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Abstract— Autonomous place detection has long been a
major hurdle to topological map-building techniques. The-
oretical work on topological mapping has assumed that
places can be reliably detected by a robot, resulting in
deterministic actions. Whether or not deterministic place
detection is always achievable is controversial; however, even
topological mapping algorithms that assume non-determinism
benefit from highly reliable place detection. Unfortunately,
topological map-building implementations often have hand-
coded place detection algorithms that are brittle and domain
dependent.

This paper presents an algorithm for reliable autonomous
place detection that is sensor and domain independent. A
preliminary implementation of this algorithm for an indoor
robot has demonstrated reliable place detection in real-world
environments, with no a priori environmental knowledge. The
implementation uses a local, scrolling 2D occupancy grid and
a real-time calculated Voronoi graph to find the skeleton of the
free space in the local surround. In order to utilize the place
detection algorithm in non-corridor environments, we also
introduce the extended Voronoi graph (EVG), which seamlessly
transitions from a skeleton of a midline in corridors to a
skeleton that follows walls in rooms larger than the local
scrolling map.

Index Terms— Place detection, topological navigation,
Voronoi graph, corridor following, coastal navigation.

I. INTRODUCTION

Places are important in many different ways. For spatial
reasoning, people use places to define both bounded and
unbounded regions of space: “in Texas” or “near the
statue.” Places are further used for metaphorical high-level
reasoning such as mathematical ranking and social ranking:
“first place” or “overstepping one’s place.” Places are even
used to refer to normal roles or functions: “the place of the
media” or “something is out of place.”

The broad use of places is a specific example of a
crucial point in the study of intelligent agents—spatial
knowledge is a foundation for high-level common-sense
knowledge [1]. We believe that by studying the problem
of grounding continuous sensory experience to low-level,
symbolic spatial constructs, we are developing a foundation
for the high-level common-sense knowledge necessary for
an intelligent agent to act in environments with people and
other animals.
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This paper investigates the idea of defining places. In
previous work, we have described (a) how places, along
with paths and regions, can form topological maps [2],
[3], and (b) how an agent can learn highly-accurate place
recognition (global localization) from experience [4]. Here,
we consider the more fundamental problem of place detec-
tion: how a finite set of discrete places is abstracted from
experience in a continuous environment. Spatial knowledge
is undoubtedly hierarchical, but we leave the issue of hier-
archical spatial abstraction to future work, focusing instead
on the detection of the smallest, atomic places necessary
for low-level abstraction of experience to symbols.

This paper is organized as follows. In Section II, we out-
line the two criteria that we use to define basic topological
places. Section III summarizes related work in autonomous
place detection and demonstrates the failures of these
Voronoi-based methods with respect to the criteria for
places. Section IV introduces an extension of the Voronoi
graph to overcome some of these problems. In Section V,
we introduce a way to prune the Voronoi graph using small-
scale-space models of the local, immediate surround. We
then define an algorithm for reliably detecting places using
this new Voronoi graph in Section VI. We conclude with
a summary of this work.

II. DEFINING TOPOLOGICAL PLACES

Topological navigation is a behavior that is used by a
variety of different animal species, including humans [5]–
[7]. Topological representations discretize the continuous
world into a finite set of places connected by paths. This
helps facilitate large-scale spatial reasoning, mainly due to
the compactness of the representation. The symbolic nature
of topological representations allows higher-level reasoning
(such as containment, order, connectivity, regions) which
can enhance large-scale spatial cognition. Additionally, the
abstraction of continuous space into symbols facilitates
communication between agents.

All of the above tasks depend on the initial low-level
abstraction of atomic places from continuous sensory ex-
perience. Here we attempt to define these places using
criteria necessary for topological map-building behaviors.
We define places at locations in the environment that satisfy
the following criteria.

1) Places occur at qualitative changes along paths.



The majority of the time, this criterion defines places
at intersections. The importance of path intersections in
topological representations cannot be overstated. The recent
work of Guilford et al. [8], demonstrates that pigeons,
long considered to use Earth’s magnetic field to fly long
distances, follow man-made highway networks in well-
known environments, using familiar highway intersections
as markers for specific turn actions. It has long been known
that humans use intersections as a basis for building spatial
representations in unknown environments [9]—preferring
first to build structural models of novel environments prior
to detailed visual models [10].

