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Abstract

Since the seminal Card, Moran, & Newell (1983) book, The psychology of human-computer
interaction, the concept of the GOMS model has been one of the few widely known theoretical
concepts in human-computer interaction.  This concept has spawned much research to verify and
extend the original concept and has been used in real-world design and evaluation situations.
The original presentation of the GOMS concept left substantial room for interpretation and
subsequent researchers and practitioners have applied the idea in a variety of ways.  While this
variety shows that the GOMS concept is fruitful, there is some confusion about the GOMS
concept and the various approaches that share this label yet appear to be radically different.  This
paper synthesizes the previous work on GOMS to provide an integrated view of GOMS models
and how they can be used in design.  The major variants of GOMS that have matured sufficiently
to be used in real-world design and evaluation situations are described and related to the original
GOMS proposal and to each other.  A single example is used to illustrate all of the techniques.
Guidance is provided to practitioners who wish to use GOMS for their design and evaluation
problems, and examples of actual applications of GOMS techniques are presented.

1.  Introduction

1.1.  Purpose of this Paper

Since the seminal Card, Moran, & Newell (1983) book, The Psychology of Human-Computer
Interaction, (hereafter, CMN) the concept of the GOMS Model has been one of the few widely
known theoretical concepts in human-computer interaction (HCI).  This concept has spawned
much research to verify and extend the original concept.  In 1990, Olson and Olson reviewed the
state of the art of cognitive modeling in the GOMS tradition, discussing several extensions to the
basic framework in the research stage of development and pointing the way to several more
plausible and useful extensions that could be explored.  They also outlined several significant
gaps in cognitive theory that prevent cognitive modeling in general from addressing some
important aspects of HCI (e.g., fatigue) and argued that cognitive models are essentially the
wrong granularity or form to address certain other aspects of computer systems design, such as
user acceptance and fit to organizational life (but see Carley & Prietula, 1994, for an opposing
view).

This paper, coming several years later in the history of HCI cognitive modeling, has different
goals from the Olson & Olson paper.  The major goal is to clarify the relationships between the
different variants of GOMS models that have appeared since the CMN work.  There appears to
be confusion about the relationship of these seemingly different ideas to the original concept and
to each other, and also about which GOMS variant is suitable for which design and evaluation
tasks.  Thus, the first goal of this paper is to provide a synthesis of the GOMS models in the
literature to clear up these points of confusion,

A second goal of this paper is to provide guidance to practitioners wishing to select a GOMS
variant for their design or evaluation task, and to briefly demonstrate the value of GOMS
techniques in real-world design and evaluation tasks.  Thus, this paper focuses on that subset of
GOMS research that has reached sufficient maturity to be tools in the engineer's toolbox of
design.  The techniques we survey are all variants of the original GOMS concept that have been
sufficiently tested and codified to leave the research laboratory, to be taught to practitioners, and
to be used in real-world design and evaluation situations.  We present some examples of
applying GOMS techniques to design situations, ranging from small design issues to whole
systems, and with payoffs ranging from informally positive to actual dollar figures.  We hope
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these examples will help HCI practitioners to see value in GOMS for their own situations.

The organization of this paper is as follows.  First, in the remainder of this introduction, we
discuss the concept of engineering models for computer system design; GOMS models are a kind
of engineering model.  The second major section of the paper introduces the basic concept of
GOMS models that is common to all of the techniques we discuss.  The third section defines the
current members of this GOMS family of models and discusses their similarities and differences
using a single example task.  The fourth section describes how the GOMS family can be applied
in design.  The fifth section provides some brief case histories of how members of the GOMS
family have been applied in actual software development situations.

1.2.  Engineering Models of Human-Computer Interaction

Before beginning the discussion of the GOMS concept and particular instantiations of that
concept, it is useful to understand the motivation for developing such techniques.  The overall
philosophy behind GOMS and other HCI cognitive modeling efforts is to provide engineering
models of human performance.  Engineering models seek to optimize several criteria that
distinguish them from traditional, psychologically-oriented cognitive models: (1) the ability to
make a priori predictions; (2) the ability to be learned and used by practitioners as well as
researchers; (3) coverage of relevant tasks; and (4) approximation.  Card, Moran, & Newell
developed the concept of GOMS models with these criteria for useful engineering models in
mind.  GOMS models are usefully approximate, make a priori predictions, cover a range of
behavior involved in many HCI tasks, and have been proven to be learnable and usable for
computer system designers.

A priori prediction.  In a research environment, cognitive models are often evaluated by
estimating their goodness of fit to empirical data, using some aspect of the data to estimate some
of the parameters in the model.  Appropriate statistical techniques can be applied to determine
whether the model essentially gives back more information about the data than it received in the
form of parameter estimates.  Such parameter estimation is clearly required to develop and test
scientific models.  However, to be useful, engineering models must be able to make predictions
in the absence of a working version, prototype, or mock-up of the system because the predictions
are needed early in the design process where they can be used to shape the specifications of the
system.  Thus, any parameters used to make the predictions must be set during the construction
of the model, not on the basis of behavioral data collected on the new system.  Since a system is
not yet in existence, the model cannot require new experiments to be run in the new situation to
set the parameters.  This does not mean that parameters have to be fixed constants for every
situation, only that they must be determinable a priori.  For example, tables of parameters
covering a wide range of tasks can be created based on previous research.

Learnability and usability.  It must be possible for engineering models to be learned and used
by computer system designers.  Since the target users of HCI engineering models are not trained
psychologists or human factors experts, they cannot be expected to bring psychological expertise
to the task.  Thus, the basic psychology must be "built into" the models.  An example is that
tables of parameter values can replace detailed expertise in many situations.  In addition, the
procedures for constructing and applying the model must be clearly defined and representative
examples must be presented to allow the techniques to be taught and learned by the intended
model users.  This does not mean that the procedures have to be as fixed and explicit as recipes
in a cook book.  However, there must be guidelines and rules about what to do in many
representative situations so that a style of analysis can be developed that leads to useful
predictions.

Coverage.  Engineering models must address a useful range of design issues.  The problem in
HCI is that the range of activities performed by people interacting with computer systems is quite
varied, ranging from simple perceptual-motor actions such as pointing with a mouse, to
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extremely complex activities such as comprehending textual or pictorial material, all the way to
creative problem-solving.  Covering this entire span is not possible today with engineering
models, and some issues may never be addressable with engineering models (e.g. predicting
creativity).  However, there are three general issues for which effective coverage is possible
today and extremely important.  First, the lower-level perceptual-motor issues, such as the effects
of layout on key stroking or mouse pointing, can be well captured by existing models, or
extensions of them.  Second, the complexity and efficiency of the interface procedures is
addressed very well by models in the GOMS family.  Since at some point the user must always
acquire and execute a procedure in order to perform useful work with a computer system, it is
especially valuable that engineering models can address the procedural aspects of a user
interface.  Third, it is essential that the whole task be considered when designing a system.  That
is, optimizing the various aspects or portions of an interface in isolation will not ensure that the
system is more usable overall or that it will allow the whole task to be performed more
effectively.  GOMS models are especially useful for such analyses because one way to
characterize a whole task is to describe the procedures entailed by the whole task; this allows the
individual aspects of the interface to be considered in the entire task context.

Approximation.  Engineering models in all disciplines of engineering are deliberately
approximate.  They include just the level of detail necessary to do the design job.  For example,
when sizing a duct for an air-conditioning unit, fine variations in volume with respect to
temperature are ignored if the air can be assumed to be in a certain range of temperature.  If this
assumption holds, then the equations are very simple, relating the area of the duct to the rate of
air passing through it.  However, when the same air is traveling through the pipes in the cooling
chamber of the air-conditioner, where there is a substantial temperature change from hot to cool,
this assumption no longer holds, and many other factors have to be incorporated, such as the
relative humidity and compressibility.  In the same way, engineering models for HCI must be
approximate in nature, attending to only those details necessary to analyze the design problem
while keeping the modeling effort tractable.

When engineers use approximate models, they do not do so blindly, but in the context of
knowledge of a more detailed theory.  They know what terms exist in the detailed theory, how
sensitive the predictions are to variations in those terms, and, therefore, which terms can be
dropped to make calculations tractable without sacrificing the accuracy necessary for the design
situation.  This can be done because the theory specifies the mechanism of the phenomenon it
describes.  Similarly, engineering models in HCI must be approximations to the processes
involved in human behavior, not simply approximations to the behavior.  In this way, the
theoretical foundations of the models allow the designer to choose the right model for the
required level of detail in the design problem, and to recognize when the design problem
involves issues and factors not addressed by the models.

A common engineering guideline is the "80/20 rule", which states that you get 80% of your
results from 20% of your design effort, and the remaining 20% takes 80% of the effort.
Engineering models in HCI should strive for that first 80% of coverage with 20% of the effort.
For instance, if a computer system were designed and a prototype built, then the behavior of
scores of users could be observed and analyzed in detail and the "truth" would be known about
the system.  Taking this as 100% knowledge and effort, engineering models in HCI should strive
to for 80% accuracy with less than 20% of the effort of prototyping and testing.  That is,
engineering models should be able to predict various behavioral aspects, e.g., the sequence of
operations, the execution time, the learning time, and the occurrence of errors, to within 80% of
what would be observed if the running system could be measured.  Thus, less than perfect
predictions are acceptable, but engineering models must be simplified approximations of the real
situation in order to obtain such predictions with a small amount of effort.

Although engineering models need not exceed the level of approximation necessary for design
purposes, as long as the other criteria are met, such models may be as detailed as their traditional
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psychology counterparts.  In fact, quite detailed and exact models could be incorporated into an
easily used computer simulation of the user, or simple models could account for as much
performance phenomena as more complex models.  Either way, useful engineering models
emphasize a priori quantitative predictions, usability, and coverage, usually, but not always, at
the expense of accuracy.  The GOMS-family of engineering models satisfy these criteria for
many important HCI tasks.

2.  Definition of GOMS Models

The starting point for our discussion of GOMS is to define the concept of a general GOMS
model (subsequently referred to as the GOMS concept or just the GOMS model).  This concept
is much weaker than any other proposal, even the original CMN proposal, but it serves to capture
what all GOMS models have in common.  The general GOMS concept is defined as follows:

It is useful to analyze knowledge of how to do a task in terms of the components of goals,
operators, methods, and selection rules.

While similar to many other task decomposition strategies (e.g., Diaper, 1989; Gilbreth &
Gilbreth, 1917; Newell & Simon, 1972; Van Cott & Kinkade, 1972), this concept has spawned a
family of task analysis and modeling techniques, the GOMS family.  In this section of this paper,
we define each of the components of the model (goals, operators, methods, and selection rules) in
more detail, and then in the next section, we describe the different kinds of models currently in
the GOMS family and their relation to underlying human information-processing architectures.
This discussion is limited to approaches that have been presented in the literature in an explicitly
"how-to" form, ready to use by practitioners.

2.1.  Goals

Goals are what the user has to accomplish.  The common-sense meaning of the term applies
here; a goal is the "end towards which effort is directed" (Webster's, 1977, p. 493).  The classic
example presented in CMN is in the domain of text-editing, where the user is presented with a
hard-copy manuscript marked-up with editing changes, and the user's goal is to make all those
changes in an on-line copy of that manuscript.  Goals are often broken down into sub-goals; all
of the subgoals must be accomplished in order to achieve the overall goal.  For instance, in a
manuscript marked with the four editing changes shown in Figure 1, the top-level goal would be
EDIT-MANUSCRIPT and the sub-goals might be MOVE-TEXT, DELETE-PHRASE and INSERT-WORD.
All of the subgoals must be accomplished to accomplish the higher-level goal.

Goals and sub-goals are often arranged hierarchically, but a strict hierarchical goal structure is
not required.  In particular, some versions of GOMS models allow several goals to be active at
once, and some versions encode extremely well-practiced behavior in a "flattened" structure that
does not seem to require a hierarchy of subgoals.

2.2.  Operators

An operator is an action performed in service of a goal.  Operators can be perceptual, cognitive,
or motor acts, or a composite of these.  Operators can change the user's internal mental state
and/or physically change the state of the external environment.  The important parameters of
operators, in particular execution time, are assumed to be independent of how the user or the
system got into the current state (i.e., independent of the history of operators).  Execution time
may be approximated by a constant, by a probability distribution, or by a function of some
parameter.  For instance, the time to type a word might be approximated by a constant (e.g., the
average time for an average word by an average typist), or a statistical distribution, or by a
function involving the number of letters in the word and the time to type a single character
(which could, in turn be approximated by a constant or a distribution).  The accuracy of
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In order to understand GOMS models that have arisen in the last 

decade and the relationships between them, an analyst must 

understand each of the components of the model (goals, operators, 

methods, and selection rules), the concept of level of detail, and the 

different computational forms that GOMS models take.  In this 

section, we will each of these concepts; in subsequent sections we 

will categorize existing GOMS models according to these concepts.

Figure 1.  A set of simple text-editing tasks illustrating several different text editing goals.

predictions obtained from a GOMS model depends on the accuracy of this assumption and on the
accuracy of the duration estimates.

2.4.  Methods

Methods are sequences of operators and subgoal invocations that accomplish a goal.  If the
goals have a hierarchical form, then there is a corresponding hierarchy of methods.  Clearly the
content of the methods depends on the set of possible operators and on the nature of the tasks
represented.

For instance, in our text-editing example, if DELETE-PHRASE was defined as a goal, and MOVE-
MOUSE, CLICK-MOUSE-BUTTON, SHIFT-CLICK-MOUSE-BUTTON and HIT-DELETE-KEY were
defined as operators, one method for accomplishing DELETE-PHRASE (in the text-editor we are
using to write this paper) would be to MOVE-MOUSE to the beginning of the phrase, CLICK-
MOUSE-BUTTON, MOVE-MOUSE to the end of the phrase, SHIFT-CLICK-MOUSE-BUTTON, and
finally, HIT-DELETE-KEY (the mark-and-delete method).

2.5.  Selection Rules.

There is often more than one method to accomplish a goal.  Instead of the above mark-and-
delete method just described, another method for accomplishing the DELETE-PHRASE goal in
Figure 1 would be MOVE-MOUSE to the end of the phrase, CLICK-MOUSE-BUTTON, and HIT-
DELETE-KEY 11 times (the delete-characters method).  If there is more than one method
applicable to a goal, then selection rules are necessary to represent the user's knowledge of which
method should be applied.  Typically such rules are based on specific properties of the task
instance.  Selection rules can arise through a user's personal experience with the interface or from
explicit training.  Continuing our text-editing example, a user may have a rule for the delete-
phrase goal that says if the phrase is more than 8 characters long, then use the mark-and-delete
method, otherwise use the delete-characters method.

2.3.  Level of Detail

It is important to clarify a common point of confusion about goals and operators.  The
distinction is strictly one of the required level of detail:
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The difference between a goal and an operator in a GOMS analysis is merely a matter of the
level of detail chosen by the analyst; for a goal, the analyst provides a method that uses lower-
level operators to specify the details of how it is to be accomplished; in contrast, operators are
not broken down any further.

That is, an analyst will decide that certain user activities do not need to be "unpacked" into any
more detail, and thus will represent them as operators, while other activities do need to be
considered in more detail, and so will represent these in terms of goals with their associated
methods.  Thus, any particular GOMS analysis assumes a certain grain of analysis, a "stopping
point" in the level of detail, chosen to suit the needs of the analysis.  Continuing the text-editing
example given above, a GOMS analysis could have only one goal (EDIT-MANUSCRIPT) and a few
high-level operators (e.g., MOVE-TEXT, DELETE-PHRASE and INSERT-WORD).  Or, if the design
situation required a finer level of detail, the analysis could have four goals (EDIT-MANUSCRIPT,
with MOVE-TEXT, DELETE-PHRASE and INSERT-WORD as subgoals) and finer-grained operators like
MOVE-CURSOR, CLICK-MOUSE-BUTTON, DOUBLE-CLICK-MOUSE-BUTTON, SHIFT-CLICK-MOUSE-
BUTTON and HIT-DELETE-KEY to accomplish these goals.

