1. The Computerized Comprehensibility System: An Aid for Comprehensible Writing of Technical Material
2. An Example of Applied Cognitive Science
3. Problem: Low Comprehensibility of Technical Text
4. Sample Early Draft of Training Material
6. Solution: A Computer-Based Aid
7. Basic Idea - an Artificial Copy Editor
8. Previous Writing Aid Systems
9. WWB: Example of prose program output
10. WWB: Example of style program output
11. CRES: Example output
12. Limitations of Previous Systems
13. Basic Concept of the Computerized Comprehensibility System (CCS)
14. Complex Reading in Isolation
15. Complex Reading in Conjunction with a Task can be Overwhelming
16. Only Simple Processes should be Needed for Reading during a Task
17. Example Comprehensibility Rules from the Psycholinguistics Research Literature
18. Why is the System Feasible?
19. Would Using the System Help?
20. Basics of How CCS Works
21. Structure of CCS
22. Example of HGSL Specification
23. Parsing Output
24. Representation of Sentence Content is Syntactically-Tagged Semantic Structure
25. Propositional Analysis Output
26. Example Production Rules for Comprehensibility
27. Criticisms Currently Supplied
28. Example of CCS Output - 1
The Computerized Comprehensibility System: An Aid for Comprehensible Writing of Technical Material

David Kieras
University of Michigan

Presented at
Human Communication Research Center
University of Edinburgh
August, 1992

Research Supported by
Office of Naval Research
and
Navy Personnel Research & Development Center

An Example of Applied Cognitive Science

Cognitive Science is overlap between
Cognitive Psychology
• Empirical results, theory
Artificial Intelligence
• Methods, techniques

Use both to help solve a practical problem
A "real" problem with no good existing solutions
A domain that is well-developed in both disciplines

Solve problem in a way that contributes to the science
Make it a test of the underlying theory
Be open to influence from the real world
Ensure that practical products are scientifically valuable
Problem: Low Comprehensibility of Technical Text

<table>
<thead>
<tr>
<th>Huge quantities of technical text produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment documentation</td>
</tr>
<tr>
<td>Training materials</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material is generally poorly written and hard to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even after considerable effort and expense</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How can comprehensibility of technical text be improved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidelines, procedures don't seem to help</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Editing for comprehensibility is very difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing is a different skill than reading</td>
</tr>
<tr>
<td>Very difficult for human editors to detect problems</td>
</tr>
<tr>
<td>• Due to automaticity of reading processes</td>
</tr>
<tr>
<td>Having domain knowledge makes problems harder to spot</td>
</tr>
<tr>
<td>Patricia Wright's work on high rate of editorial errors</td>
</tr>
</tbody>
</table>

Sample Early Draft of Training Material

INFORMATION

Common U.S. Navy practice in main boiler repair has been the removal of blocks of main generating bank tubes to determine condition of the tubes and need for more extensive sampling and/or renewal. Because of access required for removal and replacement of tubes, the block has generally been 10 tubes wide and completely through the bank. The selection of a specific block has normally been based on ships' tube renewal sheets (if available and of sufficient time length coverage), access to previously plugged tubes, visible waterside pitting as an indication of service life, fireside conditions of tubes and/or fireside deposit accumulations, refractory renewals, and in some cases suspected or visible problem areas in specific boiler designs, if known.
2-4-3. PRIMARY POWER MODE. The primary power mode is a cage mode wherein initial application of power to SINS is accomplished. The primary power mode is entered when the PRIMARY POWER (MODE SELECTOR) pushbutton of the NCCP is pressed. During the primary power mode, the platform is course leveled by the pendulous leveling resolvers and course aligned in azimuth by the DEPTH and HEADING data converter monitor drawer. The platform will drive to the indicated heading when a cage mode is selected. The platform temperature alarm circuits are activated, causing the platform temperature alarm lamp to flash until the binnacle temperature is within its operating range. The gyro bottoming circuits and alarms are deactivated. The velocity meter and gyro pump power supply is turned on. The power relays in the navigation console connect 115v 400-Hz 3-phase power to the SINS power supplies and 115v 60-Hz 3-phase power to the SINS blowers. MARDAN memory precision power is also applied in the primary power mode.
Basic Idea - an Artificial Copy Editor

