

ABSTRACT

Human error in computer systems has been blamed for many military and civilian catastrophes resulting in mission
failure and loss of money and lives. However, the root cause of such failures often lies in the system’s design. A cen-
tral theme in designing for human-error tolerance is to build a multi-layered defense. Creating such a robust system
requires that designers effectively manage several aspects of erroneous system usage: prevention, reduction, detec-
tion, identification, recovery, and mitigation. These also correspond to discrete stages before and after error occur-
rence where different defensive measures can be taken. Human error models can be used to better understand these
stages, the underlying cognitive mechanisms responsible for errors, and ultimately how to design systems and train-
ing to reduce the effects of inherent human limitations.

This paper presents a general framework for human error recovery based on five key stages of erroneous perfor-
mance: the commission of an error, its detection, identification, and correction, and resumption of the original task.
These stages constitute the main components of a state model that characterizes human performance, and allows
designers and trainers to comprehensively address the most important aspects of error-tolerant design. Furthermore,
these performance stages can be modeled computationally, to varying degrees, using standard information processing
architectures. This work also demonstrates the effectiveness of a technique using GOMS models to design systems to
prevent human error. The technique is applied to WebStock, a realistic web application designed to elicit human error,
and the results are used to redesign WebStock's user interface. We compared user performance on the original Web-
Stock interface with the interface improved using the technique. Improvements were made at two levels.

Procedural
changes

 were those that were directly indicated by GOMS analysis, such as reducing working memory load and opti-
mizing non-intuitive procedures.

Non-procedural changes

 were those requiring more analyst expertise but where a
GOMS model was instrumental in pointing them out, such as improving the salience of visual objects used in the
model. The results showed substantial improvement in task completion time and overall errors, but the GOMS-based
procedural improvements were especially important in reducing certain classes of errors. The paper concludes with
practical implications of the recovery framework for system and training design such as techniques for supporting
error recovery. Further development of the described human-error models will help us to better understand how peo-
ple commit and recover from errors, and can lead to more robust computer-based tools, improved effectiveness, and
reduced training costs.

AUTHORS

Dr. Scott D. Wood is a Senior Scientist at Soar Technology, Inc. He has over ten years of research and industry
experience in the areas of software development, e-business consulting, cognitive modeling, and human-computer
interaction. His doctoral research included extending GOMS (Goals, Operators, Methods, Selection Rules) modeling
to allow for human error, developing techniques for predicting where human errors would occur in an interface, and
testing those techniques by applying them to web applications. Dr. Wood also has extensive experience developing
human-performance models using the EPIC cognitive architecture, optimizing workflows and interface usability
through task analysis, and in designing web solutions for e-business applications. He earned a B.S. in Computer
Science (1990) from Tulane University, and M.S. (1994) and Ph.D. (2000) degrees in Computer Science and
Engineering from the University of Michigan, Ann Arbor.

Dr. David E. Kieras is an Associate Professor in the Electrical Engineering and Computer Science (EECS)
Department at the University of Michigan and also holds an appointment in the Department of Psychology. His
primary general research field is applied and theoretical cognitive psychology, with specific interests in human-
computer interaction, cognitive simulation modeling, human performance, complex human learning, and natural
language processing. His research has been supported by ONR, ARPA, NASA, IBM, and NYNEX Science and
Technology, and he has a long-standing interest in human-technology interactions involved in military settings. His
research approach is to construct computational models for the cognitive processes involved in tasks that have
practical importance, validate the models against empirical data, and prepare them for practical application. His
current research focuses on developing the theory, techniques, and tools for analyzing and evaluating usability in
HCI, and on the EPIC advance cognitive architecture for human performance modeling

MODELING HUMAN ERROR FOR EXPERIMENTATION, TRAINING,
AND ERROR-TOLERANT DESIGN

Scott D. Wood
Soar Technology

Ann Arbor, Michigan

David E. Kieras
University of Michigan
Ann Arbor, Michigan

INTRODUCTION

Designing for human error is a major challenge for
developers of safety-critical and mission-critical
systems. The literature is replete with examples of how
simple human error can result in costly and deadly
consequences (Casey, 1993; Perrow, 1984; Reason,
1990). In many of these cases, the real culprit can be
traced to the design of the systems in which the error
occurred. The errors could have been prevented or their
consequences mitigated by designing systems that better
support human performance. In purely practical terms,
designing systems to reduce errors and their
consequences can save time, money, and lives. Kirwan
(1992a, b) reviews and compares a large number of
techniques for Human Error Identification within the
Human Reliability Assessment (HRA) process. He
reports that although Human Error Identification
techniques exist that, collectively, can deal with all
relevant human contributions to error, there are
shortcomings. He notes that many of the reviewed
methods lack comprehensiveness, are dependent on the
ability of the analyst, are not derived from psychological
models, and do not provide a direct means for
documenting design decisions. An alternative approach
that overcomes many of these weaknesses is to base the
analysis of the error characteristics of a design on
cognitive engineering models of human performance.

GOMS in Error Analysis

GOMS (Goals, Operators, Methods, and Selection
Rules) is a family of techniques proposed by Card,
Moran, and Newell (1983) (CMN) for modeling and
describing human task performance. The use of GOMS
to improve design has been well documented (see John
and Kieras 1996a, b). Such improvements are possible
because GOMS is used to create a detailed
characterization of the procedures that the user must
follow. This reveals details of what the user must learn,
do, and remember, during normal task execution.
Although GOMS is often characterized as addressing
only error-free behavior, it has a long history of being
used in the study of errors (Lerch, 1988; Smelcer, 1989;
Byrne, 1993).

Using GOMS for error prevention addresses many
of the issues raised by Kirwan concerning the
atheoretical nature of the standard error design
methodologies and the difficulty of applying them
correctly. Since cognitive models are derived from
psychological theory, they can often focus more directly
on human limitations, thus having the potential to better

relate error probability to information that designers can
use to improve the design to reduce errors. A second
issue raised by Kirwan was that extant error analysis
techniques do not provide a good means for
documenting design decisions. One of the major
benefits of computational cognitive models, is that in
order to build a running model, the designer must make
the design decisions explicit. Thus, executable models
represent a persistent form of design knowledge.