Occasionally people may define places that are not at
intersections. Dead-ends are one example of important
places that are not necessarily at an intersection of two or
more paths. Less useful places (from a topological mapping
perspective) can be defined by using salient landmarks
along long and qualitatively uninteresting paths. Such
landmarks are useful for occasional relocalization along
paths and thus define places based on regions of visibility.
Common examples are unusual buildings along highways
such as water towers. From the perspective of topological
map-building, places that are not at intersections or dead-
ends do not yield any additional structural information. In
fact, as people do start to remember landmarks, they are
biased to first learn landmarks at critical path changes along
routes [11], [12].

2) Places must be reliably detectable.

Although this criterion seems simple, it is extremely
important. Qualitatively interesting locations should be
considered as possible places when they exist, but their
persistence needs to be taken into account.

Any place detection algorithm needs to provide a stable
set of places. Intersections are not only common but
extremely stable (they rarely disappear). Thus, this criterion
is mostly needed for places that are not at intersections. For
example, a bright pink car parked on the side of a highway,
while salient, does not define a reliable place. The chances
that the car will remain at the location for an extended
period of time are very low.

Places that are not at intersections depend on higher-level
knowledge about stability, saliency, and informativeness
that may not be available for most robotic implementations.
For this reason, the algorithms and implementation for
mobile robots detailed in the following sections focus ex-
clusively on places at intersections and dead-ends, although
future robotic implementations may be able to bootstrap
place detection at other interesting locations.

Theoretically, if place detection is deterministic,
topological map-building can be viewed as finding the
minimal deterministic finite automaton that explains the
experience of places [2], [13], [14]. When place detection
is not deterministic, topological map-building can be
viewed as a partially observable Markov decision process,
which needs a large amount of experience to accurately
model even simple environments [15]. A reliably detected
set of well-separated but connected places leads to efficient

Fig. 1. The generalized Voronoi graph of a global metrical map.
Using an occupancy grid [19], [20], the Voronoi graph can be drawn by
using any non-free cells as obstacles. Junction points include intersections
in corridor environments.

map-building, while unreliable, non-deterministic place
detection reduces map-building efficiency. Thus, any
autonomous place detection algorithm should limit the
amount of false positive and false negative place detections.

Below, we examine a previously published autonomous
place detection algorithm. To our knowledge, this is the
only such algorithm that is not hand-coded to work for a
specific environmental domain. We will discuss both its
successes and the conditions where it fails to meet the
criteria above. Section VI outlines our own place detection
implementation, which is similar in spirit but more robust
to environmental variation and sensor noise.

III. PLACES AT VORONOI JUNCTIONS

Choset has been a main proponent for the use of
Voronoi graphs in topological map-building and navigation
[16], [17]. Choset and Nagatani [18] define a generalized
Voronoi graph (GVG) as a one-dimensional set of points
equidistant to the n closest obstacles in n dimensions,
where a preset threshold determines whether observations
belong to the same “obstacle.” When using planar range-
finder devices (like common laser and sonar devices) in
walled environments, this results in a set of points equidis-
tant from two or more obstacles (Fig. 1).

Choset and Nagatani use the GVG both as a way to
discretize the continuous environment into a finite set
of places and as a way to define paths. Whenever the
robot arrives at a junction in the Voronoi graph, it is
at a topological place. Junctions are points on the GVG
equidistant from n + 1 or more closest obstacles: where
the graph forks into multiple branches. The branches that
emanate from a junction define the paths that the robot
can travel along to leave the place. For robotic navigation,
we only consider junctions that have more than or less
than two emanating branches: pruned graphs may leave
junctions with only two emanating branches.

With respect to the first criterion from Section II, junc-
tion points on the GVG seem to make reasonable place
definitions. As shown in Fig. 2, if a robot has a complete
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Fig. 2. The Voronoi graph from the robot’s point-of-view. Given
that robots have a limited sensory horizon, the Voronoi graph must be
constantly computed in a local, scrolling model centered on the robot.
For this scenario, we do not count the edges of the horizon as obstacles,
so the branches of the graph can actually touch the edge of the image.