Previous Writing Aid Systems

Writer's Work Bench (WWB)
- Based on clever word-classification algorithm
- Not integrated
- General, statistical feedback, rather than a mark-up

Computerized Readability Editing System (CRES)
- Developed by a Navy training materials laboratory
 - Peter Kincaid (Kincaid-Flesch readability formula)
- Integrated, Navy-specific word lists
- Produces a mark-up

Epistle
- Developed at IBM from computational linguistics work
- Oriented to criticism of grammar in business letters
- Good feedback to writer
- Not widely available - ran on large mainframe
- Newer PC version may be available
SENTENCE STRUCTURE
Passives

This text contains a much higher percentage of passive verbs (44%) than is common in good documents of this type (22%). A sentence is in the passive voice when its grammatical subject is the receiver of the action.

PASSIVE: The ball was hit by the boy.

When the doer of the action in a sentence is the subject, the sentence is in the active voice.

ACTIVE: The boy hit the ball.

The passive voice is sometimes needed.

1. to emphasize the object of the sentence,
2. to vary the rhythm of the text, or
3. to avoid naming an unimportant actor.

EXAMPLE: The appropriations were approved.

Although passive sentences are sometimes needed, psychological research has shown that they are harder to comprehend than active sentences. Because of this, you should transform as many of your passives to actives as possible. You can use the style program to find all your sentences with passive verbs in them, by typing the following command when this program is finished.

style -p filename

readability grades:
(Kincaid) 10.3 (auto) 11.0 (Coleman-Liau) 11.7 (Flesch) 11.2 (54.1)
sentence info:
no. sent 217 no. wds 3971
av sent leng 18.3 av word leng 4.94
no. questions 0 no. imperatives 2
no. nonfunc wds 2400 60.4% av leng 6.35
short sent (<13) 25% (57) long sent (>28) 10% (21)
longest sent 48 wds at sent 196; shortest sent 4 wds at sent 97
sentence types:
simple 53% (115) complex 26% (56)
compound 12% (25) compound-complex 10% (21)
word usage:
verb types as % of total verbs
tobe 37% (162) aux 11% (48) inf 21% (90)
passives as % of non-inf verbs 19% (66)
types as % of total
prep 11.6% (460) conj 4.0% (159) adv 3.5% (138)
noun 29.9% (1188) adj 18.2% (722) pron 3.2% (128)
nominalizations 2% (78)
sentence beginnings:
subject opener: noun (42) pron (14) pos (1) adj (21) art (80) tot 73%
prep 9% (20) adv 6% (12)
verb 1% (2) sub_conj 9% (19) conj 0% (1)
expletives 2% (5)
Under no circumstances should any person reach within or enter the enclosure for the purpose of servicing or adjusting the equipment without presence of another person capable of aid. Do not depend upon door switches or interlocks for protection; but always shut down motor generators or other equipment. Under no circumstances should any access gate, door, or other safety interlock switch be removed, nor should <reliance> be <placed> upon the interlock switches for removing <voltages from the equipment.>

GRADE LEVEL = 14.0
(Based on DoD Readability Standard)

<table>
<thead>
<tr>
<th>WORD NOT ON COMMON WORD LIST</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>equipment</td>
<td>1</td>
</tr>
<tr>
<td>reliance</td>
<td>1</td>
</tr>
<tr>
<td>short-circuited</td>
<td>1</td>
</tr>
<tr>
<td>tampered</td>
<td>1</td>
</tr>
<tr>
<td>voltagesfrom</td>
<td>1</td>
</tr>
</tbody>
</table>

Limitations of Previous Systems

Based on "writer's wisdom" or traditions
But what really makes material hard to understand?

Emphasize readability measures (or grammaticality) only
Ample evidence that readability measures are inaccurate or misleading

Do not analyze semantic or referential content
Many problems from poor terminology, excessive amounts of content

Are not sensitive to organization of text
Could put sentences in reverse order and get the same results
Basic Concept of the Computerized Comprehensibility System (CCS)

Simulate some simple comprehension processes
"Dumb" Parsing
Simple Reference
Immediate semantics
Basic referential coherence

Criticize if simple processes can't handle the material
Generate a markup of the text

Base criticisms on specific results from
Psycholinguistics
Cognitive psychology of comprehension
Text linguistics

Simple comprehension processes should be adequate in reading-to-do situations
Reading and task processing interact
Doing both can lead to information-processing overload
Readers who are doing a task should be able to read just with their simplest, most automatic reading processes

Complex Reading in Isolation

Just Reading - I can handle it.
Complex Reading in Conjunction with a Task can be Overwhelming

Ouch!!! I'm trying to get a job done, and I have to wade through this!!!

