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Introduction 

What is model-based evaluation? 

Model-based evaluation is using a model of how a human would use a proposed system to ob-
tain predicted usability measures by calculation or simulation. These predictions can replace or 
supplement empirical measurements obtained by user testing. In addition, the content of the model 
itself conveys useful information about the relationship between the user’s task and the system 
design. 

Organization of this chapter 

This chapter will first argue that model-based evaluation is a valuable supplement to conven-
tional usability evaluation, and then survey the current approaches for performing model-based 
evaluation. Because of the considerable technical detail involved in applying model-based evalua-
tion techniques, this chapter cannot include “how to” guides on the specific modeling methods, 
but they are all well documented elsewhere. Instead, this chapter will present several high-level 
issues in constructing and using models for interface evaluation, and comment on the current ap-
proaches in the context of those issues. This will assist the reader in deciding whether to apply a 
model-based technique, which one to use, what problems to avoid, and what benefits to expect. 
Somewhat more detail will be presented about one form of model-based evaluation, GOMS mod-
els, which is a well-developed, relatively simple and “ready to use” methodology applicable to 
many interface design problems. A set of concluding recommendations will summarize the practi-
cal advice. 

Why use model-based evaluation? 

Model-based evaluation can be best viewed as an alternative way to implement an iterative 
process for developing a usable system. This section will summarize the standard usability proc-
ess, and contrast it with a process using model-based evaluation.  
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Standard usability design process. In simplified and idealized form, the standard process for 
developing a usable system centers on user testing of prototypes that seeks to compare user per-
formance to a specification or identify problems that impair learning or performance. After per-
forming a task analysis and choosing a set of benchmark tasks, an interface design is specified 
based on intuition and guidelines both for the platform/application style and usability. A prototype 
of some sort is implemented, and then a sample of representative users attempts to complete the 
benchmark tasks with the prototype. Usability problems are noted, such as excessive task comple-
tion time or errors, being unable to complete a task, or confusion over what to do next. If the prob-
lems are serious enough, the prototype is revised, and a new user test conducted. At some point 
the process is terminated and the product completed, either because no more serious problems 
have been detected, or there is not enough time or money for further development. See Dumas 
(this volume) for a complete presentation. 

The standard process is a straightforward, well-documented methodology with a proven record 
of success (Landauer, 1995). The guidelines for user interface design, together with knowledge 
possessed by those experienced in interface design and user testing, adds up to a substantial accu-
mulation of wisdom on developing usable systems. There is no doubt that if this process were ap-
plied more widely and thoroughly, the result would be a tremendous improvement in software 
quality. User testing has always been considered the “gold standard” for usability assessment. 
However, it has some serious limitations - some practical and others theoretical.  

Practical limitations of user testing. A major practical problem is that user testing can be too 
slow and expensive to be compatible with current software development schedules, so a focus of 
HCI research for many years has been ways to tighten the iterative design loop. For example, bet-
ter prototyping tools allow prototypes to be developed and modified more rapidly. Clever use of 
paper mockups or other early user input techniques allows important issues to be addressed before 
making the substantial investment in programming a prototype. So-called inspection evaluation 
methods seek to replace user testing with other forms of evaluation, such as expert surveys of the 
design, or techniques such as cognitive walkthroughs (see Cockton, et al, this volume). 

If user testing is really the best method for usability assessment, then it is necessary to come to 
terms with the unavoidable time and cost demands of collecting behavioral data and analyzing it, 
even in the rather informal manner that normally suffices for user testing. For example, if the sys-
tem design were substantially altered on an iteration, it would be necessary to retest the design 
with a new set of test users. While it is hoped that the testing process finds fewer important prob-
lems with each iteration, the process does not get any faster with each iteration - the same ade-
quate number of test users must perform the same adequate number of representative tasks, and 
their performance assessed. 

The cost of user testing is especially pronounced in expert-use domains, where the user is 
somebody like a physician, a petroleum geologist, or an engineer. Such users are few, and their 
time is valuable. This may make relying on user testing too costly to adequately refine an inter-
face. A related problem is evaluating software that is intended to serve experienced users espe-
cially well. Assessing the quality of the interface requires a very complete prototype that can be 
used in a realistic way for an extended period of time so that the test users can become experi-
enced. This drives up the cost of each iteration, because the new version of the highly-functional 
prototype must be developed and the lengthy training process has to be repeated. Other design 
goals can also make user testing problematic: Consider developing a pair of products for which 
skill is supposed to transfer from one to the other. Assessing such transfer requires prototyping 
both products fully enough to train users on the first, and then training them on the second, to see 
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if the savings in training time are adequate. Any design change in either of the products might 
affect the transfer, and thus require a repeat test of the two systems. This double-dose of develop-
ment and testing effort is probably impractical except in critical domains, where the additional 
problem of testing with expert users will probably appear.  

Theoretical limitations of user testing. From the perspective of scientific psychology, the user 
testing approach takes very little advantage of what is known about human psychology, and thus 
lacks grounding in psychological theory. Although scientific psychology has been underway since 
the late 1800s, the only concepts relied on by user testing are a few basic concepts of how to col-
lect behavioral data. Surely more is known about human psychology than this! The fact is that user 
testing methodology would work even if there was no systematic scientific knowledge of human 
psychology at all - as long as the designer’s intuition leads in a reasonable direction on each itera-
tion, it suffices merely to revise and retest until no more problems are found. While this is un-
doubtedly an advantage, it does suggest that user testing may be a relatively inefficient way to 
develop a good interface. 

This lack of grounding in psychological principles is related to the most profound limitation of 
user testing: it lacks a systematic and explicit representation of the knowledge developed during 
the design experience; such a representation could allow design knowledge to be accumulated, 
documented, and systematically reused. After a successful user testing process, there is no repre-
sentation of how the design “works” psychologically to ensure usability - there is only the final 
design itself, as described in specifications or in the implementation code. These descriptions 
normally have no theoretical relationship to the user’s task or the psychological characteristics of 
the user. Any change to the design, or to the user’s tasks, might produce a new and different us-
ability situation, but there is no way to tell what aspects of the design are still relevant or valid. 
The information on why the design is good, or how it works for users, resides only in the intui-
tions of the designers. While designers often have outstanding intuitions, we know from the his-
tory of creations such as the medieval cathedrals that intuitive design is capable of producing mag-
nificent results, but is also routinely guilty of costly over-engineering or disastrous failures. 

The model-based approach. The goal of model-based evaluation is to get some usability re-
sults before implementing a prototype or testing with human subjects. The approach uses a model 
of the human-computer interaction situation to represent the interface design and produce pre-
dicted measurements of the usability of the interface. Such models are also termed engineering 
models or analytic models for usability. The model is based on a detailed description of the pro-
posed design and a detailed task analysis; it explains how the users will accomplish the tasks by 
interacting with the proposed interface, and uses psychological theory and parametric data to gen-
erate the predicted usability metrics. Once the model is built, the usability predictions can be 
quickly and easily obtained by calculation or by running a simulation. Moreover, the implications 
of variations on the design can be quickly explored by making the corresponding changes in the 
model. Since most variations are relatively small, a circuit around the revise/evaluate iterative de-
sign loop is typically quite fast once the initial model-building investment is made. Thus unlike 
user testing, iterations generally get faster and easier as the design is refined.  

In addition, the model itself summarizes the design, and can be inspected for insight into how 
the design supports (or fails to support) the user in performing the tasks. Depending on the type of 
model, components of it may be reusable not in just different versions of the system under devel-
opment, but in other systems as well. Such a reusable model component captures a stable feature 
of human performance, task structures, or interaction techniques; characterizing them contributes 
to our scientific understanding of human-computer interaction. 
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The basic scheme for using model-based evaluation in the overall design process is that itera-
tive design is done first using the model, and then by user testing. In this way, many design deci-
sions can be worked out before investing in prototype construction or user testing. The final user 
testing process is required for two reasons: First, the available modeling methods only cover cer-
tain aspects of usability; at this time, they are limited to predicting the sequence of actions, the 
time required to execute the task, and certain aspects of the time required to learn how to use the 
system. Thus user testing is required to cover the remaining aspects. Second, since the modeling 
process is necessarily imperfect, user testing is required to ensure that some critical issue has not 
been overlooked. If the user testing reveals major problems along the lines of a fundamental error 
in the basic concept of the interface, it will be necessary to go back and reconsider the entire de-
sign; again model-based iterations can help address some of the issues quickly. Thus, the purpose 
of the model-based evaluation is to perform some of the design iterations in a lower-cost, higher-
speed mode before the relatively slow and expensive user testing.  

What “interface engineering” should be. Model-based evaluation is not the dominant ap-
proach to user interface development; most practitioners and academics seem to favor some com-
bination of user testing and inspection methods. Some have tagged this majority approach as a 
form of “engineering.” However, even a cursory comparison to established engineering disciplines 
makes it clear that conventional approaches to user interface design and evaluation has little re-
semblance to an engineering discipline. In fact, model-based evaluation is a deliberate attempt to 
develop and apply true engineering methods for user interface design. The following somewhat 
extended analogy will help clarify the distinction, as well as explain the need for further research 
in modeling techniques.  

If civil engineering were done with iterative empirical testing, bridges would be built by erect-
ing a bridge according to an intuitively appealing design, and then driving heavy trucks over it to 
see if it cracks or collapses. If it does, it would be rebuilt in a new version (e.g. with thicker col-
umns) and the trial repeated; the iterative process continues with additional guesses until a satis-
factory result is obtained. Over time, experienced bridge-builders would develop an intuitive feel 
for good designs and how strong the structural members need to be, and so will often guess right. 
However, time and cost pressures will probably lead to cutting the process short by favoring con-
servative designs that are likely to work, even though they might be unnecessarily clumsy and 
costly.  