(a) (b)

Fig. 3. Entering a large room. Voronoi graphs are not useful in non-
corridor environments due to the robot’s limited sensory horizon. (a)
Here, the robot should begin to follow a wall, but the path continues into
unknown territory without even marking a place at this crucial decision
point. (b) Here the extended Voronoi graph defines a transition from
corridor-following to wall-following, which is what we want.

local model of its immediate surround, it can compute
the Voronoi graph (i.e. the skeleton of free space in an
occupancy grid). In corridor environments, junctions can
be found at most corners, intersections, and dead-ends.

Although the Voronoi graph is well defined in corridor
environments, when the robot transitions into non-corridor
environments, the Voronoi graph no longer becomes a
useful skeleton. This is illustrated in Fig. 3(a). Here, the
robot moves into a room that is larger than its sensory
horizon. At this location, there exists a large qualitative
change in the environment. By the first criterion, a place
should be defined at this location; however, no junction
point exists.

The appropriate control at this point is coastal naviga-
tion, keeping at least one obstacle in sight at all times [21],
[22]. Instead of defining paths parallel to the walls, the
Voronoi graph defines a path that will quickly bring the
robot to a location where no visible obstacles exist. Once
this occurs, the Voronoi graph can no longer be computed
from local sensor data, and the robot is simply lost. In
Section IV, we introduce an extension to the traditional
Voronoi graph that seamlessly transitions from a “midline”
skeleton to a “wall-following” skeleton (Fig. 3(b)).

Additionally, the GVG may not create junctions at
certain intersections. For example, occasionally two paths
intersect in a smooth way, without changing the width

Fig. 4. A common intersection. Voronoi graphs do not branch in some
commonly found intersections.

(a) (b)

(c) (d)
Fig. 5. Eliminating spurious junctions. Voronoi graphs are sensitive
to noise. This may cause junctions, thus topological places, where they
are not wanted. (a) Here we see a common example of an alcove along
a hallway. (b) By reducing the Voronoi graph to the RGVG, “spurious”
junctions can be eliminated. (c,d) The RGVG proposed by Choset and
Nagatani [18] performs fixed depth pruning, leaving spurious junctions in
certain environments.

of the corridor. The Voronoi graph sees such locations as
being on a single path with no nearby places (Fig. 4).

The second criterion for places is that they should
be reliably detectable. Choset and Nagatani [18] admit
that the generalized Voronoi graph can find many spu-
rious topological places due to range-sensing noise (Fig.
5(a)). They propose using a reduced generalized Voronoi
graph (RGVG) that contains fewer “spurs” in the graph.
The RGVG eliminates branches that terminate with only
two nearest obstacles (Fig. 5(b)). However, this pruning
algorithm leaves junctions at non-intersections whenever
multiple levels of spurious branches exist (Fig. 5(c,d)). In
Section V, we discuss a way to prune the Voronoi graph
in local small-scale models that eliminates all spurious
junctions.

Unfortunately, the RGVG also eliminates topological
places at ’L’ intersections, which are invaluable for topolog-
ical inference (Fig. 6). In Section VI, we discuss a way to



Fig. 6. The RGVG at an un-noisy ’L’ intersection. In this example
of a perfect local model, there is no junction after the spurs are pruned
from the graph.

detect places at ’L’ intersections, even at “smooth” intersec-
tions (like Fig. 4). The same algorithm also allows complex
intersections (those with multiple un-pruned junctions) to
be considered as a single place.

IV. THE EXTENDED VORONOI GRAPH (EVG)

The Voronoi graph is a good way to find the “skeleton”
of bounded paths such as corridors or streets for use in
robot navigation. However, there are scenarios where the
Voronoi graph does not work well on a robot with a limited
sensory horizon. Fig. 3(a) illustrates how the Voronoi graph
acts when the robot moves from a corridor to a room
that extends beyond the sensory horizon. In this scenario,
the natural and meaningful spatial configuration includes
a place at the opening and paths that inform the robot
how it can leave the place and continue trajectory-following
controls: wall-following or corridor-following.