Purpose of this Work

This work shows that a GOMS analysis can also be used
to identify error-prone areas of a design and thus guide
improvements in the design to sharply reduce the
frequency of errors. GOMS was used to identify a
variety of potential causes of user errors, in addition to
memory errors as documented in the previous research.
Furthermore, this work demonstrates how GOMS could
be used in a design setting to revise a design to produce
fewer errors, and the experimental results confirm that
the revised design did indeed produce fewer errors, and
in ways expected by the GOMS analysis. The remainder
of this paper will first describe a general framework for
error recovery. Next, it will summarize the techniques
for using GOMS to identify potential causes of user
error. Then, the computer application that served as an
experimental task domain will be presented with the
GOMS techniques used to produce an improved design.
The results from an experiment comparing the two
designs (see Wood, 2000 for details) will then be
presented. We conclude with describing how cognitive
engineering models can be used for error-tolerant design
and how this work can have an impact on modeling,
experimentation, design, and training.

Finally, an important factor that has plagued prior
error research has been the difficulty of experimentation
on errors – generally it is difficult to devise tasks that are
realistic and plausible and at the same time produce
errors at a high enough frequency that their causes and
patterns can be successfully studied experimentally.
This paper presents a realistic experimental domain that
successfully produced a significant number of errors,
showing how they were affected by systematic design
changes. Thus a methodological result of this work is a
task domain and approach to the study of errors in HCI
that may be useful to other researchers.

A GENERAL FRAMEWORK FOR
ERROR RECOVERY

CMN point out that error extensions to GOMS are
necessary to fully model even moderately complex

MODELING HUMAN ERROR FOR EXPERIMENTATION, TRAINING,
AND ERROR-TOLERANT DESIGN

Scott D. Wood
Soar Technology

Ann Arbor, Michigan

David E. Kieras
University of Michigan
Ann Arbor, Michigan

tasks. In their observations of experimental subjects
performing a typing task, they noted several interesting
results regarding human error. The first result was that
errors occurred in 36% of the experimental tasks. This
indicates the pervasiveness of human error and the
importance of designing to accommodate it. The second
result was that the occurrence of an error in a task
doubled the average task time. The errors and their
correction accounted for an average of 26% of total task
time. For one subject, error time accounted for 50% of
the time to complete the tasks. Moreover, if an error
required real problem solving to correct (e.g. finding
one’s place in a large text file), task time was increased
by an order of magnitude. These results tell us that
recovery methods need to be efficient and that they need
to be designed such that their use does not require
problem solving. A third result was that subjects tended
to follow a common path during error recovery. CMN
noted that when subjects committed errors, they seemed
to progress through five distinct error stages as
described in the following excerpt:

1)

Error

. The user makes a mistake.
2)

Detection

. He becomes aware of the error.
3)

Reset

. He resets the editor to allow correction.
4)

Correction

. He undoes the effects of the error.
5)

Resumption

. He resumes error-free activity. (p. 177)

Although these stages were adequate to describe the
behavior observed by CMN, several aspects limit their
general applicability to other domains. For instance,
accurate error-detection and identification was assumed
to occur after an error was committed. Sellen and
Norman (1992) point out that error identification is not
always easy or obvious for users. They recommend that
designers and modelers consider error identification
separately from detection to better focus on how
interfaces can support detection and identification.

A further weakness in the CMN stages is that their
Reset stage may not always be possible or necessary. It
assumes that users can easily back up, both mentally and
within a task, to enable error correction. This is not
always possible or desired. Despite these weaknesses,
CMN describes a useful approach to error modeling that
is structured around specific user mental-stages.

To help generalize the CMN approach, we adopt the
following modified structure of user error states:

 1.

Error

. The user makes a mistake.
 2.

Detection

. The user is aware an error has occurred.
 3.

Identification

. The user identifies the error’s type.
 4.

Correction

. The user corrects the effects of the error.
 5.

Resumption

. The user resumes normal tasks.

We refer to this structure of states collectively as error
recovery stages. This differs from the CMN structure in
two fundamental ways. First their Reset stage has been
removed and is considered an implicit part of the error
correction stage, if a reset is used at all. Second, error

identification is split from detection to allow better focus
on the identification process.

An important characteristic of the recovery stages is
that the user’s progression through them is not
necessarily a linear process. How and why users move
from one stage to another is critical to understanding
error recovery. To clarify this process, we can view the
user’s progression through the recovery stages as
movement between a set of mental states.

Figure 1 illustrates how the recovery stages fit into a
simple state diagram of the user’s mental-states during
error recovery. From the user’s perspective, the error
recovery model is straightforward. During normal,
routine performance, the human does everything right
and continuously executes correct actions. I refer to this
as the

Normal

 state. But, when an error occurs, the
human enters a Quasi-Normal state where everything
seems normal, but where some failure is imminent. The
transition between the

Normal

 and

Quasi-Normal

 states
reflects the Error stage. The user can continue
performing correct actions within the

Quasi-Normal

state until the user detects that something is wrong,
prompting him or her to recover. This transition from the

Quasi-Normal

 state to the

Recovery

 state reflects the
Detection stage. Once in

Recovery

, the user identifies
the error (the Identification stage) and takes the
necessary corrective actions (the Correction stage).
When error correction is complete, the user returns to
normal operations (the Resumption stage).

Two additional transitions reflect the nonlinear
nature of error recovery. The first of these occurs when
the user detects an error as the action is performed (as
with the CMN errors). In these cases, the user jumps
immediately to the Recovery state. This transition can
occur from any state, including Recovery. The second
transition type can occur when an undetected error
occurs during the Recovery state. Here, the user reenters
a Quasi-Normal state, where error correction seems to
be proceeding, but where another failure is imminent.

Movement through the mental states can be

Figure 1.