In principle, the goals and operators of a task could be described at ever-deeper levels of detail,
down to muscle group twitches.  However, all GOMS methodologies stop at a much higher level
of detail, which is deemed adequate for the analysis problem at hand.  The lowest-level operators
in an analysis are termed primitive operators in this paper.  As discussed above, at any stopping
point, the analyst must be sure that it is reasonable to assume that important properties of the
operators, in particular execution time, are constant (or are a constant function of some given
parameter) regardless of the surrounding context.  These properties can then be estimated from
data, either from the current task being analyzed or from previous similar tasks, and used to
predict performance on new tasks.

CMN demonstrated nine models at four levels of analysis, with the highest-level being the
unit-task level, in which the operators represented a whole task unit lasting about 30 sec, and the
lowest level being at the keystroke-level, in which the operators are at the level of single
keystrokes, mouse moves, and so forth, with a duration of about a second or less.  At a lower
level, Rosenbloom (Laird, Rosenbloom & Newell,1986) proposed GOMS models in which a
basic operator corresponded to the cognitive cycle time of the Model Human Processor (about 50
ms).

An analyst must make the decision about which level of detail to use.  That decision hinges
primarily on the demands of the design or evaluation task the model is meant to accomplish, but
it also depends on the availability of data for operator time estimates.  Some design and
evaluation situations give the analyst opportunity to directly measure operators at a given level
on existing systems or prototypes, other situations may preclude such measurement and force the
analyst to choose a grain of analysis for which there are known operator estimates, such as the
keystroke level.  In addition, although CMN's worked examples show a uniform level of detail
within the each analysis, it is not essential that all primitive operators be at the same level.  Many
design situations will call for some procedures to be examined in more detail than others.  For
instance, when designing a hypermedia system, the analyst may be especially interested in the
procedures for navigating through the system, but less interested in the understanding the details
of how users will search and comprehend text, graphics, and movies to find specific information.
Therefore, the analyst may chose to do a keystroke-level analysis of the navigation machanisms
and define higher-level primitive operators for comprehension (e.g., FIND-INFORMATION-ON-
SCREEN).  If different levels of detail are used, the analyst should be aware that some aspects of
GOMS techniques may not apply uniformly within such an analysis. For example, predicting
execution times requires that the operators have known durations, and some of the analyst-
defined higher-level operators might require empirical measurement before the execution time
can be predicted for the methods that use them.  Likewise, as will be discussed more later,
predictions of method learning time will generally not be possible if the analyst-defined high-
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level operators require learning by the user.

2.6.  Form of a Model

The different GOMS models in the literature differ substantially, and perhaps confusingly, in
the basic form and appearance of the models.  GOMS models have taken two basic forms,  the
program form and the sequence form.

A GOMS model in program form is analogous to a parameterized computer program.  The
model takes any admissible set of task parameters and will execute the corresponding instance of
the described task correctly.  For example, the mark-and-delete method described above, in
program form, would take as task parameters the starting and ending locations of the to-be-
deleted phrase, and when executed, would cause the mouse to be moved to the corresponding
locations.  Thus, a GOMS model in program form describes how to accomplish a general class of
tasks, with a specific instance of the class being represented by a set of values for the task
parameters.  Typically, such a model will explicitly contain some form of conditional branching
and invocations of submethods to accomplish subgoals.  The procedural knowledge represented
in a program form model is fixed, but the execution pathway through the task, that is, the
sequence of operators executed, will depend on the specific properties of the task instance.  Thus,
once the model is defined, all of the possible tasks can be covered by different execution
pathways through the model.  A program form model is a compact, generative description that
explicitly represents the knowledge of what features of the task environment the user should
attend to and how the user should operate the system to accomplish the task goals.

GOMS models in the program form can be either hand-executable or machine executable.
Machine-executable models have been expressed in terms of production systems (if-then rules).
The program form has the advantage that each piece of knowledge is visible to the analyst
inspecting the model.  However, they usually have two disadvantages.  First, the only way to
determine the sequence of operators used in a task is to run the program (either by hand or
machine) and obtain a trace of the program's execution.  Second, the machine-executable models
have the disadvantage that expressing knowledge in sufficient detail to produce a runnable
computer program has been historically quite time-consuming.

In contrast, the sequence form of GOMS model displays a fixed sequence of operators for
accomplishing a single goal in a particular task scenario.  There may be some conditionality and
parameters included in the sequence model.  For instance, in the text-editing example above,
listing the exact operators necessary to delete the phrase indicated in Figure 1 is a GOMS model
in sequence form (e.g., MOVE-MOUSE, CLICK-MOUSE-BUTTON, 11*HIT-DELETE-KEY).  A more
general sequence model would take the number of characters in the phrase as a parameter and
contain an implicit iteration.  For example, for the delete-characters method, there would be a
MOVE-MOUSE operator, a CLICK-MOUSE-BUTTON operator, and then the HIT-DELETE-KEY
operator would be repeated until there were no more characters in the phrase.  The advantages
and disadvantages of the sequence form are the inverse of the program form.  That is, the analyst
does not have the difficult job of explicitly defining the knowledge necessary for every possible
task situation in program-like detail, and the sequence of operators is clearly visible to the
analyst.  But there may be more knowledge available about the task methods that is not explicitly
written out and therefore not inspectable.  Also it is time-consuming to write sequence-form
models by hand for a large set of tasks.

We will discuss how an analyst might choose between program and sequence forms, depending
on design or evaluation needs, in Section 4.

3.  The Current GOMS Family

The concepts associated with GOMS are a mixture of several types: task analysis techniques
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based on different assumptions, models of human performance on specific tasks, computational
models of human cognitive architecture, and loosely-defined concepts about human cognition
and information processing.  Figure 2 displays the relationships between these ideas.  The figure
is a lattice; at the top is the idea of task analysis, and at the bottom is the basic conceptual
framework for human information processing, namely that of the stage model.  Thus the GOMS
family consists of ideas for analyzing and representing tasks in a way that is related to the stage
model of human information processing.  Perhaps this is the distinctive feature of the GOMS
approach compared to the many other concepts of task analysis in the human factors and system
design literature.

Reading down from the top, the top layer consists of task analysis techniques, followed by
explicit computational cognitive architectures, and at the bottom, conceptual frameworks which
are informal statements about how humans can be modeled.  As one reads down from the top, or
up from the bottom, the ideas get more explicit and detailed; the middle contains approaches
whose instantiations are running computer simulation models.

Three things should be noted about the diagram: (1) Since our primary purpose is to discuss
GOMS models that are currently described in "ready-to-use" form in the literature, Figure 2
emphasizes these current techniques and the concepts directly related to them.  (2) There are
areas in the diagram, indicated with italics, which lack ready-to-use models or techniques, or are
not directly related to GOMS models.  The final portion of this section discusses some current
research related to these issues.  Thus, the diagram is certainly not exhaustive: many more nodes
and arrows could be detailed; what is shown here is only what is central to our discussion of
currently documented GOMS models.  (3) The diagram shows only generic ideas and
approaches, not specific instances of task modeling.  Examples of specific instances of using
these techniques will be summarized in Section 5.

We will describe the entries in this lattice, starting with the conceptual frameworks, since they
form the basis for all GOMS analyses, working through the computational cognitive
architectures, up to the task-analytic approaches which are the heart of the GOMS family.

3.1.  Conceptual Frameworks

The conceptual frameworks are conceptual in that they are informally stated assumptions about
the structure of human cognition.  The conceptual frameworks shown are all based on a general
assertion that human cognition and behavior is usefully analyzed in terms of stages, such as the
conventional notion that stimuli are first processed perceptually, the resulting information is
passed to a central cognitive process, which manipulates that information and eventually initiates
some motor activity.

The stage idea immediately breaks out into two more specific forms.  One is that the stages are
performed serially, which certainly has always seemed reasonable for many laboratory tasks.
The other that the stages can be performed in parallel to some extent, since the different kinds of
processing are handled by separate mechanisms, or processors.

The Card, Moran, & Newell (1983) Model Human Processor (MHP) is a parallel architecture.
Perceptual, cognitive, and motor processing are done by separate processing mechanisms, each
with their own distinctive types and timing of activities, and with associated principles of
operation.  CMN's important insight was that the empirical human cognition and performance
literature could be used to motivate and justify an engineering model of human information-
processing that could be used to predict performance in HCI situations.

Although the MHP is inherently parallel, only 1 of the 19 examples of reasoning from the
MHP presented in CMN (1983, Example 7) depend on this fact.  The parallel operation of the
MHP was made clear in John’s model of transcription typing (John, 1988; John & Newell, 1989)
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Figure 2.  The GOMS family consists of task analysis techniques that are related to models of human
information processing.  Current research involves additional computational cognitive architectures,
but only CCT is shown as a "ready-to-use" technique.  See text for more discussion.

in which the processors could operate in a sort of "pipeline" mode, with information moving
through perceptual, cognitive, and motor stages continuously.  This model accounted for
important properties of skilled typing performance and shows that parallelism can greatly
influence the structure and performance of a task.

While CMN provide many examples of how the MHP can be applied to predict performance in
some well-understood simple task situations similar to the experimental paradigms in the human
performance literature, and simple real-world analogs of these tasks, they did not provide an
explicit method for applying the MHP to complex, realistic tasks (the CPM-GOMS methodology
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to be discussed later provides this explication).  In Figure 2, the MHP is shown at the border
between conceptual architectures and computational cognitive architectures because while it is
certainly more specified than the simple stage concepts, it is not as fully explicit and
computationally represented as the ideas in the next level up in the diagram.

3.2.  Computational Cognitive Architectures

The level of computational cognitive architectures in Figure 2 are proposals for how to
represent human information processing in terms explicit enough to run as a computer program.
This representation as a computer simulation is a preferred research tactic in cognitive
psychology based on the assumption that a computational model has "empirical content" — that
is, a properly constructed and interpreted model can make predictions of human performance,
and these predictions can be empirically confirmed.  There are several such architectures under
development in cognitive psychology and artificial intelligence, several of which have been
applied to topics in HCI, such as Cognitive Complexity Theory (CCT, Kieras & Polson, 1985;
Bovair, Kieras, & Polson, 1988, 1990), ACT-R and its predecessors (Anderson, 1976, 1983,
1993), Construction-Integration (Kintsch, 1988, 1992), Soar (Newell, 1990), and EPIC (Kieras &
Meyer, 1994; Meyer & Kieras, 1994).  Each of these architectures makes different assumptions
about how cognitive processes such as working memory management, flow of control, learning,
and problem-solving are handled by the architecture, and testing the empirical content of these
assumptions is an active area of psychological research.  In principle, all of these architectures
could be used to implement a particular GOMS task analysis in a computational model (e.g.,
John & Vera 1992; Peck & John, 1992; Gray & Sabnani, 1994).  However, only CCT, a
production-rule architecture based on the serial stage model, has been used as the basis for a
specific GOMS technique, NGOMSL, which incorporates CCT's assumptions about working
memory management, flow of control, and other architectural mechanisms.  For brevity, CCT
will not be discussed further, since its contributions are well represented by the NGOMSL
technique that will be discussed in the next section.

3.3.  Task Analysis Techniques

At the top of the GOMS family tree in Figure 2, under the overall node of Task Analysis, the
node labeled General GOMS represents the concept stated earlier that it is useful to analyze
knowledge of how to do a task in terms of goals, operators, methods, and selection rules.  Thus,
it is a form of task analysis that describes the procedural, "how-to-do-it" knowledge involved in a
task.  The result of a GOMS-based task analysis will be some form of description of the
components of GOMS, the goals, operators, methods, and selection rules.  As described above,
GOMS admits a variety of definitions and representations of these components.

There are three critical restrictions on the kinds of task knowledge that GOMS models can be
used for.  The first is that the task in question must be usefully analyzed in terms of the "how to
do it," or procedural knowledge required rather than other aspects of knowledge about the
system, like mental simulations of an internalized device model, or analogical reasoning (see
Kieras and Polson, 1985, for more discussion).  The italicized area to the right under Task
Analysis represents other existing and potential approaches to task analysis that capture other
forms of task knowledge.  For example, current work on electronics troubleshooting (see Gott,
1988) incorporates the person's knowledge of electronic components and the structure and
function of the system under investigation, in addition to various kinds of procedural knowledge,
and current work in analogical reasoning has been applied to understanding consistency in
operating systems (Rieman, Lewis, Young & Polson, 1994).

The second restriction is that the GOMS family can only represent routine cognitive skills,
which consist of procedural knowledge that originally was derived from problem-solving
activity, but with practice has taken the form of a routinely invocable sequence of activities that
accomplishes the goals (see CMN, 1983, Ch. 11).  Of course, users often engage in problem-
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solving, exploration, and other non-routine activities while using a computer and other cognitive
modeling approaches and task analysis techniques can be used to investigate these behaviors
(e.g., the Cognitive Walkthrough technique (Wharton, Rieman, Lewis & Polson, 1994) applies to
exploratory behavior by novice users).  These issues, symbolized by the italicized area at the top
of Figure 2, will be discussed further below, and some related research directions will be touched
on very briefly.  But at this point GOMS would be recommended as a form of task analysis only
for tasks in which routine operating procedures are an important aspect of the interaction.

We emphasize, however, that most tasks have some element of routine cognitive skill.
Composing a research paper requires the skill of text-editing, charting data requires the skill of
entering information into spreadsheets, interactive programming requires text-editing,
architectural design with a CAD system requires routine window manipulation, etc.  Even if the
primary task is not routine, those aspects of the task that are routine are amenable to analysis
with GOMS techniques.  Applying GOMS to improve the routine aspects of a complex task will
reduce the effort necessary to master and perform those routine aspects, getting them out of the
way of the primary creative task.

The third restriction is that in all GOMS analysis techniques, the designer or analyst must start
with a list of top-level tasks or user goals.  GOMS analyses and methods do not provide this list;
it must come from sources external to GOMS (see also Olson and Olson, 1990, Karat & Bennett
1989).  Typically, this list of goals can be obtained from other task analysis approaches (e.g., see
Diaper, 1989), such as interviews with potential users, observations of users of similar or existing
systems, or in the worst case, simple intuitions on the part of the analyst.  Once this list is
assembled, GOMS analyses can help guide the design of the system so that the user can
accomplish the given tasks in an efficient and learnable way.  However, except for possibly
stimulating the analyst's intuitions, the subsequent analysis will not identify any new top-level
user goals or tasks that the analyst overlooked, or correct a misformulation of the user goals.

The next level down in the diagram consists of specific proposals for how to carry out a task
analysis within a GOMS orientation.  It is at this level that the differences appear between the
different versions of GOMS analysis.  Note that the general GOMS concept merely asserts that it
is useful to analyze a task in terms of the user's goals, methods, operators, and selection rules.  It
does not specify any particular technique for doing such an analysis.  A particular technique
requires (1) more specific definitions of the GOMS components, especially the operators, and (2)
guidance and a procedure for constructing the methods in terms of these more specific
definitions.

In the discussion that follows, each technique will be summarized, and examples presented,
and the relative advantages and disadvantages mentioned.

KLM.  The Keystroke-Level Model (KLM) is the simplest GOMS technique, and was
originally described in Card, Moran, & Newell (1980a) and later in CMN (Ch. 8).  The KLM
makes several simplifying assumptions that make it a restricted version of GOMS.  In particular,
the analyst must specify the method used to accomplish the particular task of interest, which
typically entails choosing specific task instances.  Other GOMS techniques discussed below
predict the method given the task situation and the knowledge of methods and selection rules, but
the KLM does not.  Furthermore, the specified method is limited to being in sequence form and
containing only keystroke-level primitive operators.  Given the task and the method, the KLM
uses the preestablished keystroke-level primitive operators to predict the time to execute the task.

The original KLM included six types of operators: K to press a key or button, P to point with a
mouse to a target on a display, H to home hands on the keyboard or other device, D to draw a
line segment on a grid, M to mentally prepare to do an action or a closely-related series of
primitive actions, and R to symbolize the system response time during which the user has to wait
for the system.  Each of these operators has an estimate of execution time, either a single value, a
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parameterized estimate (e.g., K is dependent on typing speed and whether a key or mouse button
click, press, or release is involved), or a simple approximating function.  The KLM also includes
a set of five heuristic rules for placing mental operators to account for mental preparation time
during a task that requires several physical operators.