Although early bridge-building undoubtedly proceeded in this fashion, modern civil engineers 
do not build bridges by iterative testing of trial structures. Rather, under the stimulus of design 
failures (Petrosky, 1985), they developed a body of scientific theory on the behaviors of structures 
and forces, and a body of principles and parametric data on the strengths and limitations of bridge-
building materials. From this theory and data, they can quickly construct models in the form of 
equations or computer simulations that allow them to evaluate the quality of a proposed design 
without having to physically construct a bridge. Thus an investment in theory development and 
measurement enables engineers to replace an empirical iterative process with a theoretical iterative 
process that is much faster and cheaper per iteration. The bridge is not built until the design has 
been tested and evaluated based on the models, and the new bridge almost always performs cor-
rectly. Of course, the modeling process is fallible, so the completed bridge is tested before it is 
opened to the public, and occasionally the model for a new design is found to be seriously inaccu-
rate and a spectacular and deadly design failure is the result. The claim is not that using engineer-
ing models is perfect or infallible, only that it saves time and money, and thus allows designs to be 
more highly refined. In short, more design iterations results in better designs, and better designs 
are possible if some of the iterations can be done very cheaply using models.  
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Moreover, the theory and the model summarize the design and explain why the design works 
well or poorly. The theoretical analysis identifies the weak and strong points of the design, giving 
guidance to the designer where intuition can be applied to improve the design; a new analysis can 
then test whether the design has actually been improved. Engineering analysis does not result in 
simply static repetition of proven ideas. Rather, it enables more creativity because it is now possi-
ble to cheaply and quickly determine whether a new concept will work. Thus novel and creative 
concepts for bridge structures have steadily appeared once the engineering models were devel-
oped. 

Correspondingly, model-based evaluation of user interfaces is simply the rigorous and science-
based techniques for how to evaluate user interfaces without user testing; it likewise relies on a 
body of theory and parametric data to generate predictions of the performance of an engineered 
artifact, and explain why the artifact behaves as it does. While true interface engineering is no-
where as advanced as bridge engineering, useful techniques have been available for some time, 
and should be more widely used. As model-based evaluation becomes more developed, it will 
become possible to rely on true engineering methods to handle most of the routine problems in 
user interface design, with considerable savings in cost and time, and with reliably higher quality. 
As has happened in other branches of engineering, the availability of powerful analysis tools 
means that the designer’s energy and creativity can be unleashed to explore fundamentally new 
applications and design concepts. 

Three Current Approaches 

Research in HCI and allied fields has resulted in many models of human-computer interaction 
at many levels of analysis. This chapter restricts attention to approaches that have developed to the 
point that they have some claim, either practical or scientific, to being suitable for actual applica-
tion in design problems. This section identifies three current approaches to modeling human per-
formance that are the most relevant to model-based evaluation for system and interface design. 
These are task network models, cognitive architecture models, and GOMS models. 

Task network models. In task network models, task performance is modeled in terms of a 
PERT-chart-like network of processes. Each process starts when its prerequisite processes have 
been completed, and has an assumed distribution of completion times, This basic model can be 
augmented with arbitrary computations to determine the completion time, and what its symbolic 
or numeric inputs and outputs should be. Note that the processes are usually termed “tasks,” but 
they need not be human-performed at all, but can be machine processes instead. In addition, other 
information, such as workload or resource parameters can be attached to each process. Perform-
ance predictions are obtained by running a Monte-Carlo simulation of the model activity, in which 
the triggering input events are generated either by random variables or by task scenarios. A variety 
of statistical results, including aggregations of workload or resource usage, values can be readily 
produced. The classic SAINT (Chubb, 1981) and the commercial MicroSaint tool (Laughery, 
1989) are prime examples. These systems originated in applied human factors and systems engi-
neering, and are heavily used in system design, especially for military systems.  

Cognitive architecture models. Cognitive architecture systems are surveyed by Byrne (this 
volume). These systems consist of a set of hypothetical interacting perceptual, cognitive, and mo-
tor components assumed to be present in the human, and whose properties are based on empirical 
and theoretical results from scientific research in psychology and allied fields. The functioning of 
the components and their interactions are typically simulated with a computer program, which in 
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effect produces a simulated human performing in a simulated task environment that supplies in-
puts (stimuli) to the simulated human, and reacts to the outputs (responses) produced by the simu-
lated human. Tasks are modeled primarily by programming the cognitive component according to 
a task analysis, and then performance predictions are obtained by running the simulation using 
selected scenarios to generate the input events in the task. Because these systems are serious at-
tempts to represent a theory of human psychological functions, they tend to be rather complex, and 
are primarily used in basic research projects; there has been very limited experience in using them 
in actual design settings.  

GOMS models. GOMS models are the original approach to model-based evaluation in the 
computer user interface field; both the model-based evaluation approach and GOMS models were 
presented as methods for user interface design in the seminal Card, Moran, and Newell (1983) 
presentation of the psychology of human-computer interaction. They based the GOMS concept on 
the theory of human problem-solving and skill acquisition. In brief, GOMS models describe the 
knowledge of procedures that a user must have in order to operate a system, The acronym and the 
approach can be summarized as follows: The user can accomplish certain Goals (G) with the sys-
tem; Operators (O) are the basic actions that can be performed on the system such as striking a key 
or finding an icon on the screen; Methods (M) are sequences of Operators that when executed, 
accomplish a Goal; Selection Rules (S) describe which Method should be used in which situation 
to accomplish a Goal, if there is more than one available. Constructing a GOMS model involves 
writing out the methods for accomplishing the task goals of interest, and then calculating predicted 
usability metrics from the method representation.  

There are different forms of GOMS models, systematized by John & Kieras (1996a, b), which 
represent the methods at different levels of detail, and whose calculations can range in complexity 
from simple hand calculations to full-fledged simulations. John and Kieras pointed out that the 
different forms can be viewed as being based on different simplified cognitive architectures that 
make the models easy to apply to typical interface design problems and insulate the model-builder 
from many difficult theoretical issues. More so than any other model-based approach, GOMS 
models have a long and well-established track record of success in user interface design, although 
they are not used as widely as their simplicity and record would justify. Although still under de-
velopment by researchers, GOMS models are emphasized in this chapter because in some forms 
they are a “ready to use” modeling methodology. A later section will describe their rationale more 
completely, but the reader is referred to John & Kieras (1996a, b) for a thorough discussion. 

 Theoretical Basis for Choosing a Model-based 
Evaluation Technique 

This section presents several key issues concerning the theoretical foundations of model-based 
evaluation, concerning the basic sources of information and applicability of the modeling ap-
proach. When choosing or evaluating a technique for model-based evaluation, the potential user 
should consider these issues; the techniques differ widely in how well they handle certain funda-
mental questions. The next section will focus on the practical problems of applying a modeling 
technique once it has been chosen. In both sections, the three basic approaches to model-based 
evaluation are commented on as appropriate. Advice is given to both the user of model-based 
evaluation and the developer of model-based techniques.  
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Psychological constraints are essential 

The concept of model-based evaluation in system design has a long history and many different 
proposed methods (for early surveys see Pew, Baron, Feehrer, & Miller, 1977; MacMillan, Beevis, 
Salas, Strub, Sutton, & Van Breda, 1989; Elkind, Card, Hochberg, & Huey, 1989). However, the 
necessary scientific basis for genuinely powerful models has been slow to develop. The key re-
quirement for model-based evaluation is that building a model to evaluate a design must be a rou-
tine, production, or engineering activity, and not a piece of basic scientific research on how human 
psychological factors are involved in a particular computer usage situation. This means that the 
relevant psychological science must not only be developed first, but also then systematized and 
encapsulated in the modeling methodology itself. That is, a modeling methodology must provide 
constraints on the content and form of the model, and these constraints must provide the psycho-
logical validity of the model as a predictor of human performance. In other words, if the model 
builder can do essentially anything in the modeling system, then the only way the resulting model 
can be psychologically valid is if the model builder does all of the work to construct a valid psy-
chological theory of human cognition and behavior in the task, and then ensure that the con-
structed model accurately reflects this theory.  

Of course it takes tremendous time, effort, and training to construct original psychological the-
ory, far more than should be necessary for most interface design situations. Although the decisions 
in truly novel or critical design situations might require some fundamental psychological research, 
most interface design situations are rather routine: the problem is to match a computer system to 
the user’s tasks using known interface design concepts and techniques. It should not be necessary 
to be an expert researcher in human cognition and performance to carry this out.  

Thus the key role of a modeling system is to provide constraints based on the psychological 
science, so that a model constructed within the system has a useful degree of predictive validity. In 
essence, simply by using the modeling system according to its rules, the designer must be able to 
construct a scientifically plausible and usefully accurate model “automatically.”  

A simple series of examples will help make the point: Computer user interfaces involve typing 
of arbitrary strings of text on the keyboard and pointing with a mouse. The time required to type 
on the keyboard and to point with a mouse are fairly well documented. If task execution times are 
of interest, an acceptable modeling system should include these human performance parameters so 
that the interface designer does not have to collect them or guess them.  