A general framework for error recovery.
The state diagram illustrates user mental states
while moving through error recovery stages.

Correct
Actions

Normal

Quasi-
NormalRecovery Correct

Actions

Correct
Actions

Undetected Error

Res
um

pt
io

n

Detected Error

Undetected Error

Det
ec

te
d

Er
ro

r

Identification

Correction

and
Detected

Errors

illustrated with a simple example: The task of entering
your office in the morning. A possible procedure for this
is represented in Listing 1. The On_error syntax
indicates the name of a correction procedure, Remove
key and restart current goal, with the normal procedure,
Enter office. If any of the steps in the normal procedure
fail, control would be transferred to the correction
procedure. The task steps are: find the correct key, insert
it into the lock and turn it, verify that the door is
unlocked, and open the door and step through. If, during
Step 1, you fail to find the right key and instead locate
the wrong key, you would move from a Normal State to
a Quasi-Normal State. An error had occurred in Step 1,
but it was not yet detected. In Step 2 the key may not fit
or may not turn, so Step 2 would fail, indicating that
something was wrong. You would then move to a
Recovery State and start the procedure of removing the
key and trying again. The correction method includes
the transition from the Recovery State back to the
Normal State.

Alternatively, if Step 1 had been successful, but you
turned the correct key incorrectly (like in the wrong
direction), the error would cause a transition from the
Normal State to the Quasi-Normal State. Here, the error
might only be detected when you attempted to verify
that the doorknob turns. The explicit check in Step 3
would indicate a problem, which would cause the
transition to the Recovery State. Here, the recovery plan
specifies that you go back to Step 1 and resume normal
task execution. So to recover, you simply to make the
transition from the Recovery State back to the Normal
State and try again.

The Framework is important for interface designers
because it makes clear several important issues when
designing for error tolerance:
 1. There may be a delay between when an error occurs

and when it is detected. Any actions made during the
Quasi-Normal stage may need to be undone anyway,
so efforts should be made to help users detect errors
as soon as possible after the errors are made.
Furthermore, because there is a potential delay, it
may be difficult for the user to identify the source of
the error and choose an appropriate corrective
procedure. Interface aspects that help identify errors
and their corrective actions will reduce the time
users need to spend in real problem-solving to
correct problems.

 2. Errors can occur while in a Recovery State, so error
correction methods need to have their own recovery
methods.

 3. Correcting an error is not the end of recovery. We
also need to consider how users will resume normal
task performance; system design should reflect this.

USING GOMS TO IDENTIFY ERROR SOURCES

As proposed by Wood (1999), the basic approach for
using GOMS to design for error tolerance is to first
construct a GOMS model for the task and then to
examine both static and dynamic aspects of the model to
identify sources of error. These sources can be classified
as either procedural or non-procedural aspects of the
design. Procedural aspects concern the effects of the
action sequences in the methods, while non-procedural
aspects concern the perceptual and conceptual qualities
of the objects in the environment. For example, consider
the GOMS methods sketched in Listing 2 for selling a
stock in a notional stock management application. The
procedural aspects involve the steps that the user must
perform to sell a stock, namely, looking for and
remembering number of shares and stock symbol (e.g.
MSFT) information, then performing a selling
procedure. The methods require finding and
remembering two values, the stock’s symbol and the
number of shares to be sold, and then going to a second
page where this information must be typed in; this
pattern indicates a possible memory load problem. In
addition, the procedures are relatively slow to execute
because the application has not pre-positioned the
cursor in the first entry field.

To illustrate the identification of non-procedural
aspects, notice that by inspection of the methods, one
can tell that on one page the user must visually search
for the stock symbol, and on another page must find the
proper field to type the information into. Thus the form,
typography, and layout of the symbol text and field label
on the screen will affect the time and reliability of the
“Look_for” operators in the methods. In contrast to
procedural changes, correcting any problems with these
aspects of the interface does not change the structure of
the user’s procedures, but will affect how quickly and
accurately they can be executed. Also note that the
model identifies the essential information for this task.
Thus the model is a straightforward way to identify
critical visual aspects for relevant interface elements.

Listing 1. GOMS excerpt showing potential memory
overload error.

Method_for_goal: Enter office
On_error: Remove key and restart current goal.
Step 1. Look for and choose correct key.
Step 2. Insert and turn key.
Step 3. Verify door is unlocked else go back to
step 1.
Step 4. Open door and step through.

Listing 2. GOMS excerpt showing potential memory
overload error.

Method for goal: Sell stock
Step 1. Look_for symbol and store under
<symbol_to_sell>.
Step 2. Look_for shares and store under
<shares_to_sell>.
Step 3. Accomplish goal: Sell stock using
<shares_to_sell> and <symbol_to_sell>.

Method for goal: Sell stock using <shares> and
<symbol>.
Step 1. Press �Sell� button.
Step 2. Wait for page to load.
Step 3. Look_for �Shares� field.
Step 4. Point_to �Shares� field.
Step 5. Type_in <shares>.
Step 6. Look_for �Symbol� field.

A static analysis of a GOMS model considers just
the content of methods in the model, such as that shown
in Listing 2. The above examples of the appearance of
the symbol information and field, and the lack of cursor-
prepositioning can be deduced by such a static
inspection, in which one simply examines the GOMS
methods for certain patterns of steps and operators (see
Wood, 1999). A dynamic analysis involves running the
model as a simulation to execute a set of specific task
instances in which all necessary information such as
stock symbol and shares are specified. For example, the
memory load during the execution of a method may be
very high in one task instance (e.g. if multiple stocks
must be compared and traded), but low in another.
Likewise, some tasks may result in different patterns of
visual search, some of which might be more error prone
than others, depending on the non-procedural aspects of
the information involved.