Subsequent research has refined these six primitive operators, improving the time estimates or
differentiating between different types of mental operations (Olson & Olson, 1990) and
practitioners often tailor these operators to suit their particular user group and interface
requirements (e.g., Haunold & Kuhn, 1994).  In addition, the heuristics for placing mental
operators have been refined for specific types of subtasks (e.g., for making a fixed series of menu
choices, Lane, Napier, Batsell & Naman, 1993).  In particular, since the original heuristic rules
were created primarily for command-based interfaces, they need to be updated for direct
manipulation interfaces.  Thus, Heuristic Rule 0 should be expanded to read, "Insert M's in front
of all K's that are not part of argument strings proper (e.g., text or numbers).  Place M's in front
of all P's that select commands (not arguments) or that begin a sequence of direct-manipulation
operations that belong to a cognitive unit."

 Figure 3 provides a sample KLMs with computation of execution time for moving the phrase
in the word processing example in Figure 1, using the operator times supplied in CMN (p. 264).

In terms of underlying architecture, KLM does not need a computational representation
because the methods are supplied by the analyst and are expressed in sequence form; all the
information-processing activity is assumed to be contained in the primitive operators, including

Moving text with the MENU-METHOD
Description Operator Duration (sec)
Mentally prepare by Heuristic Rule 0 M 1.35
Move cursor to beginning of phrase P 1.10
   (no M by Heuristic Rule 1)
Click mouse button K 0.20
   (no M by Heuristic Rule 0)
Move cursor to end of phrase P 1.10
   (no M by Heuristic Rule 1)
Shift-click mouse button
   (one average typing K) K 0.28
   (one mouse button click K) K 0.20
Mentally prepare by Heuristic Rule 0 M 1.35
Move cursor to Edit menu P 1.10
   (no M by Heuristic Rule 1)
Press mouse button K 0.10
Move cursor to Cut menu item P 1.10
   (no M by Heuristic Rule 1)
Release mouse button K 0.10
Mentally prepare by Heuristic Rule 0 M 1.35
Move cursor to insertion point P 1.10
Click mouse button K 0.20
Mentally prepare by Heuristic Rule 0 M 1.35
Move cursor to Edit menu P 1.10
   (no M by Heuristic Rule 1)
Press mouse button K 0.10
Move cursor to Paste menu item P 1.10
   (no M by Heuristic Rule 1)
Release mouse button K 0.10

TOTAL PREDICTED TIME 14.38

Figure 3.  A keystroke-level model for moving the text in Figure 1.
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internal actions, which are subsumed by black-box Mental operators.  Thus the underlying
conceptual framework is simply the serial stage model.

The primary advantage of KLM technique is that it allows a rapid estimate of execution time
with an absolute minimum of theoretical and conceptual baggage.  In this sense it is the most
"practical" of the GOMS methodologies: it is the easiest to apply in actual interface design
practice, and by far the simplest to explain and justify to computer software developers.  This
simple estimate of execution times can be used to compare design ideas on benchmark tasks, to
do parametric evaluation to explore the space defined by important variables (e.g., the length of
filenames in a command language), and to do sensitivity analyses on the assumptions made (e.g.,
user's typing speed) (CMN; Card, Moran, & Newell, 1980a).

CMN-GOMS.  CMN-GOMS is the term we use to refer to the form of GOMS model presented
in CMN (1983, Ch.  5; Card, Moran, & Newell, 1980b).  CMN-GOMS is slightly more specified
than general GOMS; there is a strict goal hierarchy, and methods are represented in an informal
pseudo-code-like notation that can include submethods and conditionals.  CMN-GOMS
describes a task in terms of a hierarchical goal structure and set of methods in program form,
each of which consists of a series of steps executed in a strictly sequential order.

In the context of the CMN book, it would appear that the CMN-GOMS model is based on the
Model Human Processor (MHP), but in fact CMN do not make a tight linkage.  In particular, in
presenting the CMN-GOMS formulation, they provide no description of how the MHP would
represent and execute CMN-GOMS methods.  Furthermore, the GOMS concept itself cannot be
derived from the MHP as presented in CMN, but is only loosely based on two of the MHP
Principles of Operation, the Rationality Principle and Problem Space principle, both well
developed in the problem-solving theoretical literature (e.g., Newell & Simon, 1972; see CMN
Ch.  11).  Thus, Figure 2 shows that the CMN-GOMS model is based only on the serial stage
model.

CMN do not describe the CMN-GOMS technique with an explicit "how-to" guide, but their
presentation of nine models at different levels of detail illustrates a breadth-first expansion of a
goal hierarchy until the desired level of detail is attained.  CMN report results in which such
models predicted operator sequences and execution times for text editing tasks, operating
systems tasks, and the routine aspects of computer-aided VLSI layout tasks.  These examples are
sufficiently detailed and extensive that researchers have been able to develop their own CMN-
GOMS analyses (e.g., Lerch, Mantei, & Olson, 1989).

Figure 4 is an example of a CMN-GOMS model at the keystroke-level for the text-editing task
in Figure 1, including details for the MOVE-TEXT goal.  Moving is accomplishing by first cutting
the text and then pasting it.  Cutting is accomplished by first selecting the text, and then issuing
the CUT command.  As specified by a selection rule set, selecting can be done in two different
ways, depending on the nature of the text to be selected.  Finally pasting requires selecting the
insertion point, and then issuing the PASTE command.

Comparing Figure 4 with Figure 3, the relationship between the CMN-GOMS technique and
the KLM technique is evident.  (Note that the expansion of the MOVE-TEXT goal in Figure 4
represents the same behavior as the KLM in Figure 3.)  For instance, there is a one-to-one
mapping between the physical operators in the CMN-GOMS model and the Ks and Ps in the
KLM, but the CMN-GOMS model has other operators at this level: VERIFY-LOCATION and
VERIFY-HIGHLIGHT, which have no observable physical counterpart (they could perhaps be
observed with an eye-tracker, but this instrument is not used in any but the most detailed HCI
research).  The KLM has no explicit goals or choices between goals, whereas the CMN-GOMS
model represents these explicitly.  Roughly, the VERIFY operators, goal hierarchies and selection
rules of the CMN-GOMS model are represented as the M operators in the KLM.  That is,
operators such as VERIFY and goals and selections appear in the CMN-GOMS model in groups
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GOAL: EDIT-MANUSCRIPT
. GOAL: EDIT-UNIT-TASK ...repeat until no more unit tasks
. . GOAL: ACQUIRE UNIT-TASK ...if task not remembered
. . . GOAL: TURN-PAGE ...if at end of manuscript page
. . . GOAL: GET-FROM-MANUSCRIPT
. . GOAL:EXECUTE-UNIT-TASK ...if a unit task was found
. . . GOAL: MODIFY-TEXT
. . . . [select: GOAL: MOVE-TEXT* ...if text is to be moved
. . . . GOAL: DELETE-PHRASE ...if a phrase is to be deleted
. . . . GOAL: INSERT-WORD] ...if a word is to be inserted
. . . .   VERIFY-EDIT

*Expansion of MOVE-TEXT goal
GOAL: MOVE-TEXT
. GOAL: CUT-TEXT
. . GOAL: HIGHLIGHT-TEXT
. . . [select**: GOAL: HIGHLIGHT-WORD
. . . . MOVE-CURSOR-TO-WORD
. . . . DOUBLE-CLICK-MOUSE-BUTTON
. . . . VERIFY-HIGHLIGHT
. . . GOAL: HIGHLIGHT-ARBITRARY-TEXT
. . . . MOVE-CURSOR-TO-BEGINNING 1.10
. . . . CLICK-MOUSE-BUTTON 0.20
. . . . MOVE-CURSOR-TO-END 1.10
. . . . SHIFT-CLICK-MOUSE-BUTTON 0.48
. . . . VERIFY-HIGHLIGHT] 1.35
. . GOAL: ISSUE-CUT-COMMAND
. . . MOVE-CURSOR-TO-EDIT-MENU 1.10
. . . PRESS-MOUSE-BUTTON 0.10
. . . MOVE-MOUSE-TO-CUT-ITEM 1.10
. . . VERIFY-HIGHLIGHT 1.35
. . . RELEASE-MOUSE-BUTTON 0.10
. GOAL: PASTE-TEXT
. . GOAL: POSITION-CURSOR-AT-INSERTION-POINT
. . . MOVE-CURSOR-TO-INSERTION-POINT 1.10
. . . CLICK-MOUSE-BUTTON 0.20
. . . VERIFY-POSITION 1.35
. . GOAL: ISSUE-PASTE-COMMAND
. . . MOVE-CURSOR-TO-EDIT-MENU 1.10
. . . PRESS-MOUSE-BUTTON 0.10
. . . MOVE-MOUSE-TO-PASTE-ITEM 1.10
. . . VERIFY-HIGHLIGHT 1.35
. . . RELEASE-MOUSE-BUTTON 0.10

TOTAL TIME PREDICTED (SEC) 14.38

**Selection Rule for GOAL: HIGHLIGHT-TEXT:
If the text to be highlighted is a single word, use the
HIGHLIGHT-WORD method, else use the HIGHLIGHT-ARBITRARY-TEXT method.

Figure 4.  Example of CMN-GOMS text-editing methods showing the top-level unit-task method
structure and a selection rule.

that roughly correspond to the placement of Ms in the KLM.  This is only approximately the
case, as the VERIFY operators sometimes occur in the middle of a group of physical operators, but
the approximation is close.

A major difference between the KLM and the CMN-GOMS models is that CMN-GOMS is in
program form, therefore, the analysis is general and executable.  That is, any instance of the
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described class of tasks can be performed or simulated by following the steps in the model,
which may take different paths depending on the specific task situation.  Goals and method
selection are predicted by the model given the task situation, and need not be dictated by the
analyst as they must for the KLM.

Given the task specified by the manuscript in Figure 1, this model would predict the trace of
operators shown with the estimates of operator times in the far right column.  The estimates for
the physical operators are identical to the ones in the KLM. The VERIFY-HIGHLIGHT and VERIFY-
POSITION operators are assigned 1.35sec, the same value as the KLM's M operator because this is
CMN's best estimate of mental time in the absence of other information.1   Thus, the CMN-
GOMS model produces the same estimate for task completion as the KLM.   Notice that the
CMN-GOMS technique assigns time only to operators, not to any "overhead" required to
manipulate the goal hierarchy.  In their results, CMN found that time predictions were as good
with the simple assumption that only operators contributed time to the task as they were when
goal manipulation also contributed time, but suggested that at even more detailed levels of
analysis such cognitive activity might become more important.  Also notice that where the KLM
puts Ms at the beginning of subprocedures, the CMN-GOMS model puts the mental time in
verify operators at the end of subprocedures.  Since mental time is observable only as pauses
between actions, it is difficult to distinguish between these two techniques empirically, and only
appeals to more detailed cognitive architectures can explain the distinction.  Pragmatically,
however, this difference is irrelevant in most design situations.  We will discuss the issue of
mental time again after presenting all the GOMS techniques.

NGOMSL.  Conceptually, the NGOMSL technique (Kieras, 1988a, 1994a, b) refines the
CMN-GOMS model by connecting it to a simple cognitive architecture, namely CCT.  It
originated from attempts to make CCT models more usable by defining higher-level notations to
represent the content of a CCT model (see Bennett, Lorch, Kieras, & Polson, 1987, and Butler,
Bennett, Polson, and Karat, 1989).  This variation of GOMS provides a well-defined, structured
natural language, NGOMSL (Natural GOMS Language) suitable for practical application and
contains an explicit procedure for constructing GOMS models.  NGOMSL models are in
program form; they make the method structure very explicit, and can represent very general
methods.  Continuing the text editing example, Figure 5 shows the NGOMSL methods involved
in moving text.  Notice that more methods are represented than are executed in the specific task
instance being used as an example.

The technique described by Kieras (1988a, 1994a) for constructing NGOMSL models consists
of a top-down, breadth-first expansion of the user's top-level goals into methods, until the
methods contain only the operators chosen to be primitive, typically keystroke-level operators.
The analyst supplies a method for each top-level goal, in which the method steps consist first
only of operators (no subgoal invocations).  These operators are then rephrased as goal assertions
if more detail is required, and then methods are supplied for these goals in the next pass.  This
heuristic of drafting a method in terms of operators helps the analyst avoid getting bogged down
in details prematurely, as does the breadth-first approach, which also appears to help the analyst
identify shared methods in the system.

As mentioned previously, NGOMSL is directly based on the CCT architecture.  There is
essentially a one-to-one relationship between statements in the NGOMSL language and the
production rules for a GOMS model written in the CCT format.  NGOMSL methods include
internal operators that represent operations of the CCT architectural mechanisms, such as adding

1  Some design situations may require, or provide opportunity for using better estimates of specific types of
mental operators.  Analysts can look at the additional empirical work of CMN in Chapter 5 where they measure
many specific mental times, or other HCI empirical work (e.g. John & Newell, 1987 for estimates of time to recall
command abbreviations, Olson & Olson, 1990, for mental preparation in spreadsheet use).
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NGOMSL Statements Executions External
Operator
Times

Method for goal: Move text 1
Step 1.  Accomplish goal: Cut text. 1
Step 2.  Accomplish goal: Paste text. 1
Step 3.  Return with goal accomplished. 1

Method for goal: Cut text 1
Step 1.  Accomplish goal: Highlight text. 1
Step 2.  Retain that the command is CUT, and

accomplish goal: Issue a command. 1
Step 3.  Return with goal accomplished. 1

Method for goal: Paste text 1
Step 1.  Accomplish goal: Position cursor at insertion point. 1
Step 2.  Retain that the command is PASTE,

and accomplish goal: Issue a command. 1
Step 3.  Return with goal accomplished. 1

Selection rule set for goal: Highlight text 1
If text-is word, then accomplish goal: Highlight word.
If text-is arbitrary, then accomplish goal: Highlight arbitrary text. 1
Return with goal accomplished. 1

Method for goal: Highlight word
Step 1.  Determine position of middle of word.
Step 2.  Move cursor to middle of word.
Step 3.  Double-click mouse button.
Step 4.  Verify that correct text is selected
Step 5.  Return with goal accomplished.

Method for goal: Highlight arbitrary text 1
Step 1.  Determine position of beginning of text. 1 1.20
Step 2.  Move cursor to beginning of text. 1 1.10
Step 3.  Click mouse button. 1 0.20
Step 4.  Determine position of end of text. (already known) 1 0.00
Step 5.  Move cursor to end of text. 1 1.10
Step 6.  Shift-click mouse button. 1 0.48
Step 7.  Verify that correct text is highlighted. 1 1.20
Step 8.  Return with goal accomplished. 1

Method for goal: Position cursor at insertion point 1
Step 1.  Determine position of insertion point. 1 1.20
Step 2.  Move cursor to insertion point. 1 1.10
Step 3.  Click mouse button. 1 0.20
Step 4.  Verify that correct point is flashing 1 1.20
Step 5.  Return with goal accomplished. 1

Method for goal: Issue a command 1
Step 1.  Recall command name and retrieve from LTM the menu name for it,

and retain the menu name. 1
Step 2.  Recall the menu name, and move cursor to it on Menu Bar. 1 1.10
Step 3.  Press mouse button down. 1 0.10
Step 4.  Recall command name, and move cursor to it. 1 1.10
Step 4.  Recall command name, and verify that it is selected. 1 1.20
Step 5.  Release mouse button. 1 0.10
Step 6.  Forget menu name, forget command name, and

return with goal accomplished. 1

Predicted Procedure Learning Time = 801 sec
Total Predicted Execution Time = 16.38 sec

Figure 5.  An example of NGOMSL methods for moving text, showing a generic command-issuing
method that uses items in long-term memory to associate menu names to the contained commands.
Adapted from Kieras (1994a).
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and removing information to working memory or asserting goals to be accomplished.  At the
keystroke-level, CCT has been shown to provide good predictions of both execution time (based
on estimates of time per production firing) and learning time (based on estimates of time to learn
a totally new or similar production) (Kieras & Bovair, 1986; Bovair, Kieras & Polson, 1988,
1990).  Therefore, NGOMSL models can be used not only to estimate execution time like the
KLM and CMN-GOMS models, but also learning time, with the stipulation that only the time for
learning procedure steps in a specific learning situation is taken into account, as described in
Kieras (1994a) and discussed more below.  Although an NGOMSL analysis can provide a useful
description of a task even at a high level of analysis (see Karat & Bennett 1989), quantitative
predictions of learning and execution times are meaningful only if the methods use operators that
the user is assumed to already know and that have known properties, such as keystroke level
operators.