Only Simple Processes should be Needed for Reading during a Task

Much better! All I have to do is follow the instructions!
Example Comprehensibility Rules from the Psycholinguistics Research Literature

Active is better than passive.
(Tannenbaum & Williams, 1968)

A pronoun should refer to the subject of the previous sentence.
(Frederiksen, 1979)

Relative clauses should begin with a relative pronoun.
(Hakes & Foss, 1970)

If the topic of the passage is the logical object,
then passive is better than active.
(Perfetti & Goldman, 1975)

Temporarily changing the subject impedes processing.
(Lesgold, Roth, Curtis, & Riley, 1979)

Refer to an object in the same way as it was previously referred to;
even a synonym slows processing.
(Yekovich, Walker, & Blackman, 1979)

Refer to an object that was either explicitly mentioned previously,
or is strongly implied by the previous text.
(Haviland & Clark, 1974)

Indefinite determiners should be used only on textually new items.
(de Villiers, 1974)

Connective words (e.g., however) improve comprehension.
(Haberlandt & Kennard, 1981)

Why is the System Feasible?

Natural Language Processing is notoriously difficult!

Why is this any easier?

Military technical material should be relatively simple
Military material supposed to meet 9th RGL
Technical material should be clear and direct

System only has to emulate a poor reader, not a good one
- "Artificial Stupidity"

Consequently, don't have to solve the hard problems
Don't have to parse everything
 • If can't parse, neither can reader!
Don't have to integrate everything
 • If hard to do, something is wrong with the text!
Don't have to use much domain knowledge
 • If necessary, then system is impractical!
Don't depend on readers having much domain knowledge!

Open question: How smart does the system have to be in order to be useful?
If too stupid, is just an annoyance
 • Like many extant criticism programs
If has to be too smart, not practical to develop
 • Mostly a problem in parser coverage
Would Using the System Help?

Empirical results on improving text are mixed
Document redesign, revision don't always help
When it does, not clear why

The task demands may be critical, difficult to control
Ample experience that manuals can be improved
Kieras study using a mock-up manual

Only way to tell is with a real field test
May be done, since delivered to the Navy
Some work underway with Bruce Britton

Basics of How CCS Works

Standard components
ATN parser
- Compiled from High-level Grammar Specification Language (HGSL)
- Uses chart-parsing logic to increase speed
- Very limited use of registers
- Outputs a parse tree
ACT-style semantic structures
- Built directly from parse tree
 Represent immediate propositional content
- Syntactically-tagged
 Production rules can recognize combinations of syntax
 and semantic features
Production rules
- Generate criticisms
- Perform inference and integration functions
Simple reference done by special module
- Can resolve a reference to a previously mentioned object
 by either match on surface noun phrase, or match on any
 subset of propositions in the noun phrase
- Criticize if referent can't be identified by simple reference
 resolution process

Comprehension based on given/new contract model
Identify given referents in each sentence
Add new content to representations of given referents
Structure of CCS

Example of HGSL Specification

```
(NET-DEF $DECLAREATIVE-STATEMENT :SCOPED-REGISTERS
  (?PERSON-NUMBER)
  (- ($INITIAL-VERBMOD - (!\,)) $NP $CLSPRED))

(NET-DEF $COPPHR
  ($COPSEQ - (!TO $COPSEQ) $COPCOMP) )

(NET-DEF $COPSEQ
  (((- (ADV) MODAL - (ADV / NEG)
     ((HAVE-INF - (ADV / NEG) BE-PSP - (- (ADV / NEG) BE-PRP))
     / (BE-INF - (- (ADV / NEG) BE-PRP))))
     / (- (ADV) HAVE-FORM - (ADV / NEG) BE-PSP - (BE-PRP))
     / (- (ADV / NEG) BE-FORM - (- (ADV / NEG) BE-PRP))
     - (ADV / NEG)))))

(NET-DEF $COPCOMP-SIMPLE :SCOPED-REGISTERS (?PERSON-NUMBER)
  ((($ADJ / $PREPPHR / $NP / (!THAT $STATEMENT)) - (ADV))))
```
If the PF Indicator does not flash, then notice that there is a malfunction.