Using GOMS to design for error prevention yields
three main benefits. First, GOMS models can address
procedural sources of error by identifying locations,
times, and conditions within a task where errors are
likely. Second, GOMS models can be used as a road
map to guide static and dynamic analyses of non-
procedural sources of error. Third, since GOMS models
are psychologically motivated and can provide specific
information for design improvement, they address many
of the criticisms discussed by Kirwan (1992a). To help
demonstrate these claims further, these analysis
techniques were applied to the redesign of a web
application and tested for their effectiveness at reducing
human error.

WEBSTOCK: A COLLECTION OF EVILS

WebStock is a web-based application specifically
designed for this study to elicit a variety of errors in a
realistic task domain, financial management. It was
designed by combining common problematic elements
of several commercial web sites, such as requiring users
to remember data from previous pages (see Brinck,
Gergle, and Wood, 2001, for examples). WebStock
includes functionality for basic portfolio management
including buying, selling, and evaluating stocks, and
looking up stock symbols. Generally, the user will login
to the system and perform a series of portfolio
management tasks. Tasks consist of evaluating and
comparing stocks and buying or selling them. If the
stock symbol (e.g. MSFT) is not known, the user has to
look it up prior to evaluation. To evaluate a stock,
WebStock provides the user with a fictional Evaluation
number for each stock. The user must determine where
the Evaluation number falls within a range to decide
whether to buy, sell, or hold a stock. The tasks users
performed were of just two types, Buy and Sell, but
these required various subtasks to be performed along
the way. An example task is “Evaluate the Airline
candidates and buy 100 shares of the one with the
strongest buy recommendation, if appropriate.”

The Original Interface

To illustrate the usability problems in the Original
interface, Figure 2 shows the Portfolio page, the main
page of the WebStock application from which the tasks
are started. This page contains an overview of the user’s
stock portfolio, providing names, stock symbols, the
number of shares owned, and the current value of the
portfolio. The links at the bottom allow the user to
evaluate a stock, buy a stock, sell a stock, and look up a
stock symbol. Perceptual quality was poor because all
pages had a medium gray background color.

The labels “Evaluate” and “Lookup” are somewhat
ambiguous and the left-to-right ordering is backwards
because the evaluation function requires the stock
symbol, which is obtained by using the Lookup
function. The portfolio page is not automatically
updated after a transaction – the user is expected to
refresh the browser cache with a reload action. Other
usability problems include a mismatch between window
title and page title for all sub-pages, and information
that is extraneous to the tasks (e.g. the purchase price
requires time to read and can be confused with other
information on the screen, even though it is not required
by the tasks)

Redesigning WebStock

A GOMS model of WebStock was written in the
GOMSL (GOMS Language) notation and run using
EGLEAN (Error-extended GOMS Language Evaluation
and ANalysis), a variant of GLEAN (Kieras, et al.,
1995, Kieras, 1998), which was built to study human
error recovery (Wood, 2000). The model was used
systematically to guide the redesign along the
dimensions already described. Here we present details
and examples of how the techniques were applied.

Example Procedural Improvements from a Static
Analysis.

The static analysis of procedural error
sources consisted of locating patterns in the GOMSL
model suspected of inducing errors, such as post-
completion, mode, capture, and calculation errors

Figure 2. The main WebStock screen is the Portfolio
page. Here, users can view their current stock holdings
and perform other tasks using the navigation links.

(Wood, 1999). For example, post-completion errors
were identified in the GOMSL model by looking for
patterns in which there are cues accompanying the
completion of a goal, but where there are additional
steps in the method that must be subsequently executed.
These additional steps are likely to be omitted. Listing 3
shows an excerpt from the Buy method in WebStock
that illustrates an example of this pattern. The steps not
shown identify the stock to buy, and then Step 13
invokes a method to accomplish the goal of actually
buying the specified stock; this method involves
responding to a confirmation page to complete the
purchase transaction, which is the cue that the goal has
been accomplished. However, after navigating back to
the Portfolio page, the user must remember to press the
Reload button to refresh the page. Some of these post-
completion steps should be prone to being omitted; if so,
the user will commit various later errors if the task calls
for making use of the out-of-date information. The error
can be prevented by altering the application so that it
always updates the page or does not allow it to be
cached by the browser.

Examples of other procedural changes based on
static analysis included reducing Mode errors involved
in selecting type-in fields (along the lines described
above) and improving error recovery routines.

Example Procedural Improvements from a Dynamic
Analysis.

The main dynamic analysis of procedural
error sources consisted of simulating working memory
usage of users performing the WebStock experimental
tasks. Execution trace files generated by EGLEAN for
the experimental tasks were run through a Perl script to
collect statistics on the peak working memory load
during the execution of each method and the peak time
that working memory items were kept in memory. A
threshold based on the averages of these was set and
used to locate methods that produced high memory
loads, and items that were kept in memory for a long
time. The methods and items were then examined, and
the interface modified to reduce the memory
requirements. For example, on the Portfolio page
(Figure 3), certain items of information are needed for
the Sell tasks; in the Improved interface these items are
all present, whereas in Original interface they had to be

looked up and remembered. Not only does this reduce
the need to remember critical information, but fewer
steps are now required in the Sell tasks.

Non-Procedural Improvements.

Both static and
dynamic analyses of non-procedural error sources were
conducted using the GOMS model as a guide. For
example, an improvement based on a static analysis
included modifying the portfolio page with alternating
background colors to reduce confusions between rows.

Other non-procedural improvements were based on
a dynamic analysis. For example, the text used for
navigation links was made less ambiguous by basing it
on the actual Goals in the GOMS model. Here,

Lookup

and

Evaluate

 were changed to

Lookup Symbol

 and

Evaluate Stock

. Finally, using dynamic information, the
links were ordered according to their typical usage in a
buy task.