The basis for the learning time predictions, and some critical qualifications of them, needs
some discussion.  CCT and NGOMSL models have been shown to be good predictors of time to
learn how to use a system, keeping in mind that what is predicted is the pure learning time for
the procedural knowledge represented in the methods.  Note that, as mentioned above, the user is
assumed to already know how to execute the operators; the GOMS methods do not represent the
procedural knowledge involved in the operators themselves, but only represent the knowledge of
which operators to apply and in what order to accomplish the goal.  Innovative interface
technology often results in new operators, such as moving the cursor with a mouse, selecting
objects with an eye-movement tracker, or manipulating 3D objects and flying about in virtual
space with data-glove gestures.  Clearly, the time to learn how to execute such new operators is a
critical aspect of the value of new interface devices,  but a GOMS model that assumes such
operators can not predict their learning time.  That is, if new operators are involved, the GOMS
analysis can predict only the time required to learn the procedures that use the operators; the time
for learning the new operators themselves would have to be measured, or simply not included in
the analysis.

The actual total time to learn how to use a system depends not only on how much procedural
knowledge is involved but on how much time it takes to complete the training curriculum itself.
That is, most learning and training of computer usage takes place in the context of the new user
performing tasks of some sort, and this performance would take a certain amount of time even if
the user were fully trained.  Thus the total learning time consists of the time to execute the
training tasks plus the extra time required to learn how to perform the tasks.  The pure learning
time is the excess due to learning, that is, the difference between this total time and the time it
would take to execute the tasks if the user were already trained.  As pointed out by Gong (1993),
these training task execution times can be estimated from GOMS model of the training tasks.

The key empirical result is that the procedure learning time is approximately linear with the
number of CCT production rules or NGOMSL statements that must be learned.  Thus, the pure
learning time for the methods themselves can be estimated just by counting their total length and
multiplying by an empirically-determined coefficient.  Consistency of the methods, or transfer of
training effects, can be represented by deducting the number of NGOMSL statements in methods
that are identical, or highly similar, to ones already known to the learner (see Kieras, 1988a,
1994a; also Bovair, Kieras, & Polson, 1988, 1990).

An additional component of the pure learning time is the time required to memorize chunks of
declarative information required by the methods, such as the menu names under which
commands are found.  Such items are assumed to be stored in long-term memory (LTM), and
while not strictly part of the GOMS methods, are required to be in LTM for the methods to
execute correctly.  Including this component in the learning time estimates is thus a way to
represent the learning load imposed by menu or command terms, and the heuristics suggested in
CMN can be applied to estimate the time to memorize these items based on the number of
chunks.  However, it should be kept in mind that the heuristics for counting the number of
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chunks are not very well defined at this time (see Gong, 1993).

In addition, the general requirements of the learning situation must be taken into account as
well.  The original work by Kieras, Polson, and Bovair used a mastery learning situation, in
which the users were explicitly trained on the methods and were required to each procedure fully
and exactly before going to the next (Bovair, Kieras, & Polson, 1990; Kieras & Bovair, 1986;
Polson, 1988).  More recent work by Gong (1993) used a more typical learning situation in
which users first were given a demonstration and explanation, and then had to perform a series of
training tasks at their own pace, and without detailed feedback or correction.  The NGOMSL
operators and the number of memory chunks were excellent predictors of this more realistic
training time, although the prediction coefficients were different than those given in Kieras
(1988a).  Furthermore, even in learning situations that are realistically unstructured, at least the
ordinal predictions of learning time should hold true, as suggested by results such as Ziegler,
Hoppe, & Fahnrich (1986).  It seems reasonable that regardless of the learning situation, systems
whose methods are longer and more complex will require more time to learn, because there is
more procedural knowledge to be acquired, either by explicit study or inferential problem-
solving.  But clearly more work on the nature of relatively unstructured learning situations is
required.

The above discussion of estimating learning time can be summarized as follows, using the
values determined by Gong (1993):

Total Procedure Learning Time = Pure Procedure Learning Time
+ Training Procedure Execution Time.

Pure Procedure Learning Time = NGOMSL Method Learning Time
+ LTM Item Learning Time

NGOMSL Method Learning Time = 17 sec × Number of NGOMSL Statements
to be Learned

LTM Item Learning Time = 7 sec ×  Number of LTM Chunks to be Learned

These formulas give a pure procedure learning time estimate for the whole set of methods
shown in Figure 5 of 801 sec, in a "typical" learning situation and assuming no prior knowledge
of any methods or menu terms.

A trace of this NGOMSL model performing the text moving example in Figure 1 is
summarized in Figure 5.  The trace includes the same sequence of physical operators as the KLM
and CMN-GOMS models in Figure 3 and 4.  The predicted execution time is obtained by
counting 0.1 sec for each NGOMSL statement executed (corresponding to the execution of CCT
production rules) and adding the total external operator time, using the values recommended in
Kieras (1994).  This gives a predicted execution time of 16.38 sec, which is comparable to the
predictions of the other two models, which was 14.38 for both the KLM and CMN-GOMS
models.

The primary difference between execution time predictions for NGOMSL, KLM and CMN-
GOMS is how time is assigned to cognitive and perceptual operators.  There are some stylistic
differences in how many large mental operators are assumed; for example, the NGOMSL
example follows the NGOMSL technique recommendations for the number and placement of
DETERMINE-POSITION and VERIFY operators, and so has more of such M-like operators than do
the CMN-GOMS and KLM models.  These stylistic differences could be resolved with further
research.  But a more important difference is in the nature of the unobservable operators.  The
KLM has a single crude M operator that precedes each cognitive unit of action.  NGOMSL,
based on CCT, uniformly requires some cognitive execution time for every step, manipulating
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goals and working memory, and for entering and leaving methods.  In contrast, CMN-GOMS
assigns no time to such cognitive overhead.  But all three models include M-like operators for
substantial time-consuming mental actions such as locating information on the screen and
verifying entries.  Thus these methods assign roughly the same time to unobservable perceptual
and cognitive activities, but do so at different places in the trace.

Because NGOMSL models specify methods in program form, they can characterize the
procedural complexity of tasks, both in terms of how much must be learned, and how much has
to be executed.  However, NGOMSL models are based on CCT, which in turn assumes a simple
serial stage model of human information processing, and so NGOMSL works only for
hierarchical and sequential methods, with perceptual and motor activities represented only by
external primitive operators like DETERMINE-POSITION and CLICK-MOUSE-BUTTON.  NGOMSL
models are thus limited in two important ways.  First, there is no provision for representing
methods whose steps could be executed in any order, or which could be interrupted, suspended
and resumed (e.g.  for purposes of error recovery).  Second, since perceptual and motor activities
are represented by operators embedded in the sequential methods, there is no way to represent
how these might overlap with other activities.  For example, there is no provision for
representing a user doing perceptual processing on an icon while simultaneously homing the
hand to the mouse and doing a retrieval from long-term memory.  So the NGOMSL technique is
unsuitable for tasks in which such perceptual-cognitive-motor overlap is important.  Such cases
would be ones in which the interaction was time-stressed, highly practiced, and involved displays
and controls that permitted some degree of parallel activity.  These limitations are not serious in
many conventional situations involving desktop computing, and also it is possible to approximate
overlapping operations by setting certain operator times to zero (as has been done in Figure 5,
see Gong, 1993).  These limitations could be overcome by extensions to NGOMSL and CCT, but
such extensions would be equivalent to using the Parallel Multiple-Processor conceptual
framework, and so would alter the technique and computational models in a fundamental way.
However, this type of model and analysis is already represented to some extent by CPM-GOMS
and some of the research approaches discussed below.

In contrast to the KLM, which we characterized as having the least conceptual baggage,
NGOMSL embraces the full psychological theory of CCT.  For instance,  NGOMSL analyses
make a commitment to deliberate goal and working memory management.   As we will discuss
later, the need to understand these theoretical mechanisms probably increases the time to learn
how to do NGOMSL analysis compared to KLM or CMN-GOMS analyses.  However, since
NGOMSL is the only current GOMS variant that predicts both performance time and learning
time, an analyst may be willing to master the technique's concepts to reap the benefits of its
predictive power.

CPM-GOMS.  CPM-GOMS is a task analysis technique based directly on the Model Human
Processor (MHP), and thus, on the parallel multi-processor stage model of human information
processing.  It does not make the assumption that operators are performed serially, i.e.,
perceptual, cognitive and motor operators at the level of MHP processor cycle times can be
performed in parallel as the task demands.  CPM-GOMS uses a schedule chart (or PERT chart,
familiar to project managers, e.g. Stires & Murphy, 1962) to represent the operators and
dependencies between operators.  The acronym CPM stands for both the Cognitive-Perceptual-
Motor analysis of activity, and also Critical Path Method, since the critical path in a schedule
chart provides a simple prediction of total task time.

To build CPM-GOMS models the analyst begins with a CMN-GOMS model of a task with
operators at a level such that they are primarily perceptual (READ-SCREEN, LISTEN-TO-
CUSTOMER) or motor (ENTER-COMMAND, GREET-CUSTOMER).  These operators are then
expressed as goals and implemented with methods of MHP-level operators.  John & Gray (1992,
1994) have developed templates of the combinations of MHP-level cognitive, perceptual and
motor operators that implement many different activity-level goals under different task
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conditions.  For instance, the READ-SCREEN goal is accomplished with the operators in the first
template in Figure 6 when an eye-movement is required and with the second template when it
isn't because the user is already looking at the point where the highlighting will appear.  Each
operator in the templates is associated with a duration estimate, or a set of estimates that also
depend on task conditions.  For instance, visually perceiving and comprehending a 6-character
word is has a duration of 290 ms, whereas visually perceiving and comprehending that a symbol
is merely present or absent (e.g., the presence of highlighting) has a duration of 100 ms, as is
shown in Figure 6.

These templates are first joined together serially, and then interleaved to take advantage of the
parallelism of the underlying conceptual architecture.  If empirical data about actual performance
of observable motor operators is available from a current system that is similar to the system
being designed, it is desirable to verify the model against these data.  Then the verified models
are modified to represent the proposed design and quantitative predictions of performance time
can be determined from the critical path of the CPM-GOMS model.  Qualitative analysis of what
aspects of a design lead to changes in the performance time are quite easy once the models are
built, as are subtask profiling, sensitivity and parametric analyses, and playing "what-if" with
suggested design features (Chuah, John & Pane, 1994; Gray, John & Atwood, 1993).

Continuing the example of the MOVE-TEXT goal of Figure 1, Figure 7 shows a CPM-GOMS
model in the style of Gray, John & Atwood (1993).  For brevity, the model covers only the
portion of the procedure involved with highlighting the text to be moved.  Before discussing this
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Figure 6.  Example of a template for building CPM-GOMS models adapted from John & Gray, 1994.
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model in detail, however, it is important to note that text-editing is not a good application of the
CPM-GOMS technique and we present it here only so that similarities and differences to the
other GOMS variations are clear.  Text-editing is usefully approximated by serial processes,
which is why the KLM, CMN-GOMS and NGOMSL have been so successful at predicting
performance on text-editors.  The CPM-GOMS technique is overly detailed for such primarily
serial tasks and as will become clear, can underestimate the execution time.  For examples of
tasks for which a parallel-processing model is essential, and where the power of CPM-GOMS is
evident, see the telephone operator task in Gray, John and Atwood (1993) and transcription
typing (John, 1988; John & Newell, 1989).

Although text-editing is not the best task to display the advantages of CPM-GOMS, there are
several interesting aspects of the model in Figure 7 compared to the example models of the text-
moving task in the preceding sections.  First, there is a direct mapping from the CMN-GOMS
model to the CPM-GOMS model, because all CPM-GOMS models start with CMN-GOMS and
the particular model in Figure 7 was built with reference to the one in Figure 4.  As with the
KLM, selection rules are not explicitly represented because CPM-GOMS models are in sequence
form, and the analyst implements the selection by choosing a particular method for each task.
For example, in Figure 7, the selection between HIGHLIGHT-ARBITRARY-PHRASE and HIGHLIGHT-
WORD that is explicitly represented in CMN-GOMS and NGOMSL, is only implicit in the
analyst's choice of the method for this model.  The times for the various operators are shown on
the boxes in the schedule chart, based on the durations estimated by John & Gray (1994), and the
highlighted lines and boxes comprise the critical path.

Parallelism in the model is illustrated in the set of operators that accomplish the MOVE-TO-
BEGINNING-OF-PHRASE goal.  These operators are not performed strictly serially, that is, the eye-
movement and perception of information occur in parallel with the cursor being moved to the
new location.  The information-flow dependency lines between the operators ensure that the eyes
must get there first, before the new position of the cursor can be verified to be at the right
location, but the movement of the mouse takes longer than the eye-movement and perception, so
it defines the critical path.

Multiple active goals can be represented in CPM-GOMS models and are illustrated in Figure 7
in the sets of operators that accomplish the MOVE-TO-END-OF-PHRASE goal and the SHIFT-CLICK-
MOUSE-BUTTON goal.  Because the shift key is hit with the left hand (in this model of a right-
handed person) and the mouse is moved with the right hand, the pressing of the shift-key can
occur while the mouse is still being moved to the end of the phrase.  Thus, the operators that
accomplish the SHIFT-CLICK-MOUSE-BUTTON goal are interleaved with the operators that
accomplish the MOVE-TO-END-OF-PHRASE goal.  This interleaving represents a very high level of
skill on the part of the user.

Reading the total duration on the final item of the critical path gives a total execution time
through this subsequence of the task of 2.21 sec.  Totaling the execution time over the same steps
in the other models gives 4.23 sec for both the KLM and CMN-GOMS and 6.18 sec for the
NGOMSL model.

Although the qualitative process in this example of a CPM-GOMS model is reasonable, its
quantitative prediction is much shorter than the estimates from the other models.  The primary
source of the discrepancy between the GOMS-variants is the basic assumption in the commonly-
used form of the CPM-GOMS technique that the user is extremely experienced and executes the
task as rapidly as the MHP architecture permits.  It should be kept in mind that this particular
example task is not really suitable for CPM-GOMS, but is presented to facilitate comparison
with the other techniques, and show how CPM-GOMS can represent parallel activities in the
same editing task.  Some discussion of why the CPM-GOMS technique predicts an execution
time that is so much shorter than the others will help clarify the basic assumptions of this form of
GOMS analysis.
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Figure 7.  CPM-GOMS model of a move-text method for the text-editing task in Figure 1.

These cognitive and motor operators
accomplish the goal click-mouse-button, 
which is an operator in the KLM, 
CMN-GOMS and NGOMSL models.

These perceptual, cognitive and motor operators together accomplish the goal: 
move-cursor-to-beginning , which is an operator in the KLM, CMN-GOMS and 
NGOMSL models.  This model assumes that the hand can begin moving the 
cursor in the correct direction before the eyes have fully found and verified the 
destination of the cursor (however, the eyes do get there before thecursor does).  
Thus, the eye movement, perception and verification are not on the critical path.
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to set up the move-text task.
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KEY:
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Figure 7 (con't).  CPM-GOMS model of a move-text method for the text-editing task in Figure 1.
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These perceptual, cognitive and motor operators accomplish the goal: move-to-end-of-phrase which 
is an operator in the KLM, CMN-GOMS and NGOMSL models.  Notice how operators for the next 
goal: shift-click-mouse-button, are interleaved with the operators for this goal.  This is how multiple 
active goals are represented in CPM-GOMS models and are an indication of extreme expertise.