To obtain a graph that exhibits this behavior, we intro-
duce an extension to the generalized Voronoi graph. The
idea is simple, yet powerful, in that the Voronoi graph
can be extended to be useful for a robot in non-enclosed
environments.

We can define the extended Voronoi graph (EVG) as the
subset of all points in the GVG closer than a threshold
M units from any obstacle, added to the set of all points
exactly M units away from the closest obstacle. More
formally, given that the GVG is the set of all points p
equidistant from two or more distinct obstacles O, we
define the set of points P in the EVG as follows:
P = {p : ∃o, o′ ∈ O, where o 6= o′ ∧

dist(p, o) = dist(p, o′) ∧ dist(p, o) ≤M ∧
∀o′′ ∈ O dist(p, o′′) ≥ dist(p, o)}
∪
{q : ∃o ∈ O, where dist(q, o) = M ∧
∀o′ ∈ O dist(q, o′) ≥M},

where M is a preset maximum threshold.
Although this definition is simple, the algorithm for

computing the connected graph in a discretized occupancy
grid is rather complex due to many special case scenarios.
A full description and analysis of this algorithm is planned
as future work. Fig. 3(b) shows the EVG at a location
where the robot enters a large room. The EVG of the same
pre-computed global metrical map from Fig. 1 is shown in
Fig. 7.

Fig. 7. The extended Voronoi graph of a global metrical map. Using
an occupancy grid, the extended Voronoi graph can be drawn by using
any non-free cells as obstacles. The graph now parallels walls in large
rooms. Junction points occur at intersections in corridor environments and
at corners in large rooms.

V. PRUNING WITH THE SPANNING TREE

As noted earlier, Voronoi graphs are susceptible to noise,
creating spurious junctions and branches. The RGVG [18]
was introduced as a way to eliminate some of these “weak”
junction points; however, the algorithm proposed cannot
handle all unwanted junctions (Fig. 5(c,d)). The problem
with pruning the Voronoi graph is that it is often difficult
to determine what branches are part of the “core” skeleton
and which branches are non-essential.

In order to determine the core skeleton of a Voronoi
graph, we assume that the robot is computing a Voronoi
graph in a small, local model of its immediate surround.
We define a small-scale-space model of the local surround
as a local perceptual map (LPM). In this work, the LPM is
simply an occupancy grid centered at the robot’s location
in the world. As information scrolls off the map, it is no
longer considered for purposes of place detection (or place
recognition or topological map-building [3]).

Given the small, manageable size of the LPM, the robot
should never find itself completely enclosed by occupied
cells in large-scale environments. Exceptions could be
elevators or small rooms where doors get closed. In these
instances, our LPM should detect the dynamic doors [23],
allowing the algorithm to ignore these as obstacles for the
purposes of building the Voronoi graph.

Thus, there is always some region of free cells that touch
the edge of the occupancy grid or some cells of “unknown
occupancy” (grey cells in the figures) that may provide a
way away from the current location (see the occupancy
grids in Figs. 5 and 8). We define any terminal point of
the Voronoi graph that reaches the edge of the LPM or
reaches unexplored cells to be an exit.

Given exits, we can define the branches of the Voronoi
graph that contain exits to be “core” branches. Instead of
actively pruning away branches, a better approach is to
include only the union of all shortest paths that connect
each exit to all other exits in the LPM. We define this
graph as the reduced extended Voronoi graph (REVG).
Fig. 8 shows how the minimal spanning tree eliminates
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Fig. 8. The REVG from the robot’s point-of-view. Given that robots
have a limited sensory horizon, the Voronoi graph must be constantly
computed in a local, scrolling occupancy grid centered on the robot. By
eliminating branches that do not connect the edges of the grid, all spurious
junctions and branches are eliminated, resulting in the reduced extended
Voronoi graph.

all spurious junctions and branches in these small-scale
models.

In the scenario where only a single exit exists (i.e. dead-
ends), the REVG computes the spanning tree that connects
the exit to the point on the EVG closest to the robot.