The energy booster is used by the phaser system.
If the PF Indicator does not flash, then notice that there is a malfunction.

ACT Propositions:
((S PROP1 REF1) (P PROP1 PF) (S PROP2 REF1) (P PROP2 INDICATOR) (S PROP3 REF1) (P PROP3 PRED1) (R PRED1 FLASH) (A PRED1 UNSPECIFIED) (S PROP4 PROP3) (P PROP4 FALSE) (S PROP7 THE_READER) (P PROP7 PRED2) (R PRED2 NOTICE) (A PRED2 PROP6) (S PROP6 REF2) (P PROP6 EXISTS) (S PROP8 PRED2) (P PROP8 THEN) (S PROP9 PROP7) (P PROP9 PRED3) (R PRED3 IF) (A PRED3 PROP3))

ALL Propositions:
((TAG PROP7 SENTENCE-MAIN) (TAG REF1 COMPLETELY-NEW) (TAG REF1 NEW-REFERENT) (TAG REF1 NP-REFERENT) (TAG PROP1 NP-PROP) (S PROP1 REF1) (P PROP1 PF) (TAG PROP2 NP-PROP) (S PROP2 REF1) (P PROP2 INDICATOR) (TAG PROP2 HEAD- NOUN) (TAG REF1 DEFINITE) (NUMBER REF1 SINGULAR) (GENDER REF1 N) (SRF REF1 (PF INDICATOR)) (HNF REF1 INDICATOR) (NP-PROP-NUMBER REF1 2) (TAG REF1 STATEMENT-SUBJECT) (S PROP3 REF1) (P PROP3 PRED1) (R PRED1 FLASH) (A PRED1 UNSPECIFIED) (S PROP4 PROP3) (P PROP4 FALSE) (TAG PROP3 STATEMENT-MAIN) (TAG THE_READER STATEMENT-SUBJECT) (S PROP7 THE_READER) (P PROP7 PRED2) (R PRED2 NOTICE) (A PRED2 PROP6) (TAG REF2 STATEMENT-SUBJECT) (S PROP6 REF2) (P PROP6 EXISTS) (TAG REF2 NEW-INDEFINITE) (TAG REF2 NEW-REFERENT) (TAG REF2 NP-REFERENT) (TAG PROP5 NP-PROP) (S PROP5 REF2) (P PROP5 MALFUNCTION) (TAG PROP5 HEAD- NOUN) (TAG REF2 INDEFINITE) (NUMBER REF2 SINGULAR) (GENDER REF2 N) (SRF REF2 (MALFUNCTION)) (HNF REF2 MALFUNCTION) (NP-PROP-NUMBER REF2 1) (S PROP8 PRED2) (P PROP8 THEN) (TAG PROP7 IMPERATIVE) (TAG PROP7 STATEMENT-MAIN) (S PROP9 PROP7) (P PROP9 PRED3) (R PRED3 IF) (A PRED3 PROP3) (TAG PROP3 SUBORDINATE-CLAUSE) (TAG PROP7 SUPERORDINATE-CLAUSE) (TAG SENTENCE-PROP-NUMBER 9))

Example Production Rules for Comprehensibility Criticisms

(BadPassive
IF
THEN
((PRINT-MSG "BAD PASSIVE")))

(GoodPassive
IF
THEN
((PRINT-MSG "GOOD PASSIVE")))
Criticisms Currently Supplied

Terminology
- Failure to use simple terminology
- Inconsistent terminology
- Ambiguous terminology

Grammatical difficulty
- No systematic check of grammatical correctness
 - If can be parsed, grammatical difficulty is ok
 - If fail to parse
 - attempt to find constituents and proceed
 - warn that grammar might be too difficult

Amount of Content
- Noun phrases too big
- Too much new content within a sentence

Sentence structure
- Telegraphic style - sentence fragments (except in headings)
- Lack of which/that in relative clauses
- Object relatives (subject relatives preferred)
- Self-embedding constructions
- Negation, especially in top-level clause

Coherence
- Failure to follow given/new contract for each sentence
- New referent mentioned in slot usually reserved for old
- Failure to use simple referential coherence forms
- Referent is non-trivial to determine
- Passive voice misused or not used when appropriate
- Pronoun references pointed out

Topic Structure
- Current topic tracked
- Final structure presented

Example of CCS Output - 1

The oil is stored in the lube oil sump.