These cognitive and motor operators accomplish the goal of 
shift-click-the-mouse-button.  Notice that they interleave with the 
previous goal, occur in parallel with other operators, and thus 
only some of the six operators contribute time to the critical path.
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One aspect of the extreme-expertise assumption is that the example model assumes that the
user knows exactly where to look for the to-be-moved-phrase.  This means that the model needs
only one eye-movement to find the beginning and one to find the end of the target phrase and
that the mouse movements to these points can be initiated prior to the completion of the eye
movements.  In some real-world tasks, like telephone operators handling calls (Gray, John, and
Atwood, 1993), the required information always appears at fixed screen locations, and with
experience, the user will learn where to look.  But in a typical text editing task like our example,
the situation changes from one task instance to the next, and so visual search would be required
to locate the target phrase.  The CPM-GOMS has been used to model visual search processes
(Chuah, John & Pane, 1994), but for brevity, we did not include this complexity in our example.

A second aspect of the assumed extreme expertise is that the example does not include any
substantial cognitive activity associated with selection of methods or complex decisions.  Such
cognitive activity is represented in the other GOMS variants with M-like operators of about a
second in duration.  In contrast, in Figure 7, the method selection is implicit in a single cognitive
operator (INITIATE-MOVE-TEXT-METHOD) which is the minimum cognitive activity required by
the MHP to recognize a situation and note it in working memory.  Likewise, VERIFY-POSITION
operators are included in the CPM-GOMS model, but they represent much more elementary
recognitions that the cursor is indeed in the location where the model is already looking rather
than complex verifications that a text modification has been done correctly required in CMN-
GOMS and NGOMSL.  Thus, Figure 7 represents the absolute minimum cognitive activity,
which is an unreasonable assumption for a normal text-editing task.  However,  in an experiment
by CMN (pp. 279-286), the performance time of an expert user on a novel editing task was well
predicted by the KLM, but after 1100 trials on the exact same task instance, the performance
time decreased by 35%, largely because the M operators became much shorter.  It is this type of
extreme expertise that our example CPM-GOMS model represents.  A more elaborate CPM-
GOMS model could represent complex decisions as a series of MHP-level operators performing
minute cognitive steps serially, as in the earlier work on recalling computer command
abbreviations and transcription typing in John (1988) and John & Newell (1989).  However, the
technique for modeling complex decisions in CPM-GOMS models is still a research issue, and so
they currently should be used only for tasks in which method selection is based on obvious cues
in the environment and decisions can be represented very simply.

A final contributor to the short predicted time is that the mouse movements in CPM-GOMS are
calculated specifically for the particular target size and distance in this situation, yielding much
shorter times than CMN's 1.10 sec estimate of average pointing time used in the other models
(further discussion appears in the next section).

Thus the CPM-GOMS technique allows one to represent the overlapping and extremely
efficient pattern of activity characteristic of expert performance in a task.  The main contrast with
the other techniques is that CPM-GOMS models constructed with the current technique do not
include the time-consuming M-like operators that the other models do, and that would be
expected to disappear with considerable practice if the system interface holds the relevant aspects
constant.  In fact, if the M-like operators are excluded from the execution time of the other
models, the predicted times are much closer to the CPM-GOMS prediction, being 2.88 sec for
KLM and CMN-GOMS, and 3.78 sec for NGOMSL.

Like NGOMSL, CPM-GOMS carries a substantial amount of conceptual and theoretical
baggage.  Since it is based on the MHP, it requires an understanding of parallel processing and
information-flow dependencies.  These concepts have implications for the ease of learning CPM-
GOMS, and will be discussed later.

Summary comparison of GOMS techniques.  We have modeled the same goal, MOVE-TEXT,
with four different GOMS task analysis techniques.  For purposes of comparison, we included a
CPM-GOMS model for the same text-editing task, although the technique is not recommended
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Table 1

Predicted time measures (seconds) for each technique for the MOVE-TEXT example .

--------------------------------------------------------------------------------------------------------
KLM CMN-GOMS NGOMSL CPM-GOMS

--------------------------------------------------------------------------------------------------------

Overall Measures

Procedure Learning --- --- 801. ---
(both highlighting
methods)

Total Example Task 14.38 14.38 16.38 not shown in
Execution Time this example

Text Highlighting Sub-Method

Complete Method 4.23 4.23 6.18 2.21
Execution Time

Method Execution 2.88 2.88 3.78 2.21
Time with no long
M-like Operators

Total Cognitive --- --- 0.90 1.10
Overhead
--------------------------------------------------------------------------------------------------------

for modeling such sequential tasks, and for brevity, it was shown only for the text-highlighting
submethod.  The KLM, CMN-GOMS and NGOMSL models all produce the same sequence of
observable operators, as does the CPM-GOMS model (although at a more detailed level).  Table
1 summarizes the quantitative predictions from the above presentation, both for the overall
example task, and the subtask consisting just of highlighting the to-be-moved text.

NGOMSL is the only one of the four techniques that makes learning time predictions, and
these are limited to the effects of the amount of procedural knowledge and related LTM
information to be learned, and to learning situations for which the coefficients have been
empirically determined.

KLM, CMN-GOMS, and NGOMSL produce execution time predictions that are roughly the
same for both the overall task and the subtask, although they make different assumptions about
unobservable cognitive and perceptual operators and so distribute the time in different ways (see
below).  An important difference is that the NGOMSL technique currently entails more M-like
operators than the other techniques, as well as some cognitive overhead due to method step
execution; thus NGOMSL will typically predict execution times that are longer than KLM or
CMN-GOMS predictions.

As shown in the execution time predictions for the text-highlighting submethod, the CPM-
GOMS model substantially underpredicts the execution time relative to the other models.  As
discussed above, this is due to the assumption of extreme expertise in the current CPM-GOMS
technique: using maximum operator overlapping, finer-grain time estimates for the individual
operators, and assuming the minimum of cognitive activity allowed by the MHP.  An interesting
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similarity between NGOMSL and CPM-GOMS is the roughly similar cognitive overhead time in
the example submethod; in NGOMSL this value is the statement execution time at 0.1
sec/statement; in CPM-GOMS it is the total time for which the cognitive processor is on the
critical path in Figure 7.

Table 2 shows the different operator times assumed in the different techniques and used in
the example.  For the KLM, CMN-GOMS, and NGOMSL models, the estimates for the M-like
operators shown (Mental Preparation, Determine Position, and Edit Verification) are those
currently recommended for each technique as average values to be used in the absence of more
specific measurements.  They are all roughly the same at about a second duration, but are slightly
different because they were determined empirically with different data sets at different historical
points in the development of GOMS techniques.  None of the these techniques have a theoretical
commitment to any particular value.  Any available empirically determined values for the
operators involved in a particular analysis should be used instead of these average estimates.
More significant are the differences in the distribution of mental time: the KLM tends to place
mental time in the preparation for action, while CMN-GOMS mental time tends to come at the
end of actions in VERIFY operators, and NGOMSL has mental time in both places.  These
stylistic differences could probably be resolved with further research.

On the other hand, values of those same operators in CPM-GOMS are theoretically driven, as
they connect to the MHP and its cognitive cycle time (estimated at 70 ms CMN, but refined by
subsequent work to be 50 ms, John & Newell 1990; Nelson, Lehman & John, 1994; Wiesmeyer,
1992)  Both the duration and position of these unobservable operators are specified by the
templates used to construct the model.  The entry for Mental Preparation is the sum of the
durations of the two cognitive operators on the critical path that set up the move-text task and
highlight-phrase subtask.  The entry for Determine Position is the sum of the durations of those
operators that locate the beginning of the phrase on the screen that occur on the critical path.
Locating this point involves 3 cognitive operators, 1 eye-movement motor operator that would be
unobservable except with an eye-tracker, and 1 perceptual operator.  All of these operators
depend on each other and have to occur in order, thus, if this were the only activity taking place
in a task,  they would all be on the critical path and take 420 ms.  However, since looking for the
beginning of the phrase is just one part of the move-text task, other activities can occur in parallel

Table 2

Operator times (seconds) used in each technique for the MOVE-TEXT example.   See text for
explanation of the CPM-GOMS entries.

--------------------------------------------------------------------------------------------------------
KLM CMN-GOMS NGOMSL CPM-GOMS

--------------------------------------------------------------------------------------------------------
Mental Preparation 1.35 not used not used 0.100

Determine Position not used not used 1.20 0.100

Edit Verification not used 1.35 1.20 not used

Cursor movement 1.10 1.10 1.10 0.680
or Fitts' Law by Fitts' Law

Click-mouse-button 0.20 0.20 0.20 0.250

Shift-click- 0.48 0.48 0.48 0.250
mouse-button
--------------------------------------------------------------------------------------------------------
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(e.g., moving the mouse, discussed in the last section) and their operators are interleaved with
these, making the critical path more complicated, so that only the first two cognitive operators
appear on the critical path for this task.

The operator times for cursor movement deserves a brief note.  The 1.10 sec used in the
techniques is the average value suggested by CMN for large-screen text editing tasks.  But Gong
(1993) found that many of the mouse movements involved in using a Macintosh interface, such
as making menu selections and activating windows, were much faster than 1.10 sec, and that
Fitts' Law estimates (see CMN, p. 55) were much more accurate.  Thus, Fitts' Law values based
on the actual or typical locations of screen objects should probably be used whenever possible in
all of the techniques.  For CPM-GOMS, moving the cursor to point to an object is a combination
of cognitive operators, motor operators and perceptual operators (see Figure 7) and only some of
them occur on the critical path in any task situation.  The duration of the mouse-movement motor
operator itself was calculated using Fitts' Law.  In this example, moving to the beginning of the
phrase put 680 msec on the critical path and, coincidentally, moving to the end of the phrase also
put 680 msec on the critical path.

Finally, the times for mouse button operators and using the shift key in the first three
techniques are based on values from CMN.  The slightly different value for a mouse click in the
CPM-GOMS technique can be read from the example in Figure 7.  That is, clicking the mouse
button requires a 50 ms cognitive operator and two motor operators at 100 ms each.  The fact that
the shift-click takes the same time as the simple click is due to the shift key operation being
overlapped with earlier processing, so that it is not on the critical path.

3.4.  Some Research Directions

Even a cursory review of the cognitive modeling research efforts in HCI is beyond the scope of
this paper, even if attention is restricted to those that are likely will lead to additional engineering
models.  However, it is worthwhile to briefly discuss some important research topics that are
indicated by the italicized areas in Figure 2.

As mentioned before, there are properties of tasks that are not captured by GOMS models,
either because more than just procedural knowledge is involved, or because the knowledge is not
in the form of routine cognitive skill, but rather in a state that requires complex reasoning or
problem solving.  As suggested by the other approaches  label at the top of Figure 2, research in
this area could lead to additional design techniques based on identifying the critical properties of
a task domain and determining whether the system design has the appropriate relationship to the
task.  For example, Kieras (1988b) suggests heuristics for determining what "mental model"
information about the system should be conveyed to users.  Other researchers have proposed
models of how users learn a system by interacting with and observing it (e.g., Polson & Lewis,
1990; Howes, 1994).  A different approach would be to describe the general learning processes
that eventually lead to a routine cognitive skill, for example the use of a general analogy
mechanism in both ACT-R and Soar (Rieman, Lewis, Young and Polson, 1994).  It remains to be
seen whether useful engineering models emerge from research on these highly unstructured
situations, and whether the models have clear relations to the GOMS family, or take a different
form.

The other italicized area concerns various other computational architectures and their
application to HCI tasks.  Some research architectures, such as Construction-Integration (Doane,
Mannes, Kintsch, & Polson, 1992; Doane, McNamara, Kintsch, Polson, & Clawson, 1992;
Kitajima & Polson, 1992) and ACT-R (Rieman, Lewis, Young, & Polson, 1994) have been
applied to the analysis of HCI problems, but it is not yet clear what kind of design techniques
will result.  A particularly important issue is the underutilization of the parallel multiprocessor
conceptual framework.  The only currently documented GOMS technique based on this
framework is CPM-GOMS, and as pointed out below, there is currently a lack of models and
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techniques for many of the related design issues.  Work underway by John and colleagues
(Nelson, Lehman, & John, 1994) applies the Soar cognitive architecture to the same kinds of
interactions as CPM-GOMS, including using a Soar model to generate the PERT charts for a
CPM-GOMS analysis.  A new computational architecture occupying this space is the EPIC
architecture being developed by Kieras, Meyer, and Wood (Kieras & Meyer, 1994; Wood,
Kieras, & Meyer, 1994).  In EPIC, a production-rule cognitive processor is embedded in a set of
parallel-running perceptual and motor processors whose properties are based on the current
human performance literature.  Work thus far shows that human performance data in high-
performance parallel tasks can be quantitatively predicted by EPIC models using GOMS
methods in program form.  If techniques can be articulated for constructing such models
routinely, then the range of tasks covered by GOMS methodology will be substantially increased.

4.  Applying GOMS to Design

When a designer approaches a design task, he or she applies the heuristic, analytic and
empirical design techniques known to be useful for the task at hand.  For instance, as illustrated
by the presentation in Oberg, Jones, & Horton (1978), a mechanical engineer designing a
flywheel may use algebraic equations to estimate the initial dimensions of the wheel (analytic
technique), then make sure the design is within the maximum safe speed for that type of wheel
from tables of empirical results (empirical technique), and finally modify his or her design by
including a safety factor (heuristic technique).  In order to apply these techniques, a designer
must know what techniques are available, to what design tasks they are applicable, and whether
the benefit from applying the technique outweighs the effort to apply it.  In the preceding
sections of this paper, we laid out the GOMS family of analytic techniques available to the
computer system designer.  In this section, we provide the additional information required for a
designer to choose one of these techniques: which techniques are suitable for which design
situations, what are the benefits of using each of techniques, and an estimate of the effort
involved in using the technique.

A design situation has two characteristics important to selecting a GOMS analysis technique:
the type of task the users will be engaged in, and the types of information gained by applying the
technique.  Figure 8 shows which GOMS family methods can be used for each combination of
type of task and type of information.  In this section of the paper, we will first discuss the task
type dimension, and then for each type of information gained, we will describe the issues
involved in using the different GOMS techniques that apply.  The fact that some of the cells are
empty points to a need for further research on GOMS family techniques.  In some cases, existing
techniques could be modified and adapted for these cases, but the Figure presents the techniques
as currently documented.

4.1.  Characterizing the User's Tasks

Although user tasks can be characterized in many different ways, three dimensions are
important for deciding whether a GOMS analysis technique is applicable to the user's task, and
which technique is most suitable: the degree of routinized skill involved in the user's task, the
sequentiality of the user's task, and the degree to which the interaction is under the control of the
user versus the computer system or other agents involved in the task.

Skill.  The skill dimension of tasks runs from one extreme of problem-solving, where the user
does not know how to perform a task and must search for a solution, to routine cognitive skill,
where the user knows exactly what to do in the task situation and simply has to recognize that
situation and execute the appropriate actions (see CM&N, 1983, Chapter 11).  As previously
discussed, the extant GOMS techniques apply only to the routine end of this dimension.  GOMS
has no direct way of representing the nature or difficulty of the problem-solving required to
discover the appropriate operators, methods, or selection rules; rather, understanding and
predicting such behavior is an active area of cognitive psychology research.  Because of this



29

Information 
Type

Task
Type Passive System Active System

Sequential Parallel

Functionality:
Coverage

Execution
Time

Procedure 
Learning

Time

Error 
Recovery
Support

NGOMSL

Sequential Parallel

Any GOMS

see text CPM-GOMS
KLM

CMN-GOMS
NGOMSL

CPM-GOMS

Operator
Sequence

CMN-GOMS
NGOMSL

CPM-GOMS CPM-GOMS

Functionality:
Consistency

NGOMSL

Any GOMS Any GOMS Any GOMS

Any GOMS Any GOMS Any GOMS Any GOMS

Routine Cognitive Skill

NGOMSL

NGOMSL

see text

Figure 8.  GOMS techniques available for different combinations of task type and the type of design
information desired.  Note that only tasks that are routine cognitive skills are included, and information
types not provided by GOMS models are not shown.

limitation, Figure 8 shows that the only task type for which GOMS models apply are routine
cognitive skills.