Differential Improvements

It can be argued that the non-procedural problems could
have been identified without a GOMS model by just
applying ordinary usability guidelines. Hence, simply
showing that the redesigned interface is better than the
original would not strongly support the utility of GOMS
in error-tolerant design. Therefore, it is important to
show that using a GOMS model to guide the redesign
produces distinctive benefits. The changes most
motivated by GOMS are the procedural changes, and the
way procedural changes would most affect errors would
be in reducing memory load. Thus, the non-procedural
changes were applied uniformly across the entire
WebStock interface, improving both the Buy and the
Sell tasks, but procedural changes were also applied
almost exclusively to the portions of the interface
involved in Sell tasks. The prediction was that errors
resulting from procedural problems would mainly show
up as memory errors, and these would be reduced for the
Sell tasks, but not for Buy tasks, while the other error
types would be reduced uniformly across both task
types. In addition, the time required to complete the
tasks should be improved more for the Sell tasks than
for the Buy tasks.

Listing 3. GOMSL excerpt showing potential Post-
completion error. The �gestalt� item in Step 16
represents the overall appearance of the page.

Method_for_goal: Evaluate_and_buy_best_candidate_of
Sector using <sector>, and <shares>
�
Step 13. Accomplish_Goal: Buy Stock using

<best_symbol>, and <shares>.
Step 14. Accomplish_Goal: Navigate_to Portfolio.
Step 15. Accomplish_Goal: Press button using �Reload�.
Step 16. Wait_for_visual_object_whose

type is �gestalt�,
and status is �finished_loading�
and_store_under <load_status>.

Step 17. Return_with_goal_accomplished.

Figure 3. The improved WebStock portfolio screen.

The users of both interfaces performed almost the
same actions for the Buy tasks. These tasks required
participants to first navigate to a Lookup table to look up
the stock symbol for each stock candidate. They had to
remember the stock symbol, navigate to the Evaluation
page, type in the symbol, and find the evaluation
information on the Stock Detail page. They then
compared each candidate stock using the evaluation
information, navigated to the Buy page, typed in the
stock symbol and desired shares, and pressed the “Buy”
button. This brought up the Confirmation page.
Participants using the Original interface navigated back
to the Portfolio using the “Back” button and pressed the
“Reload” button. Participants using the Improved
interface instead navigated back to the Portfolio using
the direct link from the Confirmation page and the
Portfolio page was reloaded automatically.

The Sell tasks were very different for the two
interfaces. In the Original interface, the Sell tasks
required the participants to navigate to each stock’s
Detail page, get its evaluation value, determine whether
it was in the required sell range and compare it to any
other stocks in the stated category for that task. They
then had to remember the stock’s symbol and the
number of shares owned, and navigate to the Sell page.
After entering the Selling information in the designated
entry fields, the participants pressed the Sell button,
confirmed the transaction, navigated back to the
Portfolio page, and pressed the Reload button.

In the Improved WebStock interface, all of the
Detail information necessary for the Sell tasks was
displayed on the Portfolio page. The participants had to
compare the evaluation information for each stock being
considered, pick the one with the strongest evaluation
strength, and press a “Sell” link to go to the Sell page.
The stock symbol and shares were automatically entered
into the Sell form as default values, so the participants
then simply confirmed the information and pressed the
“Sell Stock” button. They confirmed the transaction on
the Confirmation page and pressed a link to go back to
the Portfolio page. The Portfolio was automatically
reloaded, so they did not have to reload it manually.

EXPERIMENT

The experiment was a simple comparison of the
Original and Improved versions of the WebStock
system. A separate group of participants used each
system to perform a series of tasks and their actions
were recorded and analyzed for time required and
errors. In keeping with the realistic task domain, the
participants were not heavily practiced with the system,
but did have an opportunity to learn the system before
performing the tasks whose data are presented here. The
participants were asked to work as quickly as possible,
but to “think aloud” while performing the tasks so that
their intentions could be compared to actual actions.

Method

Procedure.

The experimental tasks were to buy and sell
a list of stocks using WebStock, using either the Original

WebStock interface or the Improved WebStock
interface. The participants were instructed to act as
stock traders, buying and selling stocks specified in
general terms by their managers, using a supplied list of
candidate companies, grouped by category, to consider.
Eight tasks were performed. The first was a very simple
Login task, whose results are not included in this paper;
the remainder consisted of four Sell tasks interleaved
with three Buy tasks. The first Sell and Buy tasks were
very simple, intended to allow the participants to learn
how to use the system; their results are likewise not
included in this paper.

Participants were instructed to complete the list of
tasks in order and to return to the main portfolio page
after each task. They were reminded to reload the
portfolio page if necessary to update its information
after each transaction. They were also told that if they
made a mistake or if the system was “buggy,” that they
should attempt to correct the problem as quickly as
possible and continue. They were instructed to think-
aloud as they worked.

It is important to note that subjects were not given
any direct training and very little instruction on how to
use the WebStock program; rather, like most web
applications, they had to learn how to use the program
by interacting with it, following the instructions or cues
presented in the web pages. Similarly, they received no
feedback during the experiment on whether they
performed the tasks correctly.

Participants and Design.

Participants were university
students and staff, all of whom were familiar with using
web browsers and spent at least 1 hour per week
browsing the web. The data were collected first for 11
participants using the Original interface, then for 12
participants using the Improved interface. The two
WebStock interfaces, the Original and the Improved,
were a between-subjects factor; the tasks (and task type)
were a within-subjects factor.

Apparatus.

The experiment was run using one
computer to serve the web-application and another to
host the client browser used by the participants.
Participants interacted with WebStock using Netscape
Communicator 4.51 running on an Apple PowerMac
9500 computer using a 17-inch monitor at a resolution
of 832 x 624 pixels. Client and server machines were
connected on a 100 Mbit/sec Ethernet network.
WebStock pages included JavaScript code to collect
timestamped keystroke and mouse events. Participant’s
speech and their screen actions were videotaped.