Furthermore, because both hands are involved in typing strings of text, users cannot type at the 
same time as they move the mouse cursor; these operations must be performed sequentially, taking 
rather more time than if they could be done simultaneously. A modeling system should make it 
impossible to construct a model of an interface that overzealously optimizes execution speed by 
assuming that the user could type strings and point simultaneously; the sequential constraint 
should be enforced automatically. A high-quality modeling system would not only enforce this 
constraint, but also automatically include the time costs of switching between typing and pointing, 
such as the time to move the hand between the mouse and the keyboard. There are many such con-
straints on human performance, some of them quite obvious, as in these examples, and some very 
subtle. A good modeling system will represent these constraints in such a way that they are auto-
matically taken into account in how the model can be constructed and used. Because of the subtle-
ties involved, computational tools are especially valuable for constructing and using models be-
cause they can help enforce the psychological constraints and make it easier for the model-builder 
to work within them. 
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A brief history of constraints in modern psychological theory 

Theoretical constraints are not easy to represent or incorporate; a coherent and rigorous theo-
retical foundation is required to serve as the substrate for the network of constraints, and suitable 
foundations were not constructed until fairly recently. Through most of second half of the 20th 
century, psychological theory was mired in a rather crude form of information-processing theory, 
in which human activity was divided into information-processing stages, such as perception, 
memory, decision-making, and action, usually depicted as a flowchart with a box for each stage, 
various connections between the boxes, and perhaps with some fairly simple equations that de-
scribed the time required for each stage or the accuracy of its processing. However, there was little 
constraint on the possible data contained in each box, or the operations performed there; a box 
could be of arbitrary complexity, and no actual explicit mechanism had to be provided for any of 
them. Such models were little more than a “visual aid” for theories posed in the dominant forms of 
informal verbal statements or rather abstract mathematical equations. Later many researchers be-
gan to construct computer simulations of these “box models,” which provided more flexibility 
than traditional mathematical models and also contributed more explicitness and rigor than tradi-
tional verbal models. But still the operations performed in each box were generally unstructured 
and arbitrary. 

An early effort at model-based evaluation in this theoretical mode appears in the famous Hu-
man Operator Simulator (HOS) system (see Wherry, 1976; Pew, et al., 1977; Strieb & Wherry, 
1979; Lane, Strieb, Glenn, & Wherry, 1981; Glenn, Zaklad, & Wherry, 1982; and Harris, Iavec-
chia, & Bittner, 1988; Harris, Iavecchia, & Dick, 1989). HOS contained a set of micromodels for 
low-level perceptual, cognitive, and motor activities, invoked by task-specific programs written in 
a special-purpose procedural programming language called HOPROC (Human Operator Proce-
dures language). The micromodels included such things as Hick’s and Fitts’ Law, formulas for 
visual recognition time, a model of short-term memory retention, and formulas for calculating the 
time required for various motor actions such as pushing buttons and walking. The effort was ambi-
tious and the results impressive, but in a real sense, HOS was ahead of its time. The problem was 
that psychological theory was not well enough developed at the time to provide a sound founda-
tion for such a tool; the developers were basically trying to invent a cognitive architecture good 
enough for practical application before the concept had been developed in the scientific commu-
nity. Interestingly, the spirit of the HOPROC language lives on in the independently-developed 
notations for some forms of GOMS models. In addition, the scientific base for the micromodels 
was in fact very sparse at the time, and many of them are currently out of date empirically and 
theoretically. HOS appears to have been subsumed into some commercial modeling systems; for 
example, a task network version of HOS is available from Micro Analysis and Design, Inc. 
(http://www.maad.com/), and its micromodels are used in their Integrated Performance Modeling 
Environment (IPME), as well as CHI System’s COGNET/IGEN produced by CHI Systems 
(http://www.chiinc.com/). 

The task network models also originated in this box-model mode of psychology theory, and 
show it in their lack of psychological constraints; their very generality means they contribute little 
built-in psychological validity. Even if the HOS micromodels are used, the flexibility of the mod-
eling system means that model-builders themselves must identify the psychological processes and 
constraints involved in the task being modeled and program them into the model explicitly.  

Led by Anderson (1983) and Newell (1990) researchers in human cognition and performance 
began to construct models using a cognitive architecture (see Byrne, this volume). Cognitive ar-
chitecture parallels the concept of computer architecture: a cognitive architecture specifies a set of 
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fixed mechanisms, the “hardware”, that comprise the human mind. To construct a model for a 
specific task, the researcher “programs” the architecture by specifying a psychological strategy for 
doing the task, the “software”. (Parameter value settings and other auxiliary information might be 
involved as well.) The architecture provides the coherent theoretical framework within which 
processes and constraints can be proposed and given an explicit and rigorous definition. Several 
proposed cognitive architectures exist in the form of computer simulation packages in which pro-
gramming the architecture is done in the form of production systems, collections of modular if-
then rules, that have proved to be an especially good theoretical model of human procedural 
knowledge. Developing these architectures, and demonstrating their utility, is a continuing re-
search activity (see Byrne, this volume). Not surprisingly, they all have a long way to go before 
they accurately incorporate even a subset of the human abilities and limitations that appear in an 
HCI design context.  

The psychological validity of a model constructed with a cognitive architecture depends on the 
validity of both the architecture and the task-specific programming, so it can be difficult to assign 
credit or blame for success or failure in modeling an individual task. However, the fixed architec-
ture and its associated parameters are supposed to be based on fundamental psychological mecha-
nisms that are required to be invariant across all tasks, while the task-specific programming is free 
to vary with a particular modeled task. To the extent that the architecture is correct, one should be 
able to model any task simply by programming the architecture using only task-analytic informa-
tion and supplying a few task-specific parameters. The value of such architectures lies in this clear 
division between universal and task-specific features of human cognition; the model builder 
should be free to focus solely on the specific task and system under design, and let the architecture 
handle the psychology. 

Achieving this goal in psychological research is a daunting challenge. What about the practical 
sphere? In fact, the role of architectural constraints in some of the extant commercial modeling 
systems is problematic. The task network models basically have such an abstract representation 
that there is no straightforward way for architectural assumptions to constrain the modeling sys-
tem. Once one has opted for representing human activity as a set of arbitrary interconnected task 
processes, there is no easy way to somehow impose more constrained structure and mechanism on 
the system. Attempting to do so simply creates more complexity in the modeling problem - the 
modeler must figure out how to underuse the over-general capabilities of the system in just the 
right way.  

Another commercial system, COGNET/IGEN (see Zachary, Santarelli, Ryder, & Stokes, 2000, 
for a recent and relatively complete description), is in the form of a cognitive architecture, but is a 
very complex one that incorporates a multitude of ideas about human cognition and performance, 
so many that it appears to be rather hard to understand how it works. However, the essence of a 
cognitive architecture is the insistence on a small number of fundamental mechanisms that provide 
a comprehensive and coherent system. For example, several of the scientifically successful cogni-
tive architectures require that all cognitive processing must be expressed in the form of production 
rules that can include only certain things in their conditions and actions. These rules control all of 
the other components in the architecture, which in turn have strictly defined and highly limited 
capabilities. These highly constrained systems have been successful in a wide range of modeling 
problems, so it is difficult to see why a very complex architecture is a better starting point. Again, 
to be useful in both scientific and practical prediction, the possible models must be constrained - 
too many possibilities are not helpful, but harmful.  
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From the point of view of cognitive architectures and the constraints supplied by the architec-
ture, the modeling approaches described in this chapter, as currently implemented, span the range 
from little or no architectural content or constraints (the task network systems), to considerable 
architectural complexity and constraints (the cognitive-architecture systems). GOMS models oc-
cupy an intermediate position: they assume a simplified, but definitely constraining, cognitive 
architecture that allows them to be applied easily by interface designers and still produce usefully 
accurate results. But at the same time, they are less flexible than the modeling systems at the other 
extremes. 

Modeling cognitive versus perceptual-motor aspects of a design 

As pointed out by Byrne (this volume), cognitive architectures have lately begun to incorporate 
not just proposed cognitive mechanisms, but also proposals for perceptual and motor mechanisms 
that act as additional sources of constraint on performance. Calling these a “cognitive” architecture 
is something of a misnomer, since perceptual and motor mechanisms are normally distinguished 
from cognitive ones. However, including perceptual and motor constraints is actually a critical 
requirement for modeling user interfaces; this follows from the traditional characterization of hu-
man-computer interaction in terms of the interactive cycle (Norman, 1986). The user sees some-
thing on the screen if they are looking in the right place and can sense and recognize it, involving 
the perceptual system and associated motor processes such as eye movements. The user decides 
what to do, an exclusively cognitive activity, and then carries out the decision by performing mo-
tor actions that are determined by the physical interaction devices that are present, and may also 
involve the perceptual system, such as visual guidance for mouse pointing.  

Occasionally, the cognitive processes of deciding what to do next can dominate the perceptual 
and motor activities. For example, one mouse click might bring up a screen containing a single 
number, such as a stock price, and the user might think about it for many minutes before simply 
clicking on a “buy” or “sell” button. But much of the time, users engage in a stream of routine 
activities that require only relatively simple cognitive processing, and so the perceptual and motor 
actions take up most of the time and determine most of the task structure. Two implications follow 
from this thumbnail analysis. 