It is important to remember, however, that most computer-based tasks, even very open-ended
ones, have substantial components of routine cognitive skill.  First, many tasks will evolve from
problem-solving to routine skill after extensive use, and predicting a fully practiced user's
performance is valuable, because such performance can not be empirically measured for a system
that is just being designed and not yet implemented.  Second, many tasks have elements of both
routine skill and problem-solving.  For instance, CMN (Ch. 10) showed that the expert's task of
laying out a printed circuit board with a CAD tool was about half problem-solving to figure out
what to do next (i.e., acquire the next unit task) and half execution of the unit task, predictable by
a GOMS technique.  One detailed study of using a new programming language to create a
graphing application showed that embedded in the problem-solving activities of designing the
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program and figuring out how to use the new language was the routine behavior of manipulating
the help system and that GOMS was applicable to the analysis of this behavior (Peck & John,
1992).  Other examples of GOMS analysis of routine use in otherwise complex tasks include the
widely studied text-editing situation, spreadsheet use (Lerch, Mantei & Olson, 1989), digital
oscilloscope use (Lee, Polson & Bailey, 1989), and even playing a video game (John & Vera,
1992; John, Vera & Newell, 1994).  Thus, although a user's task may seem to be primarily a
problem-solving task, there will be aspects of that task that involve routine cognitive skill.  It is
these aspects of the system design for which GOMS analysis can be used to improve the design
to allow users to more effectively work on the non-routine, creative parts of the overall task.

Sequential vs. parallel activity.  Many HCI tasks can be usefully approximated as sequential
application of operators, such as text-editing.  Other tasks involve so much overlapping and
parallel activities that this simplification does not usefully approximate the task, as in the
telephone operator tasks analyzed by Gray, John and Atwood (1992, 1993).  Because currently
only the very detailed CPM-GOMS is applicable to the parallel case, it is important to consider
when a task involving some parallel operations can be usefully approximated by a sequential
model.  One such case is when the parallel operations can be represented as a simple
modification to the sequential model.  For example, in the text-editing example used throughout
this paper it is logically necessary that users must determine visually the location of an object
before they point at it with a mouse.  In a sequential analysis, there would be a operator such as
VISUALLY-LOCATE-OBJECT followed by a POINT-TO-OBJECT operator.  But practiced users can
apparently visually locate a fixed object on the screen (e.g., items on a menu bar) simultaneously
with pointing at it with a mouse, meaning that these two operators can execute in parallel.  This
parallel execution can be approximated in a sequential model by simply setting the time for the
VISUALLY-LOCATE-OBJECT operator to zero (see Gong, 1993).

The second case is when the parallel operations are taking place below the level of analysis of
the design issues in question, or independently of them.  For example, NGOMSL could be used
to determine if a telephone operator's procedure for entering a billing number was consistent
across different task contexts.  As long as the configuration of parallel operators does not differ
between design alternatives or task contexts, such a sequential analysis could be useful.  But note
that since the NGOMSL model would not accurately reflect the underlying production-rule
structure for such a task, the quantitative measures of the effect of consistency on reduction of
learning time would be suspect; thus NGOMSL should not be used for quantitative predictions
for parallel tasks.

Locus of control.  Computer system tasks can be roughly categorized into passive-system tasks
and active-system tasks.  In passive-system tasks, the user has control over the pace and timing of
task events; the computer merely sits and waits for inputs from the user.  Text editing is a typical
passive-system task.  In active-system tasks, the system can produce spontaneous, asynchronous
events outside of the user's control.  Thus the user must be prepared to react to the system, which
can also include other people who are providing information or making requests.  Telephone
operator tasks and aircraft piloting are good examples of active system tasks.  Many video games
are maniacally extreme active systems.  The introduction of artificial intelligence techniques into
an interface to anticipate user’s needs is likely to result in active systems.

The difference between GOMS analyses for active and passive systems is somewhat subtle.
The basic concept of GOMS models and analysis is indifferent to whether the system is active or
passive, in that in either case, one can describe the methods and selection rules that the user must
possess in order to accomplish goals with the system.  The difficulty lies in the underlying
human information-processing architecture.  An active system may produce events that require
the user to abandon the current goal and set up a new goal to accomplish.  In contrast, the goals
involved in using a passive system are static in the sense that once created, they endure until
accomplished.  Thus active systems may entail methods in which goals have to be suspended,
dropped, or created on the fly.  In the general case, humans interacting with an active system can
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be modeled only by cognitive architectures that permit dynamic goal rescheduling.  Such
processing involves modifying the goal stack, or perhaps rebuilding it from information in
memory or on an external display.  For example, a simple relaxing of CMN-GOMS' strict goal-
stack allowed John and colleagues to predict the functional-level and keystroke-level operators of
a nine-year-old expert playing a videogame (John & Vera, 1992; John, Vera & Newell, 1994).

For practical analysis with currently developed techniques, there are two approaches available
for active systems.  The first is a GOMS analysis in sequence form such as KLM or CPM-
GOMS, in which a particular pattern of activity involving goal rescheduling could be
represented.  Here, the interruptability is handled by the analyst.  This approach was used
successfully by Gray, John & Atwood (1992, 1993) in modeling telephone operators in their
interaction with customers.

The second approach is to construct a CMN-GOMS or NGOMSL model under the
approximating assumption that the active system produces events that can be responded to with
methods that either will not be interrupted, or do not conflict with each other.  Typically the top-
level method simply waits for an event, and then invokes whatever submethods are appropriate
for responding to the event.  For example, the complex operator's associate system analyzed by
Endestad & Meyer (1993) had this structure.  This approximation clearly fails to deal with the
case in which the user must respond to simultaneous or mutually interrupting events, but the
analysis can still be useful in identifying usability problems with the system.

4.2.  Design Information Provided by GOMS Models

Figure 8 shows several types of design information that GOMS models can provide.  Clearly
there are many other kinds of information relevant to design; these are not included in the Figure
because there are no GOMS family techniques for them.  Examples of kinds of information not
provided by GOMS are:  (1) standard human factors issues such as readability of letters and
words on the screen, visual quality of a display layout, recognizability of menu terms or icons,
and memorability of commands;  (2) the quality of the work environment, user acceptance, and
affect (e.g., is the system fun to use or does it cause boredom, fatigue, and resentment); (3) the
social or organizational impact of the system and the resulting influence on productivity.

An additional type of design information not shown in Figure 8 is an informal understanding of
the design issues.  That is, as pointed out by Bennett & Karat (1989), a GOMS analysis can have
purely heuristic value.  Since a GOMS model makes explicit what the system requires the user to
do, constructing it is a way for a user interface designer to become more aware of the
implications of a design.  Since a common design error is to produce a system without careful
consideration of what it imposes upon the user, any exercise that requires the designer to think
carefully about the procedures entailed by the design can help in a purely intuitive way to
identify usability problems and clarify the nature of the user's task.

Functionality: Coverage and consistency.  The primary design question about functionality is
whether the system provides some method for every user goal.  As discussed above, GOMS
methods cannot generate or predict the range of goals a user might bring to a system.  However,
once the designer generates a list of likely user goals, any member of the GOMS family can be
used to check that a method exists for each one in a proposed or existing system, as shown in
Figure 8.

While an analysis of functional coverage may not require a formal description of the methods,
it is important to consider the content of the methods at least informally.  That is, decisions about
functionality are based on whether the system provides a function reasonably suitable for the
task, meaning that the method involved must be reasonably simple and fast.  For example,
consider that the user of a word processor might have the goal of putting footnotes at the bottom
of the appropriate pages.  Some word processors have functionality specialized for footnoting,
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and so have very simple methods for accomplishing this goal.  Other word processors lack this
functionality, and so can put footnotes on a page only if the user places and formats them "by
hand", and this work has to be redone if the length of the text changes.  Despite this clumsiness,
such limited word processors still provide a method for accomplishing the footnoting goal.
Thus, it would be rare that functionality in a simple all-or-none sense is considered in an
interface design; there are at least implicit requirements on performance or learning time for the
corresponding methods.  If it is important to quantify these requirements, GOMS family
members can provide quantitative predictions as discussed in the next two subsections.

Information can be obtained about functional consistency by comparing methods and the
knowledge necessary to perform different commands.  NGOMSL is particularly suited to an
analysis of consistency, because the structure and content of NGOMSL methods can be
inspected, and the learning time predictions of NGOMSL and CCT take this form of consistency
into account.  That is, a consistent interface is one in which the same methods are used
throughout for the same or similar goals, resulting in fewer methods to be learned.  Furthermore,
Kieras (1988, 1994a) provides simple heuristics for assessing similarity of methods for
consistency analysis.

Operator sequence.  Two of the GOMS family members, CMN-GOMS and NGOMSL, can
predict the sequence of overt physical operators a user will perform to accomplish a task
(whereas with KLM, the analyst must supply the sequence of operators).  That is, the methods
and selection rules specify which commands a user will enter, the menu-items they will select,
and so forth, to accomplish their goals.  The best technique for exploring operator sequences on
sequential tasks depends on the number of benchmark tasks being considered, in a way described
below for execution time predictions.  The situation for parallel tasks is much less rich.  At this
time, only CPM-GOMS is available for studying the sequence of operators and their possible
interleaving in a parallel task.  As described above, currently, the CPM-GOMS technique results
in models in sequence form in a PERT chart.  Although each PERT chart represents only one
configuration of operators that the analyst has chosen to represent, these charts are easily
manipulated with project management software, so that many configuration can be explored
quickly.  Thus, the technique allows the analyst to investigate the effects of different selection
rules, methods, and different levels of interleaving.

Execution time.  Figure 8 shows that several members of the GOMS family can predict
execution time, under the restrictions that the user must be well practiced and make no errors
during the task.  Some HCI specialists feel that these restrictions mean that GOMS models are
not useful in actual design situations, because many users are novices or causal users, and errors
are very common and time consuming.  Errors will be discussed more below.  However, we view
the execution time predictions of GOMS models to be akin to EPA mileage ratings for cars.
That is, although few drivers get as mileage as good as predicted by the EPA, the ratings are
useful in predicting the direction and rough magnitude of differences between different makes of
cars.  Similarly, GOMS predictions help compare system design alternatives.  If a GOMS model
predicts a definite execution time difference between systems, say using the engineer's rule of
thumb of more than 20%, a designer can be fairly certain that a real difference exists and is in the
direction predicted by the GOMS model.  Although GOMS models have been shown to be even
more accurate in some cases (e.g., Gray, et al. 1993; Gong, 1993), we believe that further
examination of when greater accuracy can be expected is necessary before we can make stronger
recommendations for the general case.  In many design situations, alternative systems do differ
substantially (by more than 20%) and this level of accuracy is useful for weeding out undesirable
alternatives.

Of course, if the system being designed will not be used enough by any single user to produce
expert performance (e.g. a walk-up-and-use application to help home-buyers locate a house in a
new city) GOMS predictions of execution time may not be useful compared to empirical results
on other design issues such as the recognizability of menu terms to the first-time user.  In
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addition, execution time is not an important variable in some systems, e.g., the success of a video
game hinges more on the excitement it creates than on the speed at which a player can play the
game.  Likewise, the critical design target for educational software is the support it provides for
learning, rather than the speed at which the user can operate it.  On the other hand, interfaces for
games and educational software often waste the user's time by methods that are slow and clumsy
for no good reason.  This mixture of the expected pattern of use, functionality, and usability
concerns should be kept in mind.  GOMS family models can contribute to designing software
that is fast and easy to use, even if this is sometimes only a secondary design criterion.

Since sequential tasks have been the most studied in GOMS research, there are multiple
techniques for predicting execution time in sequential tasks.  The choice of technique depends
primarily on whether the methods need to be explicitly represented for other purposes.  If not, the
KLM is by far the easiest technique.  If explicit methods are needed for other reasons, e.g., to
evaluate learning time or to design documentation, then using separate KLMs for execution time
is inefficient; CMN-GOMS or NGOMSL models will provide both execution time and other
types of information.  For both execution time and operator sequence prediction, an important
practical concern is whether the number of benchmark tasks is small.  If so, then the predictions
of operator sequence and execution time can be obtained by hand-simulation of the models, or
simply by manually listing the operators, as for the KLM.  But if the number of benchmark tasks
is large, then it is probably worth creating machine-executable versions of an NGOMSL model,
which can be done in a variety of ways in almost any programming language.  This should
become simpler in the future, as computer-based tools for GOMS models become available (e.g.
Wood, 1993; Byrne, Wood, Sukaviriya, Foley, & Kieras, 1994).

Learning time.  Information about learning time is provided only by NGOMSL models, and
these predictions cover only the time to learn the methods in the GOMS model and any LTM
information they require.  These predictions have been validated in a variety of situations, and so
merit serious consideration.  But as mentioned above, there are clearly other aspects of a system
that the user must learn, and other mechanisms involved in learning, besides those represented in
the NGOMSL predictions.  For example, teaching a user an appropriate mental model of a device
can improve learnability and inference during subsequent use of the device (Kieras & Bovair,
1984; Kieras, 1988b), so designers may want to communicate such a model to their users.  The
class of models and methodologies presented here do not represent the knowledge and
mechanisms required for using a mental model, and so have no basis for predicting the utility of
a mental model or the time required to learn it (see Kieras, 1988b, 1990 for more discussion).
Likewise, the concepts and principles discussed above as research directions (section 3.4) go
beyond the simple procedure-learning situations captured by CCT and NGOMSL.

For practical situations, the recommendation is that NGOMSL learning time predictions should
be used with caution, and preferably only in comparing two designs.  Such comparisons should
be fairly robust, since as noted above, a more complex interface should be harder to learn than a
simpler one in a variety of possible learning situations.  The analyst should keep in mind two
important learning time issues.  First, the time to learn the interface procedures may be
insignificant in total training time for systems whose users must acquire substantial domain
knowledge, such as a CAD/CAM system or a fighter aircraft weapons control system.  Such
domain knowledge may involve learning words or icons in the interface, or operators (e.g. BANK-
AIRCRAFT) assumed in the analysis that the user must learn before they can execute the methods.
Second, the predicted procedure learning time could be quite misleading for "walk up and use"
systems or other "self evident" systems for which little or no explicit training is supposed to be
required.  To make the point clear, a method involving only a single step of typing an unlabelled
control key would yield a very low predicted learning time, but the user may have no easy way to
learn the correct keystroke in the actual usage situation.  An example of just this problem is
found in Karat, Boyes, Weisgerber, and Schafer (1986) who explored transfer of training
between word processors (usually well predicted by CCT) and found that some experienced
users of one word processor were completely stymied in trying to learn a new word processor
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because they could not figure out how to scroll the screen!

Error recovery support.  The relationship of GOMS analyses to human error behavior deserves
some discussion because of a common misunderstanding.  CMN, and almost all subsequent
GOMS work, presents analyses and predictions based on the assumption that the user does not
make errors.  Since errors in computer usage are quite frequent, it would seem that GOMS family
models have little to say about actual human performance.  But we would argue, along the lines
of the above analogy with EPA mileage estimates, that GOMS models of error-free performance
do in fact provide useful design information.  For example, a poorly designed system that is
difficult to learn and to use even under a no-errors assumption is almost certainly still a poor
design if the user does make errors.  So, optimizing learning time and execution time under the
no-error assumption should result in a system that is a good design overall, given that errors do
not always occur, and assuming that some reasonable error recovery is possible.

To further clarify, there are three design issues involved with errors: (1) preventing users from
making errors; (2) predicting or anticipating when and what errors are likely to occur given a
system design;and (3) designing the system to help the user recover from errors once they have
occurred.  Despite the obvious importance of the first two issues, at this time research on human
errors is still far from providing more than the familiar rough guidelines concerning the
prevention of user error.  No prediction methodology, regardless of the theoretical approach, has
yet been developed and recognized as satisfactory, and even the theoretical analysis of human
error is still in its infancy (see Reason, 1990 for more discussion).  At this time, GOMS models
also fail to address error prediction or prevention.

However, as originally pointed out by CMN, GOMS has a direct application to the problem of
error recovery.  Once an error has occurred, the design question is whether the system provides a
good method for the user to follow in recovering from the error.  That is, is there a fast, simple,
consistent method for the goal RECOVER-FROM-ERROR? (e.g., an ubiquitous undo command).
Such a design question is no different in substance from designing the methods for the ordinary
user goals.  Figure 8 shows that any of the GOMS models can be used to address this question,
with the specific choice depending on the specific aspect of interest, such as the time to execute
the recovery procedure.  Thus, once the possible frequent or important errors are determined,
evaluating designs for the quality of support for error recovery can be done with ordinary GOMS
approaches.