Results

The complete data set and its analyses are complex, so
only the most central subset of the results are presented
here; see Wood (2000) for more detail. An error was
defined in the context of the experimental tasks. First,
the optimal action sequence specified by a GOMS
model for performing the experimental tasks was
determined. Then each participant’s action sequence
was compared with the GOMS optimal sequence; any

deviations were considered possible errors. Whether
they were errors in the context of the task was then
determined by consideration of what method was under
way at the time, by reference to notes kept during the
experiment, and additional actions and think-aloud
utterances found on the videotapes. Inefficient actions,
such as exploring the interface, were not considered
errors; many such actions were observed during the
initial Buy and Sell tasks as the participants were
learning how to use WebStock. Likewise, alternative
procedures that still allowed the task to be completed
successfully were not treated as errors. For example,
some participants chose to navigate back to the Portfolio
page by pressing the Home button (taking them back to
the Login screen) and then re-executing the Login
procedure (taking them to the Portfolio page). Each
error was assigned to one of a set of 23 contextual error
types, which were grouped into a set of 8 general
categories (see Wood, 2000, for details).

To illustrate how these contextual errors were
classified, in one case the participant evaluated three
stocks correctly by navigating to the respective Detail
pages, but then departed from the optimum sequence by
going back to a Detail page and re-evaluating one of the
stocks. Since the only information that the user could
get from the Detail page is the evaluation value, this
pattern of going back to a Detail page is a strong
indicator that the participant forgot the evaluation value.
This conclusion was confirmed by observation notes and
videotape that the participant said something indicating
uncertainty about the value; thus this event was
classified as a Forgot Evaluation error. In some cases,
exact classification of a possible error was not possible
due to multiple possible causes. For example, if a
participant sold the wrong stock, it could have been
because the participant erred in the evaluation process
(Calculation Error), or confused two stock symbols
(Memory Corruption), or because the participant
misunderstood the instructions for the task. In such
ambiguous cases, errors were classified simply as
Erroneous Actions.

Observed Errors.

The observed errors are presented in

Table 1. Shown for each interface and general category
are the number of observed errors, the number of errors
per subject (to compensate for the unequal numbers of
participants), and the proportion of the total for each
interface. A key point is that although the experiment
involved a modest number of subjects and only a few
tasks, a substantial number of errors were observed,
demonstrating a successful approach to studying errors
in a realistic task setting. There are clearly substantially
fewer errors in the Improved interface compared to the
Original, showing that using the GOMS technique for
error reduction appears to be successful. In particular,
note how some types of error, such as Typing Field
errors, were completely eliminated in the Improved
design, showing that some forms of error can be
completely designed out of an interface. In addition,
note that some error types, such as Memory errors in the
Buy tasks for Improved interface, were intentionally not
reduced, so the improvement is relatively less compared
to other error types. Also note that because some error
types, like Typing Field errors, were sharply reduced,
other error types increased in relative frequency.

As discussed earlier, differential improvements were
made to the Original interface to see if procedural
improvements, which are distinctively based on GOMS,
had distinct effects compared to non-procedural
improvements, which in this case were based on a
GOMS analysis, but could have been identified by other
means. The Improved interface had only non-procedural
improvements for Buy tasks, and both procedural and
non-procedural improvements for the Sell tasks. The
most clear-cut measure of the value of the procedural
improvements is a reduction in task performance time
(due to shorter, more efficient, measures), and more
relevantly, a reduction in errors produced by memory
failures – the Improved interface procedures required
less information to be kept in working memory for
shorter periods of time compared to the Original
interface. Demonstrating these effects was done by
comparing the two interfaces in terms of the two types
of task, the Buy and Sell Tasks, and the number of
Memory versus Non-Memory errors.

For simplicity in analyzing the data, the groups were

.
Table 1. Observed errors by category for each interface.

Error Categories Interface

Original Improved

Number
observed

Errors /
subject

Percent of
all errors

Number
observed

Errors /
subject

Percent of
all errors

Timing 11 1.00 0.069 3 0.26 0.050
Action/object 22 2.00 0.138 7 0.58 0.117
Motor 24 2.18 0.151 10 0.83 0.167
Perceptual 14 1.27 0.088 9 0.75 0.150
Memory 46 4.18 0.289 23 1.92 0.383
Omitted steps 14 1.27 0.088 4 0.33 0.067
Post-completion 15 1.36 0.094 4 0.33 0.067
Typing Field 13 1.18 0.082 0 0.00 0.000
Total 159 14.45 1.000 60 5.00 1.000

made equal in size by dropping one of the subjects from
the Improved interface group; the deleted subject was
one of two who tied for the smallest number of errors,
and was the one with the smallest number of errors per
action. Note that this choice was conservative in that it
would be expected to reduce the effect of the
improvements in the interface. The Login task and first
Buy and Sell tasks were not included, because on these,
the participant would be learning how to use WebStock,
meaning that their errors would be of a different nature
than after having some familiarity with the program.
The remaining time and error data was then aggregated
into the Buy and Sell task types, and then subjected to
an analysis of variance with 11 subjects per group, with
the factors being Interface (Original vs. Improved), Task
type (Buy vs. Sell), and for the error data, Kind of error
(Non-memory vs. Memory). Unless otherwise stated, all
main effects and interactions claimed here were
significant at the 0.05 level or better.

Table 2 summarizes the results for the time required
to complete each task and the number of errors observed
per subject per task. Compared to the Original interface,
the Improved interface resulted in substantially faster
task performance, a 32% improvement overall, but the
effect was especially strong for the Sell tasks (51%)
compared to the Buy tasks (18%), reflecting the
additional benefits of the procedural changes. A similar
pattern appears for the mean number of errors for Buy
and Sell tasks. The Improved interface produced 58%
fewer errors than the Original, but the effect for the Buy
tasks was only 34%, while it was huge (83%) for the
Sell tasks, again demonstrating the substantial benefits
of the procedural improvements.