Modeling purely cognitive tasks is generally impractical. Trying to model purely cognitive 
tasks such as human problem-solving, reasoning, or decision-making processes is extremely diffi-
cult because they are so open-ended and unconstrained (see also Landauer, 1995). For example, 
there are a myriad possible ways in which people could decide to buy or sell a stock, and the na-
ture of the task does not set any substantial or observable constraints on how people might make 
such decisions - stock decisions are based on everything from gut feel, to transient financial situa-
tions, to detailed long-term analysis of market trends and individual corporate strategies. Trying to 
identify the strategy that a user population will follow in such tasks is not a routine interface de-
sign problem, but a scientific research problem, or at least a very difficult task analysis problem. 
Fortunately, a routine task analysis may produce enough information to allow the designer to fi-
nesse the problem, that is, side-step it or avoid having to confront it. For example, if one could 
determine what information the stock-trader needs to make the decisions, and then make that in-
formation available in an effective and usable manner, the result will be a highly useful and usable 
system without having to understand exactly how users make their decisions.  

Modeling perceptual-motor activities is critical. A good modeling approach at a minimum 
must explicitly represent the perceptual and motor operations involved in a task. For most sys-



Kieras 11 

tems, the perceptual and motor activities involved in interacting with a computer take relatively 
well-defined amounts of time, are heavily determined by the system design, and frequently domi-
nate the user’s activity; leaving them out of the picture means that the resulting model is likely to 
be seriously inaccurate. For example, if two interface designs differ in how many visual searches 
or mouse points they logically require to complete a task, the one requiring fewer is almost cer-
tainly going to be faster to execute, and will probably have a simpler task structure as well, mean-
ing it will probably be easier to learn and less error-prone. This means that any modeling approach 
that represents the basic timing and the structure of perceptual and motor activity entailed by an 
interface is likely to provide a good approximation to the basic usability characteristics of the in-
terface. 

This conclusion is both good news and bad news. The good news is that since perceptual-
motor activities are relatively easy to model, it can be easy to get fairly reliable and robust model-
based evaluation information in many cases. One reason why GOMS models work so well is that 
they allow the modeler to easily represent perceptual-motor activity fairly completely, with a 
minimum of complications to represent the cognitive activity. The bad news is that different mod-
eling approaches that include perceptual-motor operations are likely to produce similar results in 
many situations, making it difficult to tell which approach is the most accurate.  

This does not mean continuing the effort to develop modeling systems is futile; rather the point 
is that trying to verify or compare models in complex tasks is quite difficult due to practical 
difficulties in both applied and basic research. Despite the considerable effort and expense to 
collect it, data on actual real-world task performance is often lacking in detail, coverage, and 
adequate sample sizes, Even in the laboratory, collecting highly precise, detailed, and complete 
data about task performance is quite difficult, and researchers are typically trapped into using tasks 
that are artificial, performed by non-expert subjects, or trivial relative to actual tasks. There is no 
easy or affordable resolution to this dilemma, so the practitioner who seeks to use models must be 
cautious about claims made by rival modeling approaches, and look first at how they handle 
perceptual-motor activities. The theorist seeking to improve modeling approaches must be 
constantly iterating and integrating over both laboratory and actual applications of modeling 
methods.  

The science base must be visible 

Even though the modeling methodology encapsulates the constraints provided by psychologi-
cal theory, it is critical that the psychological assumptions be accessible, justified, and intelligible. 
An architecture is the best way to do this, because the psychological assumptions are either hard-
wired into the modeling system architecture, or are explicitly stated in the task-specific program-
ming supplied by the modeler. The basis for the task-specific programming is the task analysis 
obtained during the overall design process, and the basis for the architecture is a documented syn-
thesis of the scientific literature. 

The importance of the documented synthesis of the scientific literature cannot be overstated. 
The science of human cognition and performance that is relevant to system design is not at all 
“finished”; important new results are constantly appearing, and many long-documented phenom-
ena are incompletely understood. Thus any modeling system will have to be updated repeatedly as 
these theoretical and empirical issues are thrashed out, and it will have to be kept clear which re-
sults it incorporates and which it does not.  

The commercial modeling tools have seriously lagged behind the scientific literature; while 
some conservatism would be desirable to damp out some of the volatility in scientific work, the 
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problem is not just conservatism, but rather obsolescence, as in the case of the micromodels inher-
ited from HOS. Perhaps these systems would still be adequate for practical work but, unfortu-
nately, it is very difficult to get a scientific perspective on their adequacy because they have been 
neither described nor tested in forums and under ground rules similar to those used for mainstream 
scientific work in human cognition and performance. Thus they have not been subject to the full 
presentation, strict review, criticism, and evolution that are characteristic of the cognitive architec-
ture and GOMS model work. The practitioner should therefore greet the claims of commercial 
modeling system with healthy skepticism, and developers of modeling systems should participate 
more completely in the open scientific process. 

The value of generativity 

It is useful if a modeling method is generative, meaning that a single model can generate pre-
dicted human behavior for a whole class of scenarios, where a scenario is defined solely in terms 
of the sequence of input events or the specifications for a task situation, neither of which specifies 
the behavior the user is expected to produce. Many familiar modeling methods, including the Key-
stroke-Level type of GOMS model, are non-generative, in that they start with a specific scenario 
in which the model builder has specified, usually manually, what the user’s actions are supposed 
to be for the specified inputs. A non-generative model predicts metrics defined only over this par-
ticular input-output sequence. To see what the results would be for a different scenario, a whole 
new model must be constructed (though parts might be duplicated). Since non-generative model-
ing methods are typically labor intensive, involving a manual assignment of user actions to each 
input-output event, they tend to sharply limit how many scenarios are considered, which can be 
very risky in complex or critical design problems.  

An example of a sophisticated non-generative modeling method is the CPM-GOMS models 
developed by Gray, John, & Atwood (1993) to model telephone operator tasks. These models de-
composed each task scenario into a set of operations performed by perceptual, cognitive, and mo-
tor processors likes those proposed in the Card, Moran, and Newell (1983) Model Human Proces-
sor. The sequential dependencies and time durations of these operations were represented with a 
PERT chart, which then specified the total task time, and whose critical path revealed the process-
ing bottlenecks in task performance. Such models are non-generative in that a different scenario 
with a different pattern of events requires a different PERT chart to represent the different set of 
process dependencies. Since there is a chart for each scenario, predicting the time for a new sce-
nario, or different interface design, requires creating a new chart to fit the new sequence of events. 
However, a new chart can often be assembled from templates or portions of previous charts, sav-
ing considerable effort (see John & Kieras, 1996a,b for more detail). In addition, computational 
tools for modeling based on directly representing the sequential constraints implied by a cognitive 
architecture are under development and may substantially simplify the construction of such mod-
els (e.g. John, Vera, Matessa, Freed, & Remington, 2002; Vera, Howes, McCurdy, & Lewis, 
2004). 

However, if a model is generative, a single model can produce predicted usability results for 
any relevant scenario, just like a computer program for calculating the mean of a set of numbers 
can be applied to any specific set of values. A typical Hierarchical Task Analysis (HTA), (see 
Annett, Duncan, Stammers, and Gray, 1971; Kirwan & Ainsworth, 1992) results in a generative 
representation, in that the HTA chart can be followed to perform the task in any subsumed situa-
tion. The forms of GOMS models that explicitly represent methods (see John & Kieras, 1996a,b) 
are also generative. The typical cognitive-architecture model is generative in that it is programmed 
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to perform the cognitive processes necessary to decide how to respond appropriately to any possi-
ble input that might occur in the task. In essence, the model programming expresses the general 
procedural knowledge required to perform the task, and the architecture, when executing this 
procedural knowledge, supplies all of the details; the result is that the model responds with a 
different specific time sequence of actions to different specific situations.  

For example, Kieras, Wood, & Meyer (1997) used a cognitive architecture to construct a pro-
duction-rule model of some of the telephone operator tasks studied by Gray, John, & Atwood 
(1993). Because the model consisted of a general “program” for doing the tasks, it would behave 
differently depending on the details of the input events; for example, greeting a customer differ-
ently depending on information on the display, and punching function keys and entering data de-
pending on what the customer says and requires. Thus the specific behavior and its time course of 
the model depend on the specific inputs, in a way expressed by a single set of general procedures. 

A generative model is typically more difficult to construct initially, but because it is not bound 
to a specific scenario, it can be directly applied to a large selection of scenarios to provide a 
comprehensive analysis of complex tasks. The technique is especially powerful if the model runs 
as a computer simulation in which there is a simulated device that represents how the scenario data 
results in specific display events and governs how the system will respond to the user, and the 
simulated human, which is the model of how the user will perform the task.  The different scenar-
ios are just the input data for the simulation, which produces the predicted behavior for each one. 
Furthermore, because generative models represent the procedural knowledge of the user explicitly, 
they readily satisfy the desirable property of models described above: the content of a generative 
model can be inspected to see how a design “works” and what procedures the user must know and 
execute. 

The role of detail 

In the initial presentation above, the reader may have noticed the emphasis on the role of de-
tailed description, both of the user’s task and the proposed interface design. Modeling has some-
times been criticized because it appears to be unduly labor intensive. Building a model and using it 
to obtain predictions may indeed involve substantial detail work. However, working out the details 
about the user’s task and the interface design is, or should be, a necessary part of any interface 
design approach; the usability lies in the details, not the generalities (Whiteside, Jones, Levy, & 
Wixon, 1985). If the user’s task has not been described in detail, chances are that the task analysis 
is inadequate and a successful interface will be more difficult to achieve; extra design iterations 
may be required to discover and correct deficiencies in the original understanding of the user’s 
needs. If the interface designer has not worked out the interface design in detail, the prospects of 
success are especially poor. The final form of an interface reflects a mass of detailed design deci-
sions; these should have been explicitly made by an interface designer whose focus is on the user, 
rather than the programmers who happen to write the interface code. So the designer has to de-
velop this detail as part of any successful design effort. In short, using model-based evaluation 
does not require any more detail than should be available anyway; it just requires that this detail be 
developed more explicitly and perhaps earlier than is often the case. 