Sentence No. 11

QUESTIONABLE-NEW-REFERENT
Check: Can your reader tell what you are referring to:
REF27 (LUBE OIL SUMP)

AMBIGUOUS-REFERENT
Check and rephrase if incorrect:
Assuming that OIL is REF13 OIL,
... other possibilities: (REF9) (OIL)

NO-SIMPLE-FORM
Try introducing these with the simpler wording in this sentence:
REF13 (OIL)

INAPPROPRIATE-PASSIVE
Using the passive voice in the clause about REF13 OIL
is inappropriate because it is not about a current topic.
This can be very hard to understand - try to rephrase into the active voice.

TOPIC-CHANGE
You may need to rewrite to avoid incoherence.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The idle strainer must not be put into service when the cap is not properly secured.

Sentence No. 23
NEGATED-MAIN-CLAUSE
Try to rewrite into positive form.

MULTIPLE-NEGATION
This sentence has multiple negatives, which can be very hard to understand. You should rewrite it into positive form.

SUBJECT-NOT-KNOWN
Clause subject REF59 CAP should be previously mentioned.

QUESTIONABLE-NEW-REFERENT
Check: Can your reader tell what you are referring to: REF59 CAP

INAPPROPRIATE-PASSIVE
Rephrase passive clause about REF50 (IDLE STRAINER).

INAPPROPRIATE-PASSIVE
Rephrase passive clause about REF59 CAP.

TOPIC-CHANGE
You may need to rewrite to avoid incoherence.

---------------------------------------

Simulated Usage Test

A simple trial
not realistic, but encouraging

Writer
a talented undergraduate engineering student

Original Material
A sample of actual draft training material
119 lines long, about 1.5 pages
Readability Score = 13.06

Revision Process
Obtained system outputs, made revisions in response
Total of 5 revisions

Equipment
Apollo DN4000 (4 MIPS, 12 MB)
Franz Allegro Lisp, all code compiled
Common U.S. Navy practice in main boiler repair has been the removal of blocks of main generating bank tubes to determine condition of the tubes and need for more extensive sampling and/or renewal. Because of access required for removal and replacement of tubes, the block has generally been 10 tubes wide and completely through the bank. The selection of a specific block has normally been based on ships' tube renewal sheets (if available and of sufficient time length coverage), access to previously plugged tubes, visible waterside pitting as an indication of service life, fireside conditions of tubes and/or fireside deposit accumulations, refractory renewals, and in some cases suspected or visible problem areas in specific boiler designs, if known.

Common Navy practice in main boiler repair has been the removal of a block of boiler tubes to check their condition. Based on this removed block, it can be decided whether the tubes need to be replaced or further checked. The removed block has usually been 10 tubes wide and through the entire bank of tubes. The block has been this large because of the access required for the removal and the replacement of the tubes. Normally, the selection of a specific block has been based on a number of factors. These factors include the ship's tube renewal sheets, access to tubes that were plugged before, visible damage from wear, fireside conditions of tubes, fireside deposit buildup, refractory renewals, and sometimes problem areas in specific boiler designs.
Original vs. Revised Sample

Original

Size
• 119 lines long, about 1.5 pages
• 51 sentences found by system
System Performance
• 20/51 sentences could be parsed (40%)
• 92 min. cpu time
System Output
• About 168 referents defined
• About 350 propositions defined
• About 230 comments (multiple item comments counted as one)
• 31 pages of output
Results
• Due to many grammatically unanalyzable sentences, relatively few comments made
• Readability Score = 13.06

Revised

Size
• 108 lines long, 1.5 pages approximately
• 70 sentences found by system
System Performance
• 44/70 could be parsed (63%)
• 58 min. cpu time
System Output
• About 215 referents defined
• About 495 propositions defined
• About 489 comments (multiple item comments counted as one)
• 40 pages of output
Results
• Seems much more clear
• Readability Score = 8.41