Table 2 includes a finer breakout of the number of
errors into Non-Memory errors and Memory errors.
Note how in Buy Tasks, the Non-memory errors are
considerably reduced by the Improved interface, but
there is no improvement (actually a slight decrement) in
Memory errors. However, for Sell Tasks the Improved
interface reduces both kinds of errors substantially and
almost equally. Despite the clarity of this effect,
demonstrated by the corresponding pattern of
significance in simple t-tests, the corresponding three-
way interaction is not at all statistically reliable. As an
alternative that represented the mathematical structure
of the data better, a log-linear analysis was conducted.
The analysis used the error frequencies for all of the
subjects, totaled for the same Buy and Sell task types,
and aggregated over Subjects (which is known to yield a
conservative analysis). The only model that fit the data
well was the saturated hierarchical model that includes
the three-way interaction; that is, the frequency of errors
depends significantly on the combination of Interface,
Task type, and Kind of error. This confirms that the
Non-Memory error rate was improved by the Interface
for both Task types, but the Memory error rate was
improved substantially only in the Sell tasks, where the
procedural changes were made to reduce the memory
load. This result shows that the long-recognized ability

of GOMS to aid in designing good procedures for
interfaces is also directly relevant to reducing at least
one important class of errors. However, the non-
procedural errors were also substantially reduced in the
Improved interface; these improvements were made by
systematically applying a GOMS analysis to help
identify potential sources of error.

USING COGNITIVE ENGINEERING MODELS
FOR ERROR TOLERANT DESIGN

A central theme in designing for human error is to build
a multi-layered defense (c.f. Reason, 1996). Designing
for human error effectively requires addressing several
aspects of error management, including prevention,
reduction, detection, identification, recovery, and
mitigation. Cognitive models can be used effectively in
each of these areas to create a multi-layered defense.

Prevention.

Eliminate the potential for error to occur
by changing key features of the task or interface.
Cognitive modeling can be used to help identify the root
causes of human error and to detect error-inducing
patterns that other approaches do not.

Reduction.

Reduce the likelihood that the user will get
into an error state when prevention is not possible by
ensuring the user is aware of action consequences and
by training on both normal and recovery procedures. A
by-product of cognitive modeling is a complete set of
operating procedures, the foundation for task-based
training materials.

Detection and Identification.

Ensure that if the user
does err, the system makes it easy for the user to detect
and identify the error. Cognitive modeling can be used
to determine where and how a user is most likely to
detect and identify errors, allowing designers to make
informed decisions about diagnostic support.

Recovery.

Once an error has been detected and

Table 2. Experiment results summary.

Interface
Original Improved % Improved

Time (seconds)
Buy Tasks 193 158 18%
Sell Tasks 142 70 51%
Mean 167 113 32%

Errors
Buy Tasks 1.41 0.93 34%
Sell Tasks 1.44 0.24 83%
Mean 1.42 0.59 58%

Errors by Kind
Buy Tasks
 Non-Memory 2.09 1.09 48%
 Memory 0.73 0.77 -5%
Sell Tasks
 Non-Memory 1.97 0.39 80%
 Memory 0.91 0.09 90%

identified, the system should facilitate rapid correction,
task resumption, and movement to a stable system state.
A modeling approach can determine if recovery
methods are achievable, complete, and comprehensive.

Mitigation.

Minimize the damage or consequences of
errors if they cannot be recovered from. Even when all
other error management steps have been taken, errors
will still be made, so systems should be designed such
that catastrophic outcomes from human error are not
possible. Cognitive modeling can indicate where such
errors are most likely and help determine where
designers need or need not focus their mitigation efforts.

IMPLICATIONS

This work has both theoretical and practical
implications for many aspects of both military and
commercial use of complex systems in the areas of
modeling, experimentation, system design, and training.

Modeling

The Framework can drive extensions to GOMS and
other engineering models by specifying the
infrastructure needed to model erroneous behavior.
Wood (2000) provides a comprehensive description of
the mechanisms and GOMS extensions necessary to
model all aspects of human error in a design context.
For example, the Framework indicates that there must
be a means for the GOMS cognitive processor to detect
errors, and that there must be control mechanisms to
move to and from correction routines. It indicates that
the source of an error and how it is expressed are not
necessarily the same. It also demonstrates why
hierarchies of recovery are necessary because of errors
that can occur during the recovery state.

Experimentation

The Framework can likewise facilitate laboratory
research on human error by suggesting locations for
expected errors and error recovery. One of the
techniques used to design the WebStock experiment was
to map potential error types onto the Framework to
determine interesting manipulations and ascertain what
erroneous behavior to look for. For instance, one
similarity between the Buy and Sell tasks in WebStock
was in the appearance of the Buy and Sell screens. They
both had fields for stock symbol and shares, and buttons
for submitting the transaction and clearing the fields. To
set up the situation for a Mode error, the links for each
page were placed next to each other. This increased the
likelihood that participants would click on one link
when the other was intended. Then, using the
Framework, all but one cue indicating which page the
participant was on were removed to reduce the
likelihood of detecting the mode error. Detection was
made more difficult by making the subsequent
transaction confirmation page identical for the Buy and
Sell transactions.

System Design

The Error Recover Framework guides error-tolerant

design by serving as a road map for design efforts. For
example, of all the transitions in the Framework, the
only one that does not involve some amount of wasted
effort is the Correct Actions transition in the Normal
state. If the user is in either the Quasi-Normal or
Recovery state, then an error has occurred and there is
an associated cost for getting back to normal activities.
The obvious message here is to prevent as many errors
as possible. However, the Framework also shows why
early error detection is important. The longer the user
spends in the Quasi-Normal state, the more wasted
actions. Finally, because actions outside of the Normal
state are useless to normal task performance, the
Framework demonstrates the importance of efficient
error recovery procedures that return the user to the
Normal state rapidly.

The Webstock experiment further demonstrates the
utility of GOMS for many real-world design tasks
because it is at a necessary granularity for most design.
Many software tasks where error-tolerance is important
can be viewed as hierarchical sequences of discrete
keystroke-level tasks. Even if tasks are combined or
used in a non-hierarchical manner, the hierarchical-
sequential view represents a lower bound on task
performance. That is, regardless of the conditions under
which people are performing a task, they cannot exceed
the performance specified in an ideal, hierarchical
model. Any performance gains designers hope to
provide in normal operating conditions must first be
achieved under ideal conditions. The same argument
applies to error management. If we do not achieve
acceptable usability for the simple case of hierarchical,
sequential performance, we cannot achieve acceptable
performance under real-world conditions. Furthermore,
the same qualities of GOMS analysis that make it useful
for error-free design issues also make it useful for error-
tolerant design. GOMS is simple enough to apply
relatively quickly, and contains enough detail to point
designers to fundamental problems.