Cognitive architectures are committed to detail. Cognitive architecture systems are primarily 
research systems dedicated to synthesizing and testing basic psychological theory. Because they 
have a heavy commitment to characterizing the human cognitive architecture in detail, they natu-
rally work at an extremely detailed level. The current cognitive architecture systems differ widely 
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in the extent to which they incorporate the most potent source of practical constraints, namely per-
ceptual-motor constraints, but at the same time, they are committed to enabling the representation 
of a comprehensive range of very complex cognitive processes, ranging from multitask perform-
ance to problem-solving and learning. Thus these systems are generally very flexible in what cog-
nitive processes they can represent within their otherwise very constrained architectures.  

However, the detail has a downside. Cognitive architectures are typically difficult to program, 
even for simple tasks, and have the further drawback that, as a consequence of their detail, cur-
rently unresolved psychological issues can become exposed to the modeler for resolution. For ex-
ample, the nature of visual short-term memory is rather poorly understood at this time, and no 
current architecture has an empirically sound representation of it. Using one of the current archi-
tectures to model a task in which visual short-term memory appears to be prominent might require 
many detailed assumptions about how it works and is used in the task, and these assumptions typi-
cally cannot be tested within the modeling project itself. One reason why is the difficulty dis-
cussed above of getting high-precision data for complex tasks. But the more serious reason is that 
in a design context, data to test the model is normally not available because there is not yet a sys-
tem to collect the data with! Less detailed modeling approaches such as GOMS may not be any 
more accurate, but they at least have the virtue of not side-tracking the modeler into time-
consuming detailed guesswork or speculation about fundamental issues. See Kieras (2005b) for 
more discussion. 

Task networks can be used before detailed design. Although model-based evaluation works 
best for detailed designs, the task network modeling techniques were developed to assist in design 
stages before detailed design, especially for complex military systems. For example, task network 
modeling was used to determine how many human operators would be required to properly man a 
new combat helicopter. Too many operators drastically increases the cost and size of the aircraft; 
too few means the helicopter could not be operated successfully or safely. Thus questions at these 
stages of design are what capacity (in terms of the number of people or machines) is needed to 
handle the workload, and what kinds of work needs to be performed by the each person or ma-
chine.  

In outline, these early design stages involve first selecting a mission profile, essentially a high-
level scenario that describes what the system and its operators must accomplish in a typical mis-
sion, then developing a basic functional analysis that determines the functions (large-scale opera-
tions) that must be performed to accomplish the mission, and what their interactions and depend-
encies are. Then the candidate high-level design consists of a tentative function allocation to de-
termine which human operator or machine will perform each function (see Beevis, Bost, Doering, 
Nordo, Oberman, Papin, Schuffel, & Streets, 1992). The task network model can then be set up to 
include the tasks and their dependencies, and simulations run to determine execution times and 
compute workload metrics based on the workload characteristics of each task. 

Clearly, entertaining detailed designs for each operator’s controls or workstation is pointless 
until such a high-level analysis determines how many operators there will be and what tasks they 
are responsible for. Note that the cognitive-architecture and GOMS models are inherently limited 
to predicting performance in detailed designs, because their basic logic is to use the exact se-
quence of activities required in a task to determine the sequence of primitive operations. However, 
as will be discussed below, recent work with high-level GOMS models suggests an alternative ap-
proach in which a GOMS model using abstract or high-level operators to interact with the device 
can be developed first, and then elaborated into a model for a specific interface as the design takes 
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shape. But at this time, for high-level design modeling, the task-network models appear to be the 
best, or only, choice. 

However, there are limitations that must be clearly understood. The ability of the task network 
models to represent a design at these earliest stages is a direct consequence of the fact that these 
modeling methods do not have any detailed mechanisms or constraints for representing human 
cognition and performance. Recall that the tasks in the network can consist of any arbitrary proc-
ess whose execution characteristics can follow any desired distribution. Thus the tasks and their 
parameters can be freely chosen without any regard to how a human will be actually do them in 
the final version of the system. Hence this early-design capability is a result of a lack of theoretical 
content in the modeling system itself. 

While the choice of tasks in a network model is based on a task analysis, the time distribution 
parameters are more problematic - how does one estimate the time required for a human to per-
form a process specified only in the most general terms? One way is to rely on empirical meas-
urements of similar tasks performed in similar systems, but this requires that the new system must 
be similar to a previous system not only at the task-function level, but at least roughly at the level 
of design details.  

Given the difficulty of arriving at task parameter estimates rigorously, a commonly applied 
technique is to ask a subject matter expert to supply subjective estimates of task time means and 
standard deviations and workload parameters. When used in this way, a task-network model is 
essentially a mathematically straightforward way to start with estimates of individual subtask per-
formance, with no restrictions on the origin or quality of these estimates, and then to combine 
them to arrive at performance estimates for the entire task and system.  

Clearly, basing major design decisions on an aggregation of mere subjective estimates is 
hardly ideal, but as long as a detailed design or preexisting system is not available, there is really 
no alternative to guide early design. In the absence of such analyses, system developers would 
have to choose an early design based on “gut feel” about the entire design, which is surely more 
dangerous. 

Note that if there is a detailed design available, the task-network modeler could decompose the 
task structure down to a fine enough level to make use of basic human performance parameters, 
similar to those used in the cognitive-architecture and GOMS models. For example, some com-
mercial tools supply the HOS micromodels. However, it is hard to see the advantage in using task 
network models for detailed design. The networks and their supplementary executable code do not 
seem to be a superior way to represent task procedures compared to the computer-program-like 
format of some GOMS models or the highly flexible and modular structure of production systems.  

Another option would be to construct GOMS or cognitive architecture models to produce time 
estimates for the individual tasks, and use these in the network model instead of subjective esti-
mates. This might be useful if only part of the design has been detailed, but otherwise, staying 
with a single modeling approach would surely be simpler. If one believes that interface usability is 
mostly a matter of getting the details right, along the lines originally argued by Whiteside, Jones, 
Levy, & Wixon (1985) and verified by many experiences in user testing, modeling approaches 
that naturally and conveniently work at a detailed design level will be especially valuable. 
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Practical Issues in Applying a Model-based Evaluation 
Technique 

Once a model-based evaluation technique is chosen, there are some practical issues that arise 
in seeking to apply the technique to a particular user interface design situation. This section pre-
sents several of these issues.  

Creating the Simulated Device 

As mentioned above, the basic structure of a model used for evaluation is that a simulated hu-
man representing the user is interacting with a simulated device that represents the system under 
design. In a parallel with Norman’s interactive cycle, the simulated human receives simulated vis-
ual and auditory input from the simulated device, and responds with simulated actions that provide 
input to the simulated device, which can then respond with different visual and auditory inputs to 
the human. Depending on the level of generativity and fidelity of the model, the simulated device 
can range from being a dummy device that does nothing in response to the simulated human inter-
action, to a highly detailed simulation of the device interface and functionality.  An example of a 
dummy device is the device that is assumed in the Keystroke-Level Model, which is not at all ex-
plicitly defined; the modeler simply assumes that a specific sequence of user actions will result in 
the device doing the correct thing. At the other extreme are models such as the ones used by 
Kieras & Santoro (2004), which actually implemented significant portions of the logical function-
ality of a complex radar workstation and the domain of moving aircraft and ships. In modeling 
situations where a generative model is called for, namely a complex task domain with multiple or 
lengthy detailed scenarios, a fully simulated device is the most convenient way to ensure that a 
simulated human is in fact performing the task correctly, and to easily work with more than one 
scenario for the task situation.  

It is important to realize that the simulated device is not required to implement the actual inter-
face whose design is being evaluated. Rather, it suffices to produce abstract psychological inputs 
to the simulated human. For example, if a red circle is supposed to appear on the screen, the simu-
lated device can merely signal the simulated human with an abstract description that an object has 
appeared at certain (x, y) coordinates that has a “shape” of “circle”, and a “color” of “red.” It is not 
at all necessary for the simulated device to actually produce a human-viewable graphical display 
containing a circular red area at a certain position. 

A lesson learned by Kieras and Santoro (2004) was that the effort required to construct even 
such an abstract simulated device in a complex domain is a major part of the modeling effort, and 
is more difficult in some ways than constructing the models of the simulated users! Clearly, to 
some extent, this effort is redundant with the effort required to develop the actual system, and so 
can undermine the rationale for modeling early the design and development process.  

A common response to this problem is to seek to connect the cognitive architecture directly to 
an intact application or system prototype that plays the role of the simulated device, in short re-
placing the simulated device with an actual device.  Work such as St. Amant and Reidl (2001) 
provides a pathway for interfacing to an intact application: the technique is basically to use the 
existing API of the application platform (e.g. Windows) to capture the screen bitmap and run vis-
ual object recognition algorithms on it to produce the description of the visual inputs to the simu-
lated human, and outputs from the simulated human can be directly supplied to the platform to 
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produce keyboard input or to control the cursor position. Even for the limited domain of Windows 
applications using the standard GUI objects, this is technically challenging, but quite feasible.  