Earlier Versions of the System

Demonstration System
Constructed from earlier simulation model components
Very limited parser
Could generate some sophisticated criticisms

Parsing Workbench System
Extending ATN grammar is the main problem
Graphical interface in Interlisp-D environment
Allow ATNs to be displayed, observed, modified easily
Extended grammar using real samples from NPRDC
But grammar development was unexpectedly difficult

Grammar Development System
Even with Parsing Workbench, large ATN was too difficult
A High-level Grammar Specification Language (HGSL)
• John Mayer
A large grammar built using NPRDC and other samples
Convergence of coverage in this domain
Conclusion: Have a practically useful grammar for parsing
Current State of the System

Supported by NPRDC program on Authoring Instruction Materials
Fielding advanced document preparation software for Navy Training Writers

Portable implementation
Run on UNIX workstations
COMMON LISP implementation

Current trial version
Provide a limited number of comprehensibility criticisms
Accepts text files with interleaved document formatting commands
Works well enough for actual writers to try out
Parsing still needs work
• Many parsing failures are trivial, could be corrected
• System could comment on partially parsed input better

An evaluation study underway with Bruce Britton
Comparison of fixed original and revised version of a complex passage
• Original passage produces identifiable and serious failures of comprehension
Original was modified so that all sentences would parse adequately
• Minimal other changes
Revision was changed to respond to CCS criticisms
Recall data collected, currently being analyzed

Experimentation with semantics-based reference resolution
Making CCS "smarter" about some kinds of reference
• When a referent is implied by another

Example of CCS "Stupidity" about Implied Referents

The F-16 aircraft is a high-performance fighter.
The wings have a swept-back configuration.
The main proposition of this sentence is PROP9:
- REF3 WINGS has relation HAVE
to REF4 (SWEPT-BACK CONFIGURATION).

NO-KNOWN-REFERENTS
This sentence does not appear to refer to anything previously mentioned, and so readers may not understand how it relates to the rest of the material. Be sure that the sentence directly and clearly refers to a previous item.

QUESTIONABLE-NEW-REFERENT
These items were referred to as if the reader already knows about them, but they could not be matched with something previously introduced:
REF3 WINGS
Check: Can your reader easily figure out what you are referring to?
...
**Experimentation on Semantics-Based Reference Resolution of Implied Referents**

Common CCS criticism: Questionable New Referent
Writer refers to an apparently new object with a definite noun phrase
Form implies that reader should know it
But can't be matched against a previously mentioned item

Often, the new referent seems obviously implied by previously mentioned one

Is domain knowledge really required, or is more general semantic knowledge adequate?
 *Everybody* knows that airplanes have wings!
 • True domain knowledge: Airplane engine throttles have "quadrants"
Many reference resolution inferences can be done using simple semantic relations
 • subset/superset
 • part-of/has-part
 • member-of/has-member

**Miller's WordNet Database**

Miller's project - a sort of on-line super-thesaurus
Also sponsored by ONR and NPRDC

A large semantic lexicon
 E.g. about 30K noun concepts
 Includes, nouns, adjectives, verbs

Words grouped into synonym sets
 Synonym set corresponds to a concept or type node in a semantic net

Simple semantic relations between the synonym sets
 subset/superset, part-whole, member, opposite, similar, etc.

Database is publicly available
Sample of WordNet Database (reformatted)

("N-AIRCRAFT (AIRCRAFT) ==> "N-SKELTON3 ==> "N-HELICOPTER
==> "N-GLIDER ==> "N-FUEL_GAUGE ==> "N-DRONE3 ==> "N-CABIN2 ==> "N-COCKPIT2
==> "N-LIGHTER-TAN-AIR_CRAFT ==> "N-AIRPLANE ==> "N-AIRCRAFT_ENGINE
<== "N-VEHICLE"

("N-AIRCRAFT_CARRIER (AIRCRAFT_CARRIER CARRIER FLATTOP
ATTACK_AIRCRAFT_CARRIER)
==> "N-FLIGHT_DECK ==> "N-ARRESTER <== "N-WARSHIP"