VI. ROBUSTLY DETECTING PLACES

Above, we demonstrated how we can extend Voronoi
graphs to be useful for both corridor and non-corridor
navigation. We also showed how to eliminate unimportant
information from the graph by focusing on the core sub-
graph that connects the branches that lead away from the
current small-scale frame of reference.

Unfortunately, this does not mean that the robot can
always detect places and paths using junction points and
incident branches. There are still places and environmental
setups where junction points do not exist (see Figs. 4
and 6). Additionally, there are some locations where noise
caused by objects or pedestrians can create junction points
along otherwise uninteresting paths: Voronoi graphs are
not stable and can change due to sensor noise or dy-
namic worlds. Finally, there are some intersections complex
enough to create multiple, nearby junction points (Fig.
8(b)).

Below we outline a new algorithm for place detection
based on the Voronoi graph. It allows places to occur even
when junction points do not exist in the graph, and places
can encompass multiple junction points in certain scenar-
ios. The work below uses the Voronoi graph, grounded in
an LPM, to determine gateways and path fragments, which
will lead to paths and places.

A. Gateways

Chown et al. define gateways as the locations of major
changes in visibility. “In buildings, these [gateways] are
typically doorways. . . . Therefore, a gateway occurs where
there is at least a partial visual separation between two
neighboring areas and the gateway itself is a visual open-
ing to a previously obscured area. At such a place, one
has the option of entering the new area or staying in the
previous area.” [24, page 32]

In this work, we describe an algorithm for gateways that
satisfies this definition at places, but the algorithm also
works in non-place regions. For a given robot position
(always near the center of the LPM), we define a set of
gateways that cuts edges on the spanning tree, separating
the robot from the exits. Thus, a gateway is a boundary
between different regions of the environment. It divides
the environment into regions “near the robot” and “away
from the robot.”

Gateways can be grounded in an LPM by using the
Voronoi graph. Given a pruned Voronoi graph (an RGVG
or REVG), the method for finding gateways is as follows:
• l is the location of the physical robot w.r.t the LPM.
• c is the Voronoi point closest to l.
• J is the set of Voronoi junctions j.
• rp is the distance from Voronoi point p to the closest

obstacle.
• K = {j ∈ J : dist(j, l) ≤ rj} (the robot is within the

“radius” of the junction point).
• Two junctions j and j′ are neighbors if dist(j, j′) <=

max(rj , rj′).
• F is the transitive closure of neighboring junctions,

using K as the starting set of junctions. This defines
the “core” of the place neighborhood.

• If F = ∅ then F = {c}.
• Q is the set of all Voronoi points q, where ∃f ∈ F

s.t. dist(f, q) = rf ∧ ∀f ′ ∈ F dist(f ′, q) ≥ rf ′ . This
selects the set of points on the border of the “core”
of the place.

• For each q ∈ Q, walk along the branch that contains
q in the direction away from the “core” of the place
(i.e. F ). Look for a point p that corresponds to a
constriction.
In Figs. 9 and 10, a constriction was defined as a local
minimum in R = {rp : p ∈ P}. Due to noise in the
LPM, this local minimum search should account for
minute variations in R, e.g. by utilizing a smoothing
filter. (More recently, we have switched to using the
minimum absolute value over the derivatives of rp ∈
R to define constrictions.)

• At each of these constrictions m, g is defined as a
line segment of length 2 ·rm, centered on m, oriented
normal to the branch at point m.

A recursive algorithm was implemented that corresponds
to the formalism above. The algorithm runs quickly enough
to recompute gateways in real-time. This algorithm was
used to produce Figs. 9(b-d). Not only does it define
gateways at non-intersections, but gateways are also defined
to conglomerate locations in complex intersections that
may include more than one Voronoi junction point (Fig.
9(d)).

B. Path Fragments

Once gateways are found, the robot can then determine
the local path fragments: portions of large-scale topological
paths that are grounded in the LPM. Each gateway is
associated with exactly one path fragment, while each path



(a) (b)

(c) (d)
Fig. 9. Real-world gateways. The gateway algorithm uses the Voronoi
graph to find the “boundaries” of a location. (a) At simple places, the
gateways are tangents to the inscribing circle centered on the junction
point. (b,c) Even at locations with no junction points, the gateway
algorithm works. (d) At complex places, gateways may bound several
close junction points.