Training

Usability, trainability, and error-tolerance are
inextricably linked. Error-tolerance is an important
component of usability and the same error-tolerant
qualities that make a system highly usable are the same
that will also make it highly learnable. One well-
established empirical finding in the human-computer
interaction literature is that systems that are easy and
fast to use are also easy to learn. This finding conflicts
with conventional wisdom, but actually follows directly
from the theoretical analysis contributed by the
engineering models. In general, in order to learn to use a
system, the person must learn the procedural knowledge
represented in the GOMS model, together with any
additional declarative (factual) knowledge required to
perform the task (such a definitions of symbology,
vocabulary, or concepts used in the interface
information). If the design of the system is such that the
required procedural knowledge has been made as simple

and consistent as possible, and the need for additional
declarative knowledge has been minimized, then the
system will be easy to learn. However, these same
factors tend to make the system easy and fast to use as
well: Methods that are short, simple, and consistent tend
to be fast to execute compared to convoluted and
inconsistent methods. If the interface requires only a
minimum amount of extra declarative knowledge, then
there will be fewer pauses while trying to remember
some bit of knowledge, and fewer memory failures that
cause errors whose correction and recovery demand
additional learning and execution time. In short, by
designing for trainability we will also be improving
usability, and by designing for usability, we can also
improve trainability.

CONCLUSIONS

Human error is pervasive. Designing for human error
should also be pervasive. Military and commercial
entities are depending on, and in some cases, betting
everything on, increasingly complex computer systems
to provide a competitive edge and increased
productivity. Yet, without usable, error-tolerant
interfaces these enterprises have a much greater risk of
failure. Moreover, many large-scale software
development efforts do not have the budget to do
extensive error analysis. Software developers need
simple, practical techniques to guide the design of
systems that will comprehensively manage human error.
This work also contributes to the software and user-
interface development community by illustrating some
of the perils of poor error-tolerance in the web domain
and providing a technique for reducing errors and their
associated risks. But prevention alone is not enough.
The Framework for Error Recovery can assist in the
design of comprehensive error management and help
guide human error modeling at an engineering level.

The Webstock experiment demonstrates that human
error can be reduced substantially by using a GOMS
model both to help identify potential error sources and
motivate design improvements to mitigate their effects.
The GOMS analysis contributes to reducing error in two
ways: First, it contributes directly by identifying
procedural problems, such as unnecessarily long or
complex procedures, and procedures that impose a high
memory load. Second, it contributes indirectly by
guiding consideration of the non-procedural sources of
error. Compared to ordinary guidelines, this structured
approach can help designers to systematically inspect
traditional sources of error, consider their importance,
and explore their consequences for users. Finally, the
experiment provides an experimental domain that may
be useful for future error research. Future work should
explore and validate these contributions further, and lead
to the development of tools that will make it easier for
designers to identify and correct error-prone interface
and task elements.

REFERENCES

Brinck, T., Gergle, D., & Wood, S.D. (2001).

Usability
for the Web

. San Francisco, CA: Morgan Kaufmann.

Byrne, M. D. & Bovair, S. (1997) A working memory
model of a common procedural error.

Cognitive Science,
21

, 31-61

Card, S. K., Moran, T. P., & Newell, A. (1983).

The Psy-
chology of Human-Computer Interaction

. Hillsdale, NJ:
Lawrence Erlbaum.

Casey, S. (1993).

Set Phasers on Stun

. Santa Barbara,
CA: Aegean Publishing Co.

John, B. E., & Kieras, D. E. (1996a). Using GOMS for
User Interface Design and Evaluation: Which Tech-
nique?

ACM Transactions on Computer-Human Interac-
tions, 3

(4), 287 - 319.

John, B. E., & Kieras, D. E. (1996b). The GOMS Fam-
ily of User Interface Analysis Techniques: Comparison
and Contrast.

ACM Transactions on Computer-Human
Interactions, 3

(4), 320 - 352.

Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A.
(1995).

GLEAN: A Computer-Based Tool for Rapid
GOMS Model Usability Evaluation of User Interface
Designs.

 Paper presented at the ACM User Interface
Software and Technology, Pittsburgh, PA.

Kieras, D.E. (1998).

A guide to GOMS model usability
evaluation using GOMSL and GLEAN3

. (Technical
Report No. 38, TR-98/ARPA-2). Ann Arbor, University
of Michigan, Electrical Engineering and Computer Sci-
ence Department.

Kirwan, B. (1992a). Human error identification in
human reliability assessment. Part 1: Overview of
approaches.

Applied Ergonomics, 23

(5), 299-318.

Kirwan, B. (1992b). Human error identification in
human reliability assessment. Part 2: Detailed compari-
son of techniques.

Applied Ergonomics, 23

(6), 371-381.

Lerch, F. J. (1988).

Computerized Financial Planning:
Discovering Cognitive Difficulties in Model Building.

Doctoral dissertation, University of Michigan.

Perrow, C. (1984).

Normal Accidents

. New York, NY:
Basic Books, Inc.

Reason, J. (1990).

Human Error

. New York: Cambridge
University Press.

Sellen, A. J., & Norman, D. A. (1992). The Psychology
of Errors. In B. J. Baars (Ed.),

Experimental Slips and
Human Error

. New York: Plenum Press.

Smelcer, J. B. (1989).

Understanding User Errors in
Database Query.

 Doctoral dissertation, The University
of Michigan.

Wood, S.D. (2000). Extending GOMS to human error
and applying it to error-tolerant design. Doctoral disser-
tation, University of Michigan.

Wood, S. D. (1999).

The Application of GOMS to Error-
Tolerant Design.

 Proceedings of the 17th International
System Safety Conference, Orlando, FL.