A less ambitious approach is instead of connecting to an intact application program, to instru-
ment a prototype version of the interface, so that for example, when the prototype causes a certain 
object to appear on the screen, the simulated human is supplied with the visual input description. 
Given the considerable variety in how GUIs are implemented, this solution is not very general, but 
does have interesting solutions if the application prototype is programmed in Java, html, or similar 
cross-platform languages or general-purpose tools that can be used for prototyping. A good exam-
ple is the html-based modeling tool described in John, Prevas, Salvucci, and Koedinger (2004). 

However, both of these methods of coupling a user model to an application suffer from an eas-
ily overlooked limitation: The time when modeling is most useful is early in design, before the 
system has been prototyped. Thus because coupling to a prototype or an application can only hap-
pen late in the development process or after development, these approaches come too late to pro-
vide the most benefit of model-based evaluation.  

Thus multiple approaches for creating the simulated device are both possible and needed: If the 
design questions can be answered with evaluation techniques such as the Keystroke-Level Model, 
then no simulated device is needed at all. If the model is for an existing application, coupling to 
the intact application is clearly the best solution. If a prototype is going to be constructed at this 
point in the design process anyway, using it as the simulated device is the best solution. But in the 
potentially most useful case, the simulated device must be created before any prototype or final 
application, making the fewest possible commitments to prototyping or coding effort; this requires 
constructing a simulated device from scratch, stripped down to the bare minimum necessary to 
allow a candidate design to interact with the simulated user. The next sections provide some ad-
vice on this process. 

How to simplify the simulated device. Distinguish between device behavior that is relevant to 
the modeling effort and that which is not. Basically, if the simulated human will not use or re-
spond to certain behaviors of the simulated device, then the simulated device does not need to 
produce those behaviors. A similar argument applies to the amount of detail in the behavior. Of 
course, as the interface design is elaborated, the simulated device may need to cover more aspects 
of the task. Good programming techniques will make it easy to extend the simulated device as 
needed; a good programmer on the project is a definite asset. 

Distinguish between what the device has to provide to the simulated human, and what would 
be a convenience to the modeler. That is, while the device can be supplied with abstract descrip-
tions, an actual graphical display of what the simulated device is displaying can be a very useful 
tool for the modeler in monitoring, debugging, or demonstrating the model. A very crude general-
purpose display module that shows what the simulated human “sees” will suffice for these pur-
poses, and can be reasonably easy to provide in a form that is re-usable for a variety of simulation 
projects. However, developing this handy display should be recognized as an optional conven-
ience, rather than an essential part of the simulated device. 

Since programming the simulated device can be a significant programming effort, an attractive 
simplification would be a programming language that is specialized for describing abstract device 
behavior. Clearly, using such a language could be valuable if the modeling system already pro-
vides it and it is adequate for the purpose, especially if the device programming language can gen-
erates a prototype for the interface that can be directly coupled to the simulated human, moving 



Kieras 18 

the whole process along rapidly. An extensive project involving many different but similar inter-
face designs would profit especially if the language matches the problem domain well.  

However, in less than ideal situations, a specialized language is unlikely to be an advantage. 
The reason is that to cover the full span of devices that might need to be simulated, the device 
programming language will have to include a full set of general programming language facilities. 
For example, to handle the Kieras & Santoro (2004) domain, trigonometric functions are needed 
to calculate courses and trajectories, and containers of complex objects are required to keep track 
of the separate aircraft and their properties. Thus specialized languages will inevitably have to 
include most of the same feature set as general-purpose programming languages, meaning that the 
developers of modeling systems will have to develop, document, maintain, and support with edi-
tors and debuggers a full-fledged programming language. This takes effort away from the func-
tions that are unique to human performance modeling systems, such as ensuring that the psychol-
ogy is correctly represented. In addition, the modeler will also have to expend the time and effort 
necessary to learn a specialized language whose complexity is similar to a general-purpose pro-
gramming language, also taking effort away from unique aspects of the modeling effort. 

A better choice would be to provide for the device to be programmed easily in a standard gen-
eral-purpose programming language that modelers can (or should) know anyway, allowing re-use 
of not just the modeler’s skills, but existing programming tools and education resources as well. A 
well-designed modeling system can ensure that a minimum of system-specific knowledge must be 
acquired before coding can begin. 

Identifying the Task Strategy 

A task analysis does not necessarily specify a task strategy. Human performance in a task is 
determined by: (1) the logical requirements of the task - what the human is supposed to accom-
plish, as determined by a task analysis; (2) the human cognitive architecture - the basic mecha-
nisms available to produce behavior; and (3) a specific strategy for doing the task - given the task 
requirements, and the architecture, what should be done in what order and at what time to com-
plete the task. Thus to construct a model for doing the task, one must first understand the task, 
then choose an architecture, and then choose a strategy to specify how the architecture will be 
used to accomplish the task. Identifying this strategy is the critical prerequisite for constructing a 
model.  

Normal task analysis methods, such as those described in sources such as (Kirwan & Ains-
worth, 1992; Beevis, et al, 1992; Diaper & Stanton, 2004), do not necessarily identify the exact 
sequence of actions to perform with the interface under design, and they rarely specify the timing 
of actions. For example, anyone who has made coffee with a home coffee maker knows that there 
are certain constraints that must be met, but there is still considerable variation in the sequence and 
time in which the individual required steps could be performed. In fact, there can be variation on 
how the activity is organized; for example, one strategy is to use the visible state of the coffee 
maker as an external memory to determine which actions should be performed next (Larkin, 
1989). A normal task analysis will not identify these variations. But even further, task analysis 
will not necessarily identify how any trade-offs should be decided, even as basic as speed vs. ac-
curacy, much less more global problems such as managing workload, dealing with multiple task 
priorities, and so forth.  

Thus to model a human performing in such situations, some additional information beyond a 
normal task analysis has to be added, namely the specific task strategies that are used to accom-
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plish the tasks. Conversely, the performance that a human can produce in a task can vary over a 
wide range depending on the specific strategy that is used, and this is true over the range of tasks 
from elementary psychology laboratory tasks to highly complex real-world tasks (Kieras & 
Meyer, 2000). This raises a general problem: Given that we have a model that predicts perform-
ance on an interface design, how do we distinguish the effects of the interface design from the 
effects of the particular strategy for using the interface? Not only does this apply to the model per-
formance, but also to the human’s performance. It has always been clear that clever and experi-
enced users could get a lot out of a poorly designed system, and even a reasonably well-designed 
powerful system could be seriously under-used (Bhavnani & John, 1996).  How can we predict 
performance without knowing the actual task strategy, and how does our model’s task strategy 
relate to the actual user’s task strategy? 

Difficulties in identifying task strategy. The state of the art in cognitive modeling research for 
identifying a task strategy is to choose a candidate intuitively, build the model using the strategy, 
evaluate the goodness of fit to data, and then choose a better strategy and repeat until a satisfactory 
fit is obtained. If there is adequate detail in the data, such as the sequence of activities, it might be 
possible to make good initial guesses at the task strategy and then revise these through the model-
ing process. This iterative refinement process is known to be very slow, but more seriously, in 
system design we normally do not have data to fit a model to - this is what the modeling is sup-
posed to replace. The task strategy has to be chosen in the absence of such data. 

Another approach is to get the task strategy by knowledge engineering techniques with existing 
task performers or other sources such as training materials. As will be argued below, it is espe-
cially important to identify the best (or at least a good) strategy for doing the task. But a good 
strategy for doing a task is often not obvious, even to experts. Even highly experienced people do 
not always know or use the best procedures; even the trainers may not know them, and it is com-
mon to discover that procedural training materials present suboptimal methods. Finally, and again 
most importantly, if the system is new, there are no experts or training materials to consult to see 
how it is used. 

 A heuristic: Model what users should do. Given the obstacles to identifying task strategies, 
how do we find out what strategies users will follow in using the system under development? The 
short answer is that it is too hard to find out within the constraints of a design process. Instead, 
start from the design goals that the system is supposed to meet, and assume that users will be using 
the system like it is supposed to be used. For example, if the system provides a feature that is sup-
posed  to allow the user to perform a certain task easily, assume that the simulated user will use 
that feature in the intended fashion. This is essentially a best-case analysis of the ability of the user 
to make use of the interface design. If the usability under these conditions is too low, then it would 
certainly be inadequate when used by actual users! It is a separate issue whether the users can or 
will use the system in this intended way, and the failures can be dramatic and serious (Bhavnani & 
John, 1996). Whether users use a system in the intended way depends on several factors: problems 
in the learnability of the design, which some models (see John & Kieras, 1996a,b) can predict; the 
quality of the training materials, which also can be improved with modeling (see John & Kieras, 
1996a,b); and perhaps most importantly, matters beyond the scope of model-based evaluation, 
such as whether users have the opportunity or incentive to take full advantage of the system. Fi-
nally, there is no point to trying to improve a system under the assumption that users will ignore 
the capabilities that it provides. Thus, in terms of choosing a task strategy to model for design 
evaluation, the most effective approach is to assume that the design will be used as intended. Not 
only will this strategy be the easiest to identify and implement, but it is also most directly relevant 
to evaluating the design! 
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Within this basic strategy, there is another range of variation, which is whether the user at-
tempts to perform at the highest possible level, or simply satisfices by performing at some ade-
quate level. That is, people can use clever low-level strategies (what Gray & Boehm-Davis (2000) 
termed microstrategies), to greatly improve performance. For example, if the task is to classify 
“blips” on a radar display, the user can speed up considerably by looking for the next blip to in-
spect while still hitting the keys to respond to the previous one (Kieras, Meyer, & Ballas, 2001). 
On the other hand, the user is performing reasonably if they finish each blip before going on to the 
next one.  Kieras & Meyer (2000) pointed out that in a variety of even elementary laboratory 
tasks, subjects do not always adopt high-performance strategies, even when large improvements 
would result; they are optional, not mandatory.  So even if we are willing to assume that the de-
sign will be used as intended, how do we know whether the actual users will be going “all out” 
with a clever strategy versus just “getting the job done?” Again, the short answer is that it is too 
difficult to find out, especially in a design process where the system does not yet exist.  

