms. The perimeter of these islands may also be explored
using coastal navigation.

10.2. Efficient Expansion of the Tree of Maps

Currently, the tree of maps contains every topological map
consistent with exploration experience and the topological ax-
ioms. This guarantees soundness, which is useful in the case
where observations refute the current best map and the next
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(c)

(d)

Fig. 16. Coastal navigation gateways. In regions of the environment where corridors cease to exist, the traditional Voronoi graph
will lead the robot away from all nearby obstacles. Instead we utilize the extended Voronoi graph (EVG) (Beeson et al. 2005),
which is equivalent to the Voronoi graph in corridors but switches to perimeter following at a maximum distance threshold. (a)
The “constriction-based” gateway algorithm described in Section 5.1.1 is not applicable in coastal navigation scenarios, because
branches of the EVG may have no nearby constrictions. Our new “anchor-based” gateway algorithm (Beeson 2008), handles
these situations in addition to any corridor situations a robot will encounter. (b)—(d) The anchor-based algorithm works when
the path is defined by a single wall, and in the convex and concave corners encountered in large rooms or when navigating the

exterior of buildings.

best map must be identified. However, there remain two re-
lated problems that need to be addressed in future work. First
is the need for a reliable method to identify the best candi-
date among a set of possible topological maps, given odometry
and perceptual information (Ranganathan et al. 2006). Second
is the need to reduce the tree of maps from a “breadth-first”
search to a more focused search that tracks a small number of
maps at a time.

In Section 6.3, we identified the “best” map as the sim-
plest one based on a prioritized circumscription policy over the
models generated by the non-monotonic theory of topological
maps (Remolina and Kuipers 2004). This is sufficient for the
environment in Figure 15, but Savelli and Kuipers (2004) de-
scribe larger environments where extreme symmetry and alias-
ing cannot so easily be resolved by purely qualitative methods,
as the tree of maps grows too large to maintain in real-time.?

20. Ranganathan and Dellaert (2005) claim that, because (in the worst case)
the number of aliased places grows with the amount of exploration experience,
the number of possible topological maps is given by Bell’s number, which
grows hyper-exponentially with the number of perceptually aliased places.

These are not entirely unrealistic examples, since large grid-
structured neighborhoods in real cities provide opportunities
for vast topological ambiguity (Lynch 1960).

In the example of Section 6.3, the exploration sequence was
provided to the robot. One obvious improvement that will limit
the number of map hypotheses in future work is to perform ac-
tive exploration that occasionally exploits knowledge of asym-
metries in the environment to eliminate entire branches from
the tree of maps. Such strategies are similar to the localiza-
tion procedures advocated by proponents of DFA-style maps
(Kuipers and Byun 1991; Dean et al. 1995; Rekleitis et al.
1999). Dudek et al. (1991) propose an exploration algorithm
that finds the correct topological structure in polynomial num-
ber of travel actions, but this requires the robot to drop markers
and backtrack to determine which loop-closing hypothesis was
correct.

Along with utilizing intelligent exploration strategies, we
would like reduce the tree of maps by drawing on perceptual
information currently unused in the topological map-building
process. We should be able to use observational data, such as
the likelihood of the global metrical layout P (|4, 7), proba-
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bilistic local topology matching, or the likelihood of visual ob-
servations at places (Cummins and Newman 2008), to define
weights on the tree of maps. These weights should allow us to
have a quantitative ordering on the map hypotheses, and should
allow best-first expansion of the tree that focuses on a limited
number of highly ranked candidates at a time. This should al-
low the robot to map larger environments including those with
large amounts of symmetry and perceptual aliasing.
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