("N-AIRCRAFT_ENGINE (AIRCRAFT_ENGINE) == "N-AIRCRAFT <== "N-ENGINE2"

("N-AIRFOIL (AIRFOIL AEROFIL) ==> "N-WING6 ==> "N-ERTICAL_TAIL
==> "N-STABILIZER ==> "N-RUDDER ==> "N-ROTOR_BLADE ==> "N-FLAP5
==> "N-ELEVATOR ==> "N-HORIZONTAL_STABILIZER
==> "N-AILERON <== "N-DEVICE2"

("N-AIRLINE2 (AIRLINE) <== "N-TRANSPORTATION_SYSTEM"

("N-AIRLINE (AIRLINE) <== "N-HOSE3"

("N-AIRLINER (AIRLINER) == "N-SEAT5 == "N-GALLEY == "N-AIRPLANE"

("N-AIRLOCK (AIRLOCK AIR_LOCK) <== "N-CHAMBER2"

("N-AIR_PASSAGE (AIR_PASSAGE AIR_DUCT AIRWAY) == "N-VENT2 == "N-UPCAST
== "N-SNORKEL2 == "N-DOWNCAST <== "N-DUCT2"

("N-AIRPLANE (AIRPLANE AEROPLANE PLANE) == "N-WING6 == "N-WINDSHIELD
== "N-TURBOJET == "N-SEAPLANE == "N-RADOME == "N-PROPELLER_PLAN
== "N-P-POD2 == "N-MONOPLAN == "N-LANDING_GEAR == "N-JET3 == "N-FUSELAGE
== "N-FIGHTER4 == "N-ESCAPE_HATCH == "N-COWL == "N-BOMBER
== "N-PIPLANE == "N-AMPHIBIAN == "N-AIRLINER == "N-AIRCRAFT"

("N-AIRPLANE_PROPPELLER (AIRPLANE_PROPPELLER AIRSCREW PROP)
== "N-PROPELLER_PLAN <== "N-PROPELLER"

("N-AIRFIELD (AIRFIELD LANDING_FIELD) ==> "N-TAXIWAY ==> "N-RUNWAY
== "N-AUXILIARY_AIRFIELD ==> "N-APRON3 == "N-AIRSTRIP == "N-AIRPORT
== "N-TRANSPORTATION_SYSTEM <== "N-FACILITY5"

Augmented Version of CCS with Implied Reference Resolution

Experimental approach:
No guidance or constraint by context or noun phrase modifiers; search for relations between head nouns only. Of course, many inappropriate connections will be found. Will correct connections be found?

Use reduced version of WordNet database based on CCS lexicon
Complete database is too large for convenient testing

Processing:
If simple reference resolution fails on a definite noun phrase, apply semantics-based resolution. Find relations between questionable new referent and previous referents. If appropriate relation present, the new referent is implied by previous referent; do not criticize.
Example of Semantics-Based Reference Resolution about Aircraft

The F-1 is an aircraft.
The wing is long.
IMPLIED-PART
Assuming that these newly introduced items are part of previously mentioned items:
New REF3 WING (concept: ^N-WING6) is part of REF2 AIRCRAFT (concept: ^N-AIRCRAFT)
Check: Is this correct?

The flaps are big.
IMPLIED-PART
Check: Is this correct:
New REF5 FLAPS (concept: ^N-FLAP5) is part of REF3 WING (concept: ^N-WING6)

The airplane is expensive.
IMPLIED-SUBSET
Assuming that these newly introduced items refer to previously mentioned items:
New REF6 AIRPLANE (concept: ^N-AIRPLANE) is included by, and refers to, REF2 AIRCRAFT (concept: ^N-AIRCRAFT)
Check: Is this correct?