In response to this quandary, Kieras and Meyer (2000) proposed the bracketing heuristic. Con-
struct a base model in which the user performs the task in a straightforward way using the inter-
face as designed, but without any special strategic optimizations, a slowest-reasonable model. 
Derive from this a fastest-possible model that performs the task at the maximum performance 
level allowed by the cognitive architecture used for the model. The two models should bracket the 
actual user’s future performance. If both models produce adequate performance, then the design 
should be adequate; if both produce inadequate performance, then the design needs to be im-
proved. If the slowest-reasonable model is inadequate, but the fastest-possible model is acceptable, 
boosting the level of training or perhaps motivation of the user might result in satisfactory per-
formance, although clearly improving the design would be a more robust solution.  

Concerns over Model Validity 

Can You Believe the Model? Suppose a model implies critical design choices. Should you fol-
low them? A poor response is to build and test prototypes just as if no modeling had been done. It 
could be argued that the modeling might have clarified the situation, but the purpose of model-
based evaluation is to reduce the amount of prototyping and user testing required to refine a de-
sign. So this response under-utilizes the approach. 

A better response to the situation is to understand how the model implies the design choices - 
what aspects of the model are contributing to the outcome? This can be done by profiling the 
model processing and analyzing the model structure. If the critical aspects of the model are known 
to be valid and appear to be properly represented, then the model results should be accepted. For 
example, perhaps one design is slower than the other simply because it turns out that more naviga-
tion through menus is required; the model processes involved are relatively simple and adequately 
validated in the literature. However, if the relevant aspects of the model are problematic, the result 
needs further study. For example, suppose the model for the better of two designs differs from the 
poorer design in assuming that the user can remember all of the information about previously in-
spected screen objects, and so does not need to search the screen again when the information is 
needed later. Because the bounds on visual memory are unclear, as discussed above, the modeling 
architecture might not enforce any bounds. Thus the modeling result is suspicious for this reason, 
and the bounds might be much smaller than the model assumes. The modeler could then perform a 
sensitivity analysis to reveal how much the design choice might be affected by the problematic 
assumption. For example, the model could be modified to vary the number of previous inspected 
objects that could be remembered. At what value does this parameter change which design is pre-
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dicted to be better? If the decision is not very sensitive to this parameter (for example, because the 
effects are minor compared to the total time involved, or there are other improvements in the bet-
ter design), then choosing the better design is a reasonably safe decision.  

If the decision turns out to be sensitive to the problematic model assumption, then the situation 
becomes quite difficult. One possible solution is to remove the problematic aspect of the model by 
changing it in the direction of less human capability; this is both a conservative strategy and might 
be appropriate if the user will be under stress as well. But if data or theory is available that re-
solves the issue, the modeler can go beyond the normal model-based process and modify the 
model or architecture to incorporate the more accurate psychological information.  

Should you validate the model? Remember that testing with real users must be done sometime 
in the development process, because the models do not cover all of the design issues, and are only 
approximate where they do apply and, like any analytic method, can be misapplied. The model can 
thus be validated after use by comparing the final user test results to the model predictions; this 
will reveal problems in the accuracy of the model and its application to the design; any modeling 
mistakes and design errors can then be corrected for the future. 

However, should special data to validate the model be collected prior to using it to guide the 
design? While it would seem to be a good idea to validate a model before using it, the answer 
really should be no because validation is not supposed to be a normal part of using a predictive 
model of human performance. The whole idea of model-based evaluation is to avoid data collec-
tion during design. Only the developers of the modeling methodology are supposed to be con-
cerned about the validity, not the user of the methodology.  

There are a couple of special cases about data collection that need discussion. One is data col-
lection to provide basic parameter values for modeling, such as how long it takes the user to input 
characters with a novel device. If the parameters concern low-level processes, the data collection 
is independent of a specific design and will be generally useful for many different modeling appli-
cations. The second special case is data collection to support modeling how an existing system is 
actually being used. Such a model cannot be constructed a priori, but rather must be based on data 
about how actual users interact with the actual system. Due to the uncertainties involved in con-
structing a model based on human behavior, the model will have to be validated with a suitably 
complete and reliable data set before it can be taken as a usefully accurate model. This purpose of 
modeling is very different from the model-based evaluation approach presented in this chapter: 
instead of serving as a guide for designing a new system and a surrogate for user testing, the 
model is an explanation and characterization of observed behavior; it might serve as a guide for a 
new design, but only in the sense of characterizing the current situation that we want to improve 
upon. The model itself will not directly apply to the new design. In short, modeling the actual use 
of an existing system has very different methods, goals, and applications from modeling the usage 
of a system being designed.  

But if in spite of all of the above considerations, the validity of the model is in question, then it 
needs to be realized that a data set adequate for a scientifically sound test of validity must be much 
more controlled and detailed than normal user testing data, and can be very difficult to collect in 
the context of a development project. Furthermore, if the resources are available to do such data 
collection and analysis before the final stages of development, what function is served by model-
ing? If the model validity would be in doubt, couldn’t the data collection resources be better de-
voted to user testing? 
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To elaborate on the difficulty of collecting adequate validation data, while all would agree that 
a model is almost certainly incorrect at some level, it is often mistakenly assumed that collecting 
empirical data on human performance in complex tasks is a royal road to certainty. Rather, as 
pointed out in Kieras & Santoro (2004), complex real-world tasks involve subtle user strategies, 
team interactions, influences of background knowledge, and the specifics of the scenarios. Such 
experiments are extremely slow and expensive to conduct, even with small samples, where the 
reliability of the results then comes into question. Clearly, it is not practical to run experiments 
using many scenarios, every reasonable design variation, every candidate team organization, and 
ample numbers of subjects. Furthermore, even for a well-chosen subset of these possibilities, it 
may be difficult to understand why people did what they did in the tasks - asking them is usually 
ambiguous at best, and their strategies might be idiosyncratic. Thus, the reliability, generalizabil-
ity, and even the meaning of the data can be difficult to determine. In fact, it can be difficult to 
ensure that the model and the experiment are even relevant to each other. For example (see Kieras 
& Santoro, 2004), if the model is based on what users should do in the task and the test users don’t 
follow the strategy that the model follows, then the failure of the model to behave the same way as 
the test users is actually irrelevant - the data is “wrong”, not the model! Thus, even if deemed ap-
propriate, attempting to validate a model of a complex task is likely to be impractically difficult 
for a normal development process.  

Summary: Assessing model validity. Instead of collecting data to validate the model, assess its 
validity in terms of whether it meets the following basic requirements: (1) Is the model strategy 
based on an analysis of what users should do? If not, it is a poor choice to inform the design of a 
new system. (2) Is it likely that users can or will follow the same strategy as the model? If not, 
then the model is irrelevant - either the model was misconstructed or the design is fundamentally 
wrong. (3) Are the assumptions about human abilities in the model plausible? If not, see the earlier 
suggestions. If the answer to all three questions is yes, then the model results can be accepted as 
useful guidance for the design decisions without special validation efforts. Of course, it needs to 
be kept in mind that the model might be seriously incorrect, but modeling is not supposed to be 
perfect; it suffices merely that it help a design process. 

GOMS Models: A Ready-to-Use Approach 
As summarized above, GOMS is an approach to describing the knowledge of procedures that a 

user must have in order to operate a system. The different types of GOMS models differ in the 
specifics of how the methods and sequences of operators are represented. The aforementioned 
CPM-GOMS model represents a specific sequence of activity in terms of the cognitive, percep-
tual, and motor operators performed in the context of a simple model of human information proc-
essing. At the other extreme of detail, the Keystroke-Level Model (Card, Moran, & Newell, 1980) 
is likewise based on a specific sequence of activities, but these are limited to the overt keystroke-
level operators (i.e. easily observable actions at the level of keystrokes, mouse moves, finding 
something on the screen, turning a page, and so forth). The task execution time can be predicted 
by simply looking up a standardized time estimate for each operator and then summing the times. 
The Keystroke-Level Model has a long string of successes to its credit (see John & Kieras, 1996a). 
Without a doubt, if the design question involves which alternative design is faster in fairly simple 
situations, there is no excuse for measuring or guessing when a few simple calculations will pro-
duce a usefully accurate answer. 
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It is easy to generalize the Keystroke-Level Model somewhat to apply to more than one spe-
cific sequence of operators. For example, if the scenario calls for typing in some variable number 
of strings of text, the model can be parameterized by the number of strings and their length. How-
ever, if the situation calls for complex branching or iteration, and clearly involves some kind of 
hierarchy of task procedures, such sequence-based models become quite awkward and a more 
generative form of model is required.  