4.3.  Time and Effort for Learning and Using GOMS in Design.

Using any method in design has both the cost of learning how to use the method, and also the
time and effort to apply it to a specific design situation.  Because of the large amount of detailed
description involved, GOMS methodology has often been viewed as extremely time- and labor-
intensive.  This impression of the difficulty of GOMS methodology is probably a residue of the
research effort involved to develop the techniques in their original form, and does not reflect the
effort required to learn and to apply an already developed technique.  In fact, there is now
enough accumulated experience to assess the actual costs; it is clear that the GOMS
methodologies shown in Figure 8 have an excellent return on investment, and the amount of the
investment is much less than commonly believed.  Some of the case studies in Section 5
demonstrate this effectiveness.

Based on our experience with teaching GOMS techniques to university and industrial students,
the difficulty of learning a GOMS methodology depends mostly upon the complexity of the
assumed underlying cognitive architecture.  The KLM is based only on a simple serial stage
framework, and so is conceptually the simplest.  It is our experience, and the experience of other
HCI instructors at several universities, that the KLM can be taught to undergraduates in a single
class session with a few homework assignments and these students can construct models that
produce execution time predictions accurate enough for design decisions (see Neilsen & Phillips,
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1993; John, 1994).  Likewise, the simple original form of GOMS, CMN-GOMS, is based on
only the serial stage conceptual cognitive framework and so is relatively easy to understand and
construct.  A single class session seems to suffice if the student already has the basic skill of task
decomposition and so can develop goal hierarchies for tasks.

Both NGOMSL and CPM-GOMS are based on more complex architectures, and are thus
harder to learn and to use, but for different reasons.  The difficulty in using NGOMSL models is
a result of working in terms of the underlying CCT cognitive architecture, which requires
working out complete and accurate methods, with deliberate goal and working memory
manipulation, and a higher degree of formality and precision than CMN-GOMS.  NGOMSL can
be taught in a few undergraduate class sessions based on Kieras’s "how-to" description (1988a,
1994a) and a couple of homework assignments with feedback.  Full-day tutorials, such as at the
CHI conferences (Kieras, 1994b) and in industrial short-courses appear to be adequate to get
software developers started in the technique.  There seems to be little point in using CCT itself,
since the technical skills and facilities for production-rule modeling are much more demanding
compared to using NGOMSL, which produces practically the same results.

An estimate of the overall effort in applying NGOMSL to an actual design problem is provided
by the case study conducted by Gong (1993; see also Gong & Kieras, 1994) which is
summarized in Section 5.  In brief, he found that using NGOMSL in an application development
situation to evaluate a design and compare a revision to the original required only about a fifth of
the time spent on interface coding, and only about half of the time of an empirical evaluation
comprising an informal survey and a single full-scale empirical comparison of the two designs.

The difficulty in using CPM-GOMS models is due to the inherent difficulty of identifying and
describing in detail how perceptual, cognitive, and motor processing activities are coordinated in
time.  John and Gray (1992; 1994) have built a series of PERT-chart templates for a dozen or so
common situations (e.g. perceiving visual information, typing, holding a conversation, etc.) and
present these as building-blocks to combine into models of complex tasks.  A few undergraduate
class sessions is enough to allow students to manipulate existing CPM-GOMS models easily and
correctly and give them a good start towards building their own models from scratch.  Again full-
day tutorials appear to present this material to the satisfaction of the tutorial participants (John &
Gray, 1992; 1994).

In contrast to the GOMS techniques in Figure 8, the research approaches mentioned in sections
3.2 and 3.4 (ACT-R, Soar, Construction-Integration and EPIC) do not yet have articulated task
analysis procedures, and so can be applied by the practitioner at this time only by emulating the
ongoing research.  This means that the practitioner would need to have a full set of research skills
and resources to use the approach, and must be willing to accept the tentative nature of any
models or results that will be produced.  In order to become proficient enough to build models on
their own, the learner must have an appropriate background in psychology or computer science
and must undergo an apprenticeship with the experienced users of the technique that may stretch
from a few weeks to a few months.

4.4.  Effort Required for Answering Design Questions.

The effort required to use the different GOMS techniques to answer design and evaluation
questions depends on the types of questions as well as on the techniques.  Often there is a
substantial start-up cost, but once the first models are built, subsequent questions require much
less effort to answer.  In addition, rather than fully analyzing an entire system interface, a
properly selected subset of the interface can be isolated for detailed analysis, meaning that useful
results can be obtained from quite modest modeling efforts.  Some of the cases in Section 5
demonstrate this approach.  Thus, the decision to invest effort in GOMS modeling depends on
how many design issues and iterations will be involved.  Here we will examine a few of the
common uses of GOMS models and the corresponding required effort.
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Focus for design effort.  A critical practical design question is where the design effort should
be focused.  For example, should user procedures be streamlined to decrease the human
execution time, or is it more important to improve the underlying software algorithms to decrease
the response time of the system?  To answer these types of questions, GOMS methods that
produce quantitative predictions of system performance can be used to profile the overall
execution times of the human-computer system to determine which portions of the interaction are
taking significant or excessive amounts of time, and then priorities can be assigned to design
issues in a rational manner.  Some of the examples of actual GOMS design projects described in
the next section used GOMS techniques in just this way.  For example, CPM-GOMS was used to
demonstrate that refining the screen design and keyboard layout would have relatively little
effect on system performance compared to speeding up the response latency (Gray, John &
Atwood, 1993).  Because system profiling requires quantitative predictions of performance, it is
one of the more time-consuming uses of GOMS.  However, the payoff can be substantial because
the analysis can be done early in the design process, at little cost compared to empirical testing,
and thus can prevent resources from being poured into design efforts that have relatively little
value.

Comparing alternative designs.  Comparing alternative designs is the most obvious use of
GOMS techniques.  Since GOMS analyses do not require a running system, but can make
a priori predictions of performance, they can be used early in the design process to evaluate
different ideas before they are implemented or even prototyped.  At the other extreme, existing
alternative systems can be evaluated without installing them in a user organization, as will be
illustrated by some of the case studies presented in the next section.

The effort involved in making comparisons between alternative systems depends on the kind of
information required.  Do you need only to know if important functionality is covered by both
systems?  Is expert execution time an important issue for the long-term use of the system?  Does
high turnover of personnel make training time of great importance?  Answering the first question
requires a rather shallow CMN-GOMS analysis, whereas the second question may require in-
depth CPM-GOMS analysis, and the third question requires a full-blown NGOMSL model.
Notice that models created to compare alternative designs can overlap with models created for
other purposes.  For example, if the design process uses GOMS to focus the design effort, the
same model can be used as a basis to profile a design to identify problems, suggest solutions, and
compare alternative solutions.

An additional determinant of the effort required is how many alternatives will need to be
evaluated and how similar they will be.  It is our experience that once a first model is
constructed, it can serve as a base for similar designs, which then require only small
modifications to the base model.  So the effort put into modeling the initial system can be
amortized over the number of alternatives evaluated.  For instance, the CPM-GOMS models
developed for the existing NYNEX workstation took about two staff-months, but once they were
created, the potential benefits of new features could be evaluated literally in minutes (Gray, et. al.
1993).

Sensitivity and parametric analyses.  In many design situations, the value of design ideas
depends on assumptions about characteristics of the task domain or the users of the system.
Common techniques in engineering design are to examine such dependencies with sensitivity
analysis (how sensitive the predictions are to the assumptions) and parametric analysis (how the
predictions vary as a function of some parameters).  Again, because GOMS family members can
make quantitative predictions of performance, they can be used to do such analyses.  Examples
can be found in the first descriptions of the KLM (Card, Moran & Newell 1980a, CMN, Ch. 8).
In addition to profiling with predicted measures, such analyses also help guide empirical data
collection by identifying the most sensitive issues, ensuring that the most valuable data is
obtained given limited time and resources.  The effort involved can be minimal if the
assumptions and parameters are amenable to simple models like the KLM, and clearly more
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substantial if a CPM-GOMS or NGOMSL model is required.  However, since these analyses
typically vary only a few assumptions or parameters, they usually require only baseline models
for a set of benchmark tasks and minimal manipulation of those models to discover the desired
relationships.  So once a base GOMS model has been constructed, exploring the sensitivity of the
analysis and the effects of different parameters is inexpensive and fast.

Documentation and on-line help systems.  Documentation and on-line help systems pose
design questions that are very well addressed by GOMS methodology.  Users normally know
what goal they want to accomplish, but must turn to documentation or help because they do not
know a method for accomplishing the goal, and cannot deduce one by experimenting with the
system.  However, most documentation and help provides only very low-level methods, at the
level of command or option specification, as if the user's goal was USE-THE-BELL-OPTION in ftp,
rather than a user-task-level goal such as TRANSFER-FILES.  Consequently, typical documentation
and help supports the rare user who already has most of the required method knowledge and
needs only a few details.

In contrast, help and documentation can explicitly present the methods and selection rules users
need in order to accomplish their goals.  The list of user goals provides a specification of the
document organization and entries for the index and table of contents.  Experiments done by
Elkerton and co-workers (Elkerton & Palmiter, 1991; Gong & Elkerton, 1990) using NGOMSL
shows that this approach works extremely well, with results much better than typical commercial
documentation and help.  Thus, while it is standard advice that documentation and help should be
"task oriented", it has not been very clear how one ensures that it is; GOMS provides a
systematic, theory-based, and empirically-validated approach to determining the required content
of procedural documentation and help.

A related application of GOMS is determining which alternative methods are the most
efficient, and so should be presented in training and documentation.  For example, in telephone
operator call-handling, CPM-GOMS could predict execution time differences between different
methods; identifying these differences would suggest the most efficient methods and selection
rules to include in documentation and training materials.

5.  Examples of Actual Applications of GOMS Family Members

Some of the following brief examples of the use of GOMS models have appeared as research
papers because it was possible for the developers to write up their work.  However, others arose
in more typical development processes of real products, and are documented here through
interviews with the developers.

Case 1.  Mouse-driven text editor (KLM)

The first known use of the KLM for real system design was, not surprisingly, at Xerox (Card &
Moran, 1988).  In the early 1980s, when designing the text editor for the Xerox Star, the design
team suggested several schemes for selecting text.  These different schemes called for different
numbers of buttons on the mouse.  The goals were to use as few buttons on the mouse as possible
so it would be easy to learn, while providing efficient procedures for experts.  It was relatively
easy to run experiments with the different schemes to test learnability for novices; everyone is a
novice on a newly created system.  However, it would have been substantially more difficult to
run experiments with experts, because there were no experts.  Experts would have to be "created"
through extensive training, a prohibitive procedure both in time, workstation availability, and
money.  The design team therefore used a combination of experimental results on novices and
KLMs of the same tasks to explore tradeoffs between learnability and expert performance.
These models contributed directly to the design of the mouse for the Xerox Star.
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Case 2.  CAD system for mechanical design (KLM)

(Based on Monkiewicz, 1992 and an interview with Brenda Discher of Applicon, Inc.)
Applicon, a leading vendor of CAD/CAM software for mechanical design, ported its BRAVO
CAD package from a dedicated graphics terminal implementation into a Macintosh environment
during the 1980s, but began to receive reports that the new implementation was actually slower
and clumsier to use than the previous dedicated graphics terminal version.  Applicon's interface
design group used extensive KLM analyses to identify the source of the problems.  For example,
the analysis identified a major problem in the menu paradigm.  In the original environment, the
menu selections remained on the screen ("marching menus"), permitting multiple low-level
selections without repeating the higher-level selections.  The new implementation used the same
menu organization, but followed the Macintosh rules that required menus to disappear once the
lowest level selection was made.  The resulting need to repeat the higher order selections greatly
increased the task execution times.  Candidate redesigns (e.g. using a dialog box) were evaluated
with the KLM.  Other aspects of the interface were refined with the KLM, such as reducing the
depth of menu commands to only two levels to increase working speed without eliminating the
many functions and options required for CAD tasks.  The new design was also implemented for
UNIX and VMS platforms, and this BRAVO 4.0 system is currently a successful and widely
used suite of CAD applications.  The quantification of execution time provided by the KLM was
valuable to Applicon both internally to help justify and focus interface design efforts and set
priorities, and also externally to help support competitive claims.

Case 3.  Directory assistance workstation (KLM)

(Based on an interview with Judith R. Olson, University of Michigan)  In 1982, some members
of a human factors group at Bell Laboratories (Judith Olson, Jim Sorce, and Carla Springer)
examined the task of the directory assistance telephone operators using the KLM.  Directory
assistance operators (DAOs) use on-line databases of telephone numbers to look up numbers for
customers.  The common wisdom guiding procedures for DAOs at that time in the Bell System
was "key less - see more."  That is, DAOs were instructed to type very few letters for the
database search query (typically the first three letters of the last name and occasionally the first
letter of the first name or the first letter of the street address) so that the database search would
return many possible answers to the query.  It was felt that it was more efficient for the DAO to
visually search for the answer to the customer's request on a screen full of names than to type a
longer, more restrictive, query that would produce fewer names on the screen.

The group analyzed the task and found two inefficiencies in the recommended procedures.
First, the searches required unacceptably long times when the keyed-in query brought up
multiple pages of names.  Second, they found an unacceptably high rate of misses in the visual
search.  That is, the information that the customer wanted was actually on the screen, but the
DAOs, trying to perform very quickly, often failed to see it in the midst of all the irrelevant
information.

To arrive at a better design, the group analyzed the make-up of the database and categorized
which queries would be common or rare, and whether the standard procedures would yield many
names or relatively few.  Based on this analysis, a set of benchmark queries was selected, and a
parameterized KLM was constructed that clarified the tradeoff between query size and the
number of retrieved names.  The resulting recommendation was that DAOs should type many
more keystrokes than had been previously thought, to restrict the search much more.  This report
was submitted at about the time of the breakup of the Bell System and the direct results of this
particular report are impossible to track.  However, current DAO training for NYNEX employees
no longer advocates "key less - see more."  Instead, DAOs are taught to key as much as needed
to get the number of responses down to less than one screen's worth and to add more letters and
redo the search rather than visually search through more than one screen.  Currently, about 40%
of NYNEX DAO searches result in only one answer returning from the search (Wayne Gray,
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personal communication).

Case 4.  Bank deposit reconciliation system (KLM)

(Based on an interview with Judith R. Olson, University of Michigan)  Olson, acting as a
consultant to a software vendor, used the KLM in 1985 to redesign the interface for a system to
be used by banks for deposit reconciliation.  The system would allow a bank employee to
compare the teller's keyed-in transaction information with scanned-in images of a customer's
deposited checks and handwritten deposit slip in order to look for discrepancies such as keying
errors by the teller, or duplications by the customer.  Any discrepancy would be need to be
detected, resolved, and then reported to the customer or to another department that would make
the correction.  The focus of the design work was on the layout of the display, to ensure that the
required information could be rapidly obtained and compared.

Olson's analysis assumed that the system operators would search for the possible discrepancies
in order of decreasing frequency, which was assumed to be known to the operators.  This
specified which items would be examined in which order, thus determining the basic task
method.  Olson developed KLM operator times for display activities such as visual scanning,
matching handwritten digits to computer display digits, and then constructed KLMs for different
types of discrepancies and display designs, and was able to rapidly evaluate different
configurations and layouts for the display to arrive at an optimal design.  Unfortunately, in the
end, the software vendor did not adopt Olson's proposed redesign for reasons not involving the
execution time of the task.

Case 5.  Space operations database system (KLM)

(Overmeyer, personal communication).  In 1983, the KLM was used in the design of a large
command and control system for space operations.  The system was to be used to monitor and
maintain a catalog of existing orbital objects and debris.  A new version of the system to replace
the existing text-based database system was intended to have a graphical user interface.  The
software design of the new system was to be analyzed using simulation techniques to determine
whether the system architecture and algorithms would provide adequate performance before the
system was implemented.  In order to quickly construct this simulation of the complete system,
the KLM was used to represent the human operator's time with a preliminary interface design.
With a couple of person-months work, about 50 benchmark tasks were selected that represented
the basic interaction techniques, such a obtaining information about an orbiting object by using a
joystick to select it and open an information window about it.  With an additional person-month
of work, KLMs were constructed for the preliminary design to give the execution time for each
of the benchmark tasks.  The system simulation was then run, and the software architecture
modified to produce the required performance.