(a) (b)
Fig. 10. Path fragments. (a) The robot has a criterion to decide whether
two gateways belong to the same path fragment. A path passes through
the small-scale map of the local surround if its path fragment has two
gateways. (b) At dead-ends, there is only one gateway, thus only one
path fragment.

fragment is associated with either one or two gateways. If
a path fragment terminates at a place, it will have only one
gateway. If it passes through the small-scale-space map, it
will have two. Path fragments are illustrated in Fig. 10.

The robot is required to have a procedure for deter-
mining whether a path fragment passes through the local
area or terminates near the robot. In our implementation,
the criterion for path continuity is that for each of two
gateways, after arrival at one, the clear unique default travel
continuation is the other. The “clear unique default” used to
make Fig. 10 and used in previous experiments [3] requires
that some ray normal to one gateway intersects only the
other and vice versa.

C. Defining Places

Using the notions of gateways and path fragments, we
can formulate a robust criterion for defining places. As the

(a) (b)
Fig. 11. Ensuring reliable place detection. (a) Due to a limited field
of view, a robot may not have a complete model of the surrounding
environment. This can create gateways and path fragments that may not
exist in a fully explored LPM. (b) By moving to investigate unexplained
space within the LPM, the robot can “fill out” the occupancy grid,
ensuring that structurally unimportant alcoves (as seen in Fig. 5(b)) are
distinguished from actual paths.

robot moves along a path, there are exactly two gateways,
and, according to the path continuity criterion, one path
fragment (Fig. 9(c)). If either of these conditions ever
changes, the robot has entered a place.

At intersections, the number of path fragments is strictly
greater than one. This is true even for the ’L’ intersection
(Fig. 9(b)), which was ignored by the RGVG place detec-
tion method of Choset and Nagatani [18]. At dead-ends
there is only one path fragment, but only one gateway (the
one which leads away from the dead-end), thus dead-ends
are seen as places (Fig. 10(b)).

Initial experiments show that this place detection method
works very well when the LPM is fully explored. Oc-
casionally, the robot may not observe specific pieces of
the local surround (e.g. when using a 180◦ laser). This is
illustrated in Fig. 11(a). Since Voronoi branches that touch
unknown space are not pruned from the REVG, this causes
gateways to appear along these branches. In our initial
implementation, our robot simply spins around when it sees
more than one path fragment. This allows the robot, which
has only a 180◦ field of view, to better observe the local
surround, recalculate the Voronoi graph, and check whether
there actually is a place at the location (Fig. 11(b)) or if
the environment is qualitatively a simple path (Fig. 5(b)).

VII. CONCLUSION

Abstraction from the continuous world into a finite set of
easily detectable places is not only important for topologi-
cal map-building but is also a crucial step in building up the
foundations of common-sense reasoning. Previously, any
mobile robot performing autonomous topological naviga-
tion used environment/sensor specific algorithms to detect
places based on ad hoc criteria. An exception to this is the
work done by Choset and colleagues, which uses Voronoi
graphs to ground paths and places in the robot’s sensory
inputs.

We showed how to overcome problems of previous
methods using a set of simple, yet powerful mechanisms
that lead to robust, autonomous place detection with no a
priori knowledge of the environmental characteristics. The
innovation is as follows:



• Maintain a scrolling metrical model of the local sur-
round in order to build a reliable local Voronoi graph.
We call this a local perceptual map (LPM).

• Extend the Voronoi graph to have upper distance limits
so that the graph stays close to obstacles. (Lower
limits are easily added in order to keep the robot from
considering exits too small for it to pass through.)

• Find the minimal spanning tree that connects the exits
of the Voronoi graph. Exits are points that touch the
edge of the LPM or touch unexplored portions of the
LPM.

• For a given robot position (always near the center of
the LPM), define a set of gateways that cuts edges on
the spanning tree, separating the robot from the exits.

• Define path fragments given these gateways.
• Define a place to be a region of reachable space

around the robot that is bounded by gateways and
obstacles, unless there are exactly two gateways and
exactly one path-fragment. (In the latter case, it is just
a location along a path.)
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