The generative forms of GOMS models are those in which the procedural knowledge is repre-
sented in a form resembling an ordinary computer programming language, and are written in a 
fairly general sort of way. This form of GOMS model can be applied to many conventional desk-
top computing interface design situations. It was originally presented in Card, Moran, and Newell 
(1983, Ch. 5), and further developed by Kieras, Polson, and Bovair (Kieras & Polson, 1985; Pol-
son, 1987; Bovair, Kieras, & Polson, 1990), who provided a translation between GOMS models 
and the production-rule representations popular in several cognitive architectures and demon-
strated how these models could be used to predict learning and execution times. Kieras (1988, 
1997) proposed a structured-natural-language notation, NGOMSL (“Natural” GOMS Language), 
which preserved the empirical content of the production-rule representation, but resembled a con-
ventional procedural programming language. This notation was later formalized into a fully execu-
table form, GOMSL (GOMS Language), for use in computer simulation tools that implement a 
simplified cognitive architecture that incorporates a simple hierarchical-sequential flow of control 
(Kieras, Wood, Abotel, & Hornof, 1995; Kieras, 2005a). This tool has been applied to modeling 
team tasks (e.g. Kieras & Santoro, 2004), and extended to provide analysis of error recovery 
methods supported by error-source heuristics (Wood, 2000). See Baumeister, John, and Byrne 
(2000) for a survey of computer tools for GOMS modeling.  

Continuing the analogy with conventional computer programming languages, in generative 
GOMS models, the operators are like the primitive operations in a programming language; meth-
ods are like functions or subroutines that are called to accomplish a particular goal, with individual 
steps or statements containing the operators, which are executed one at a time, as in a conventional 
programming language. Methods can assert a sub-goal, which amounts to a call of a sub-method, 
in a conventional hierarchical flow of control. When procedural knowledge is represented explic-
itly in this way, and in a format that enforces a uniform “grain size” of the operators and steps in a 
method, then there are characteristics of the representation that relate to usability metrics in 
straightforward ways.  

For example, the collection of methods represents “how to use the system” to accomplish 
goals. If a system requires a large number of lengthy methods, then it will be hard to learn; there is 
literally more required knowledge than for a system with a smaller number or simpler methods. If 
the methods for similar goals are similar, or in fact the same method can be used to accomplish 
different, but similar, goals, then the system is “consistent” in a certain, easily characterized sense: 
in a procedurally consistent system, fewer methods, or unique steps in methods, must be learned to 
cover a set of goals compared to an inconsistent system, and so it is easier to learn. One can liter-
ally count the amount of overlap between the methods to measure procedural consistency.  

Finally, by starting with a goal and the information about the specific situation, one can follow 
the sequence of operators specified by the methods and sub-methods to accomplish the goal. This 
generates the sequence of operators required to accomplish the goal under that specific situation; if 
the methods were written to be adequately general, they should suffice to generate the correct se-
quence of operators for any relevant task situation. The times for the operators in the trace can be 
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summed, as in the Keystroke-Level Model, to obtain a predicted execution time. Details of the 
timing can be examined, or “profiled” to see where the processing bottlenecks are. 

Why GOMS Models Work 

The reasons why GOMS Models have useful predictive and heuristic power in interface design 
can be summarized under three principles: The rationality principle (cf. Card, Moran, & Newell, 
1983) asserts that humans attempt to be efficient given the constraints on their knowledge, ability, 
and the task situation. Generally, when people attempt to accomplish a goal with a computer sys-
tem, they do not engage in behavior that they know is irrelevant or superfluous - they are focused 
on getting the job done. Although they might perform suboptimally due to poor training (see 
Bhavnani & John, 1996) they generally try to work as efficiently as they know how, given the 
system they are working with. How they accomplish a goal depends on the design of the system 
and its interface - for example, in a word-processing system, there are only a certain number of 
sensible ways to delete a word, and the user has some basis for choosing between these that mini-
mizes effort along some dimension. Between these two sets of constraints - the user’s desire to get 
the job done easily and efficiently, and the computer system’s design - there is considerable con-
straint on the possible user actions. This means that we can predict user behavior and performance 
at a useful level of accuracy just from the design of the system and an analysis of the user’s task 
goals and situation. A GOMS model is one way of combining this information to produce pre-
dicted performance. 

Procedural primacy is the claim that regardless of what else is involved in using a system, at 
some level the user must infer, learn, and execute procedures in order to accomplish goals using 
the system. That is, computers are not used purely passively - the user has to do something with 
them, and this activity takes the form of a procedure that the user must acquire and execute. Note 
that even display-only systems still require some procedural knowledge for visual search - for ex-
ample, making use of the flight status displays at an airport requires choosing and following some 
procedure for finding one’s flight and extracting the desired information - different airlines use 
different display organizations, some of which are probably more usable than others. Because the 
user must always acquire and follow procedures, the complexity of the procedures entailed by an 
interface design is therefore related to the difficulty of using the interface. While other aspects of 
usability are important, the procedural aspect is always present. Therefore, analyzing the proce-
dural requirements of an interface design with a technique such as GOMS will provide critical 
information on the usability of the design. 

Explicit representation refers to the fact that any attempt to assess something benefits from be-
ing explicit and clear and relying on some form of written formalized expression. Thus all task 
analysis techniques (Kirwan & Ainsworth, 1992; Beevis et al., 1992; Diaper & Stanton, 2004) 
involve some way to express aspects of a user’s task. Likewise, capturing the procedural implica-
tions of an interface design will benefit from representing the procedures explicitly in a form that 
allows them to be inspected and manipulated. Hence GOMS models involve writing out user pro-
cedures in a complete, accurate, and detailed form. By doing so in a specified format, it becomes 
possible to define metrics over the representation (e.g. counting the number of statements) that can 
be calibrated against empirical measurements to provide predictions of usability. Moreover, by 
making user procedures explicit, the designer can then apply the same kinds of intuition and heu-
ristics used in the design of software: clumsy, convoluted, inconsistent, and “ugly” user proce-
dures can often be spotted and corrected just like poorly written computer code. Thus by writing 
out user procedures in a notation like GOMS, the designer can often detect and correct usability 
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problems without even performing the calculations. This approach can be applied immediately 
after a task analysis to help choose the functionality behind the interface, as well as to help in the 
initial design decisions (Kieras, 2004). Work in progress consists of adding high-level operators to 
a GOMSL and GLEAN (see Kieras, 2005b) to directly support a “seamless” transition of compu-
tational modeling from the task and functionality level of analysis down to detailed design. 

Limitations of GOMS Models 

GOMS models address only the procedural aspects of a computer interface design. This means 
that they do not address a variety of non-procedural aspects of usability, such as the readability of 
displayed text, the discriminability of color codes, or memorability of command strings. Fortu-
nately, these properties of usability are directly addressed by standard methods in human factors. 

Within the procedural aspect, user activity can be divided into the open-ended “creative” parts 
of the task, such as composing the content of a document, or thinking of the concept for the design 
of an electronic circuit on the one hand, and the routine parts of the task on the other, which con-
sist of simply manipulating the computer to accept the information that the user has created, and 
then to supply new information that the user needs. For example, the creator of a document has to 
input specific strings of words in the computer, rearrange them, format them, spell check them, 
and then print them out. The creator of an electronic device design has to specify the circuit and its 
components to a CAD system and then obtain measures of its performance. If the user is reasona-
bly skilled, these activities take the form of executing routine procedures involving little or no 
creativity.  

The bulk of time spent working with a computer is in this routine activity, and the goal of 
computer system design should be to minimize the difficulty and time cost of this routine activity 
so as to free up time and energy for the creative activity. GOMS models are easy to construct for 
the routine parts of a task, because, as described above, the user’s procedures are constrained by 
the task requirements and the design of the system, and these models can then be used to improve 
the ability of the system to support the user. However, the creative parts of task activity are purely 
cognitive tasks and, as discussed above, attempting to formulate a GOMS model for them is 
highly speculative at best, and would generally be impractical. Applying GOMS thus takes some 
task analysis skill to identify and separate the creative and routine procedural portions of the user’s 
overall task situation.  

Finally, it is important to recognize that while a GOMS model is often a useful way to express 
the results of a task analysis, similar to the popular Hierarchical Task Analysis technique (Annett, 
Duncan, Stammers, & Gray, 1971; Kirwan & Ainsworth, 1992), building a GOMS model does not 
“do” a task analysis. The designer must first engage in task analysis work to understand the user’s 
task before a GOMS model for the task can be constructed. In particular, identifying the top-level 
goals of the user and selecting relevant task scenarios are all logically prior to constructing a 
GOMS model. 

Concluding Recommendations 
• If you need to predict the performance of a system prior to detailed design when overall sys-

tem structure and functions are being considered, use a task network model. 
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• If you are developing a detailed design and want immediate intuitive feedback on how well it 
supports the user’s tasks, write out and inspect a high-level or informal GOMS model for the user 
procedures while you are making the design decisions. 

• If your design criterion is the execution speed for a discrete selected task, use a Keystroke-
Level model. 

• If your design criteria include the learnability, consistency, or execution speed of a whole set 
of task procedures, use a generative GOMS model such as CMN-GOMS or NGOMSL. If numer-
ous or complex task scenarios are involved, use a GOMS model simulation system. 

• If the design issues hinge on understanding detailed or subtle interactions of human cogni-
tive, perceptual, and motor processing and their effect on execution speed, and only a few scenar-
ios need to be analyzed, use a CPM-GOMS model. 

• If the resources for a research-level activity are available, and a detailed analysis is needed of 
the cognitive, perceptual, and motor interactions for a complex task or many task scenarios, use a 
model built with the simplest cognitive architecture that incorporates the relevant scientific phe-
nomena. 
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