The new interface was eventually prototyped and used in experiments to get actual human
performance data for later simulations, and to obtain data on tasks that involved processes such
as complex decision-making that were beyond the scope of the KLM.  The empirical results
showed that the earlier estimates provided by the KLMs were reasonably accurate.

Thus the availability of usefully accurate estimates of user execution time early during the
design process was critical in allowing the overall system performance to be assessed using
simulation.  The system was built, installed and in operation in the late 1980s and a descendant
of the original system is still in operation today.

Case 6.  Television control system (NGOMSL)

Elkerton (1993) summarizes a design problem involving designing an on-screen menu interface
for a high-end consumer electronics television set.  In the current technology of such systems, the
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television set is actually under computer control, and the user must perform setup and adjustment
tasks by navigating a menu structure and selecting options for setting and adjustments.  With
some of the more complex consumer electronics products now available, the resulting interface
can be fairly complex, and has considerable potential for being misdesigned.  Needless to say,
ease of learning and use are both extremely important in such a product.

According to Elkerton, currently most on-screen menu interfaces for complex televisions have
obscure menu labels, deep menus for frequently performed tasks, and an arbitrary organization
based on the product features rather than the user's tasks.  In the product development situation
described by Elkerton, there was not adequate time for extensive user testing and iteration of
prototypes, and so an NGOMSL analysis was applied in an effort to help arrive at an improved
interface quickly.  The actual candidate designs were generated in the usual ways, and then
analyzed with GOMS.

An early result of the NGOMSL task analysis was determining that there was a key distinction
between the infrequent but critical tasks required to set up the television (e.g. configure it for a
cable system), and the occasional tasks of adjusting the set during viewing (e.g. changing the
brightness), and the major "task", that of actually watching the programming on a TV or VCR.
The actual starting point for the NGOMSL analysis was an initial proposal for an improved
interface design whose main virtue was simplicity, in which a single function key would cycle
through each of the possible control functions of the set, resulting in very simple navigation
methods and on-screen displays.  This design preserved the setup/adjustment distinction, and was
confirmed by some user testing as superior to the original interface.  However, the NGOMSL
analysis also verified that using the interface was quite slow, thus interfering with the viewing
task.

The response was another proposed interface, following a more conventional menu structure,
which the analysis showed, and user testing confirmed, interfered less with the user's main task.
However, the NGOMSL analysis showed that the new prototype had inconsistent methods for
navigating the menu structure; the setup and adjustment methods were different, which would
lead to increased learning times and user frustration, and there were inconsistent methods for
moving from one low-level function to another.  Correcting these problems identified by the
NGOMSL analysis produced a simpler, easier-to-learn interface.  A interface based on some of
these analyses and revised designs appeared in a television product line and is being considered
for wider adoption by the manufacturer.

Case 7.  Nuclear power plant operator's associate (NGOMSL)

Following a brief NGOMSL training workshop, Endestad and Meyer (1993) performed a fairly
complete analysis of the interface for an experimental prototype of an intelligent associate for
nuclear power plant operators.  The system combined the outputs of several separate expert
systems and other operator support systems, thus providing an integrated surveillance function.
The total prototype system involved multiple networked computers, each with their own display
monitors, and included a full simulation of a nuclear power plant.  The basic concept of the
system was that the information provided by the separate expert and support systems would be
integrated by a single coordinating agent which would be responsible for informing the operator
of an alarm event, making a recommendation, and referring the operator to the appropriate
subsystem for supporting detail.  NGOMSL methodology was a good choice to apply because of
the difficulty of performing usability tests with highly trained users of limited availability and
with such a complex system.  For example, only a few types of emergency scenarios were fully
supported in the prototype system.

The top-level NGOMSL method was written to show the basic structure of the task with and
without the associate, thus clarifying the relative roles of the human operator and the system.
The top-level method for the conventional situation, in which the operator's associate system was
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not present, simply had the operator working on his or her own in dealing with the various
possible alarms and interacting with the separate expert and support systems.  Thus the operator
was required to engage in fairly elaborate reasoning, information searching, and ill-structured
problem-solving right from the beginning of an alarm event.  In contrast, the associate system
would present an alarm event, a reference to the relevant subsystem, and a recommendation for
action.  It then requested the human operator to explicitly state agreement or disagreement with
the recommendation.  But any subsequent interactions concerning the alarm event were strictly at
the operator's initiative; the operator was free to ignore the alarm, disregard the recommendation,
or deal with it on their own.  Thus the system potentially considerably simplified the initial
reasoning and problem-solving required to handle the alarm event, and did not complicate the
operator's task significantly.  Of course, whether the associate was accurate enough to be trusted,
or whether operators would come to rely on it unduly, could not addressed by a GOMS analysis.

At lower levels of the interaction, the NGOMSL model identified some specific problems and
suggested solutions.  For example, the operator designated which alarm event should be
displayed using a calculator-like palette of buttons to enter in the number, but the required
method was clearly more convoluted than necessary.  Another example is that the lack of certain
information on many of the displays resulted in methods that required excess looking from one
display to another, in same cases requiring large physical movements.  A final example is that a
newer design for a support system that provided on-line operating procedures was predicted to be
faster than a previous design, but could be further improved by more generic methods.

Case 8.  Intelligent tutoring system (NGOMSL)

Steinberg & Gitomer (1993) describe how an NGOMSL analysis was used to revise the
interface for an intelligent tutoring system.  The tutoring system concerned training Air Force
maintenance personnel in troubleshooting aircraft hydraulic systems such as the flight control
systems.  The basic content and structure of the tutoring was based on a cognitive analysis of the
task domain and troubleshooting skills required.  The tutoring system provided a full multimedia
environment in which the trainee could "move" around the aircraft by selecting areas of the
aircraft, manipulate cockpit controls, observe external components in motion, and open
inspection panels and examine internal components.

The user's basic method for troubleshooting was to think of a troubleshooting operation and
carry it out.  The original interface assumed that the troubleshooting operations were local in the
sense the user would think of a single component to observe or manipulate, carry out this action,
and then would think of another component-action combination to perform.  However, the
NGOMSL analysis showed that many troubleshooting activities had a larger scope spanning
several components or locations on the aircraft.  A typical activity was an input-output test, in
which inputs would be supplied to one set of components, and then several other components,
often in an entirely different location, would be observed.  For example, the troubleshooter
would enter the cockpit, set several switches, and then start moving the control stick, and then
observe the rudders to see if they moved.

In the original interface, there was no support for such multiple-component input-output tests,
and so the user had to traverse the component hierarchy of the simulated aircraft several times
and perform the component actions or observations individually.  The revised interface suggested
by the NGOMSL analysis allowed the user to easily view and act on multiple parts of the
aircraft, with rapid access to and from the aircraft cockpit.  This reflected the basic structure of
the troubleshooter's task in a more realistic fashion, as well as making it faster and simpler to
carry out the testing activity in the context of the tutoring system.

Case 9.  Industrial scheduling system (NGOMSL)

Nesbitt (in preparation) reports a use of an NGOMSL model to deal with a common situation
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in which an existing interface is to be extended.  The system is question is a partly automated
scheduling system for managing equipment maintenance activities in a steel-making plant.  Since
shutting down equipment in steel plants can have serious effects on production scheduling,
accurate management of downtimes is critical.  The original version of the system included
automatically generated downtimes, and a interface for viewing the downtimes.  The required
extension was to allow users to enter downtimes directly into the scheduling system.

The steel plant has a natural hierarchical structure, about five levels deep, in which either a
terminal or non-terminal location (a set of machines) could be shut down for maintenance.  If a
non-terminal location of the plant is shut down for a downtime period, then all sublocations are
also deemed to be shut down.  Given the natural hierarchical structure, the choice for the display
of downtime information was based on a combination of plant hierarchy and date, in which the
user viewed a grid showing locations as rows and days as columns, with each cell containing the
number of schedule downtime hours.  By selecting a row, the user can move down a hierarchical
level to view the downtimes broken out into more detail for the sublocations.  By clicking on a
cell, the user can view a list of the individual downtime schedule items comprising the listed total
hours.

A new set of requirements was to allow the user to enter new downtimes or modify existing
ones, under the assumption that the list of downtimes was unordered.  The first solution was to
simply add a dialog box to the grid-based display interface, so that once the relevant location and
date had been selected by traversing the hierarchy, the user could simply specify the downtime
start time, duration and other information, for that location on that date.  The implementation
effort would be minimal.  However, the GOMS analysis showed that the resulting interface
would be extremely inefficient.  Adding a new downtime requires first traversing the hierarchy to
the affected location and date, while modifying the location or downtime date requires deletion
and reentry.  A side effect is that there is no method to allow the user to create a new downtime
entry by simply selecting and modifying an existing downtime, since the dates and location of a
downtime were unmodifiable.

A redesigned interface alleviated these problems.  The solution was a form-based screen in
which the user could specify all of the downtime attributes by selecting from context-sensitive
lists or by editing the attribute fields.  All of the downtime attributes, such as all five location
levels, were simultaneously displayed.  While selecting a location still required traversing the
plant structure hierarchy, only the locations were involved, not the date, so the selection
consisted of simply filling in a set of fields using selection from lists whose contents were
determined by the higher-level selection.  In addition, a new downtime entry could be created by
selecting an existing entry and then modifying its fields as needed.

The GOMS analysis made the difficulties of the original interface clear, and over a set of actual
downtime scheduling tasks predicted that the redesigned interface would require overall only half
the execution time as the original, with a substantial improvement for modifying existing
schedule times.

Case 10.  CAD system for ergonomic design (NGOMSL)

Gong (1993, see also Gong & Kieras, 1994) provides a detailed case study of the application of
GOMS methodology to an actual software product.  The program was a CAD system for the
ergonomic analysis of workplace design, with an emphasis on biomechanical analyses to detect
problems of occupational safety in situations such as assembly line jobs requiring handling of
awkward or heavy objects.  The user, typically an industrial engineer, would describe a work
situation by specifying the user's physical posture while carrying out a step in the job and other
parameters such as the weight of a lifted object, and the program would generate information on
stress factors, such as the likelihood of lower back injury.  This program was being sold on a
commercial basis in a PC DOS version;  Gong's task was to develop a Macintosh version of the
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program for commercial distribution.  Applying GOMS analysis to refine the design was
suggested by the fact that too few domain experts were available to serve as subjects in a formal
conventional user test, and an attempt to collect informal feedback produced mostly information
about functionality or user expectations rather than ease of use.

Gong constructed a GOMS model of the initial version of the software, which adhered to the
Macintosh interface guidelines, and then examined the model for problems.  An example of such
a problem was that the interface assumed a default method for specifying posture that users
would probably always override in favor of a far simpler and easier method.  Another example is
that the methods had many RETRIEVE-FROM-LTM operators; the user had to memorize many
associations between commands and the menu names that they appeared under.  A final example
is that certain methods involved time-consuming interaction with "modal" dialogs, which are
dialog boxes that have to be explicitly dismissed before the user can continue. Gong (1993) lists
many such specific identified problems and addressed them in specific interface design solutions.
The revised interface was predicted to be about 46% faster to learn and also about 40% faster to
use than the original interface.  A subsequent empirical test confirmed these predictions.

Gong reported that the time spent developing and working with the GOMS model was only
about 15 days, compared to about 80 days spent on software development and programming, and
34 days spent on both the informal user feedback collection and the formal evaluation study.

Thus the NGOMSL methodology was usefully accurate in its predictions, helped identify
specific usability problems, and provided a basis for design solutions.  In addition, despite the
widespread opinion that GOMS analysis is too time-consuming to be practical, the actual effort
required was quite reasonable, especially given that a single design iteration using the
methodology produced a substantial improvement in learning and execution time.

Case 11.  Telephone operator workstation (CPM-GOMS)

The details of this application of GOMS, both technical and managerial, can be found in Gray,
John and Atwood, 1993, and Atwood, Gray and John, in press).  In 1988, the telephone company
serving New York and New England (NYNEX) considered replacing the workstations then used
by toll and assistance operators (TAOs), who handle calls such as collect calls, and person-to-
person calls, with a new workstation claimed to be superior by the manufacturer.  A major factor
in making the purchase decision was how quickly the expected decrease in average work time
per call would offset the capital cost of making the purchase.  Since an average decrease of one
second in work time per call would save an estimated $3 million per year, the decision was
economically significant.

To evaluate the new workstations, NYNEX conducted a large-scale field trial.  At the same
time, a research group at NYNEX worked with Bonnie John to use CPM-GOMS models in an
effort to predict the outcome of the field trial.  First, models were constructed for the current
workstation for a set of benchmark tasks.  They then modified these models to reflect the
differences in design between the two workstations, which included different keyboard and
screen layout, keying procedures, and system response time.  This modeling effort took about
two person-months, but this time included making extensions to the CPM-GOMS modeling
technique to handle this type of task and teaching NYNEX personnel how to use CPM-GOMS.
The models produced quantitative predictions of expert call-handling time for each benchmark
task on both workstations, which when combined with the frequency of each call type, predicted
that the new workstation would be an average of 0.63 seconds slower than the old workstation.
Thus the new workstation would not save money, but would cost NYNEX about 2 million
dollars a year.

This was a counter-intuitive prediction.  The new workstation had many technically superior
features.  The workstation used more advanced technology to communicate with the switch at a
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much higher speed.  The new keyboard placed the most frequently used keys closer together.
The new display had a graphic user interface with recognizable icons instead of obscure
alphanumeric codes.  The procedures were streamlined, sometimes combining previously
separate keystrokes into one keystroke, sometimes using defaults to eliminate keystrokes from
most call types, with a net decrease of about one keystroke per call.  Both the manufacturer and
NYNEX believed that the new workstation would be substantially faster than the old one, by one
estimate, as much as 4 seconds faster per call.  Despite the intuition to the contrary, when the
empirical field-trial data were analyzed, they supported the CPM-GOMS predictions.  The new
workstation was 0.65 seconds slower than the old workstation.

In addition to predicting the quantitative outcome of the field trail, the CPM-GOMS models
explained why the new workstation was slower than the old workstation, something which
empirical trials typically cannot do.  The simple estimate that the new workstation would be
faster was based on the greater speed of the new features considered in isolation.  But the
execution time for the whole task depends on how all of the components of the interaction fit
together, and this is captured by the critical path in the CPM-GOMS model.  Because of the
structure of the whole task, the faster features of the new workstation failed to shorten the critical
path.

Thus, examination of the critical paths revealed situations in which the new keyboard design
slowed down the call, why the new screen design did not change the time of the call, why the
new keying procedures with fewer keystrokes actually increased the time of some calls, and why
the more advanced technology communication technology often slowed down a call.  The
complex interaction of all these features with the task of the TAO was captured and displayed by
CPM-GOMS in a way that no other analysis technique or empirical trial had been able to
accomplish.

NYNEX decided not to buy the new workstations.  The initial investment in adopting the
CPM-GOMS technique paid off both in this one purchase decision, and by allowing NYNEX to
make some future design evaluations in as little as a few hours of analysis work.

6.  Summary and Conclusions

The several specific GOMS modeling techniques are all related to a set of general concepts,
both conceptual frameworks for human information processing, and a general approach to the
analysis of tasks.  This general approach emphasizes the importance of the procedures that a user
must learn and follow to perform well with the system to accomplish goals.  By using
descriptions of user procedures, the techniques can provide quantitative predictions of procedure
learning and execution time.  While other aspects of system design are undoubtedly important,
the ability of GOMS models to address this critical aspect makes them a key part of the scientific
theory of human-computer interaction and also useful tools for practical design.  The different
GOMS techniques correspond to different set of assumptions about the underlying information-
processing architecture and the simplifications required to economically address design issues.
These assumptions are clear-cut enough for practical advice to be stated on which technique
should be used for what purpose.  Finally, when the effort required to use GOMS analysis is
considered, both in terms of the logic of analysis and design, and also in terms of the application
examples presented in this paper, it is clear that GOMS models can make a worthwhile
contribution to developing more usable computer systems.
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