The fighter is essential.
IMPLIED-SUBSET
Check: Is this correct:
New REF7 FIGHTER (concept: ^N-FIGHTER4) is included by, and refers to, REF6 AIRPLANE (concept: ^N-AIRPLANE)

The vehicle has wheels.
IMPLIED-SUPERSET
Assuming that these newly introduced items refer to previously mentioned items:
New REF8 VEHICLE (concept: ^N-VEHICLE) includes and refers to REF2 AIRCRAFT (concept: ^N-AIRCRAFT)
Check: Is this correct?
Trial of Augmented CCS

Tested on three long passages
Britton's history of the air war in Vietnam
T-38 Flight Control from T-38 Flight Manual
Ejectors from Machinist's Mate 2 & 3 Rate Training Manual

How many questionable new referents were resolved through connections in the semantics?
Definite noun phrases with no antecedent referent that can be determined using simple reference resolution

Results:
Many connections found
Most were incorrect
• Expected from experimental approach used
• Most connections were spurious, due to lack of constraint
• E.g., make-up feed valve in context of steam engine condenser system is matched to British term valve for vacuum tube as related to condenser as an electronic component (obsolete term)

Most correct ones could be found by simpler lexical mechanisms
• E.g., direct synonym => concept representation
In spite of lack of constraint, very few correct connections found in technical passages
• E.g., one of few cases: Airplane => wing flaps
• But not switch => position

Conclusions from Semantics-Based Reference Resolution Experiment

Technically feasible to incorporate simple semantic information and inference rules for using it
Encourages further work in comprehension modeling

WordNet database, although very broad, is not consistently deep enough to help in technical passages
E.g. for T-38 passage:
• airplane => flaps in database
• airplane => control stick not in database

Other passage types may require much more complex inferences than those based on simple semantic relations
E.g. war => enemy in Britton's historical passage
Seems to require action-participant relation

Original no-knowledge approach is impressively good
To do better, considerable domain-specific knowledge would be required

How can we build useful semantic databases for real domains?
### Scientific Contribution: Testing the Theory

**Basic concept that sentence and text syntax are important**
Can the system adequately characterize important properties of comprehensibility even though it is mostly syntactically-driven?
Division of labor - do as much as possible with syntax, save knowledge-based inference for the hard problems - a good idea?

**Value of standard mechanisms and theoretical concepts**
Examples
- Production rules for comprehension processing
- Topic signaling role of topic sentence, surface subject position
Can these do an adequate job? What do we know from where they fail?

### Scientific Contribution: Influence from the Real World

**Nature of real reading and real materials**
Predominance of descriptive and procedural text
- rather than heavily schematic stories
Massive knowledge-based inference shouldn't be the basic everyday process
Task-driven reading is the key, but it is very poorly understood

**Things we need scientifically**
Only a fraction of laboratory research addresses real-world materials and problems
- E.g. many studies of non-existent multiply-embedded sentences
- Few studies of terminology, complex reference
Still lack a good characterization of sentence complexity
### Scientific Contribution: Research Value of Product

**Software is usable in research**

**Variations on system can provide analytic tools**
- Analyze structure and content of text rigorously and automatically

**Foundation for advanced models of complex forms of comprehension**
- Has a reasonable parser, so input can be actual experimental materials
- Has slots for additional processes such as complex inference
- A portable, well-disciplined software environment

### System is a Foundation for Models of Text Comprehension

**What it has already**
- Facilities for parsing input sentences in text
- Basic reference resolution of text integration
- Simple topic tracking mechanism
- Provision for inference rules
  - E.g. used in semantics-based reference resolution

**What is does not have**
- Significant knowledge base
- Substantial knowledge-driven comprehension mechanisms
  - Can beyond experimental simple semantic relations
- Basic structure of system could incorporate knowledge-based mechanisms after parsing stage
  - No feasible way to use knowledge during parsing with this system
Examples of Possible Research Applications

**Analyze text for propositional content**
- A standard, labor-intensive process in comprehension research
- CCS uses Anderson ACT style - close relationship to Kintsch propositions

**Classify sentence form or complexity**
- E.g. How often does center embedding occur?

**Analyze referential structure of text**
- Distribution of types of reference
- Where inference is required
- Distance between antecedent and reference

**Analyze knowledge requirements of text**
- Where is semantic knowledge critical?
- Where is domain knowledge needed?

**Re-Implement Kintsch & van Dijk model, but take actual text as input**
- Could develop materials that system can parse before using in an experiment

**Front-end for model of learning procedures from text (Susan Bovair)**
- Above examples

**Environment for exploring inference and knowledge in comprehension**
- "Slot" for production rules that could compare long-term memory contents with sentence and passage content
  - E.g. WordNet database mechanisms