
Boston,MassachusettsUSA* April2428,1994 HumanFactorsinComputingSysfems
%?

A Validation of the GOMS Model Methodology in the
Development of a Specialized, Commercial Software

Application

Richard Gong
Center for Ergonomics

The University of Michigan

1205 Beal Ave.

Ann Arbor, MI 48109-2117

rich.gong @ um.cc.umich.edu

A formal GOMS model approach was applied to
the design and evaluation of the user interface for a

specialized, commercial software application. This
approach was able to identify significant usability
problems embedded in the procedures by which users
interact with the interface. A redesign of the

interface based on the GOMS approach resulted in a
46910reduction in learning time and a 39% reduction
in execution time during a formal evaluation,
differences predicted by the GOMS analysis.
Corrections to the GOMS time estimation techniques
were necessary to obtain accurate (within 9%)
predictions of absolute learning and execution times.

KEYWORDS: GOMS, analytical methods, interface
design, usability, user testing, performance prediction

INTRODUCTION

In spite of the increasing attention given to user
interface design by software development
organizations, it remains a difficult problem to
successfully design and evaluate a new user interface.
Perhaps the most widely cited set of usability design
principles are those proposed nearly a decade ago by
Gould and Lewis [8], who urged interface designers
to focus early and continually on users, to conduct
empirical testing of proposed interfaces with these
users, and to iteratively design the interface based on
the results of testing. In response to these

admonitions, some software developers now claim to
perform at least some iteration of the user interface
based on user focus and testing [15].

Permission to copy without fee all or part of this material is

grantad provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requiree a fee

and/or specific permission.

CH194-4/94 Boston, Massachusetts USA
01994 ACM 0.8979J.6~0.6/94/03~J .,, $3.5r3

David Kieras
Department of Electrical Engineering and

Computer Science
The University of Michigan
Ann Arbor, MI 48109-2110

kieras@eecs,umich. edu

While there are well known cases of successful
design utilizing Gould and Lewis’ usability principles
(e.g., [7]), there continues to be a strong intuition
within the HCI community of the need for analytical
approaches to interface design and evaluation [3, 12],
which at the very least, could work in tandem with
empirical approaches in the iterative design loop, and
at the most provide satisfactory design results when
empirical testing is not practical.

THE GOMS MODEL

The GOMS model concept, originally introduced
by Card, Moran and Newell [4], is one of the most
widely accepted analytical modeling concepts in the
HCI community. The GOMS model describes the
procedural knowledge required by a user to routinely
interact with a software interface in terms of the
user’s goals, the operators or actions involved, the
methods required to accomplish the user’s goals, and
the rules for selecting between competing methods.
Kieras [13] described a methodology for a simplified
type of GOMS analysis, based on the Kieras and
Poison cognitive complexity work [2, 14] and using a
relatively formal notation for GOMS models,
NGOMSL. The goal of this GOMS methodology is
to make GOMS modeling convenient for actual
software development. Recent experience with
NGOMSL (e.g., [5] and [20]) and other forms of

GOMS modeling [9, 17] suggests that GOMS models
can in fact be constructed and used effectively to
design and evaluate software interfaces. However, to
date there are no systematically documented and
reported cases in which the NGOMSL methodology
has been applied in an actual software development
situation, with the costs and payoffs determined. The
purpose of this paper is to provide such a case. An
additional result of the evaluation is some
refinements and corrections to the NGOMSL
methodology.

351

mHumanFactorsinComputiigSystems CM’940 “Ce/ebrutinflnterdepefkfence”

SPECIFIC DESIGN PROBLEM

The interface design problem concerns a
specialized CAD program for the field of Industrial
Ergonomics. This application requires the user to
input a variety parameters to describe a manual
materials-handling situation (such as lifting crates,
pushing carts, etc.). The software then displays
measures of the physical stress imposed by the job.

This application, known as the Three Dimensional
Static Strength Prediction Programw (3D for short)
[2 I] has been commercially available for DOS
computers through the University of Michigan for
approximately 3 years, and has a registered user base
of around 200 users.

The design problem of interest was to create a
Macintosh version of the software. While porting an
application to a different platform is hardly unusual,
far fewer resources were available for this project
than in most commercial software development
enterprises. The entire responsibility for developing,
coding, and evaluating the design of the new version
was to fall upon a single person, the first author of
this paper.

DEVELOPMENT OF THE MACINTOSH INTERFACE

Following the advice of Gould and Lewis,
potential users were consulted at the earliest stages of
this project. The few available domain experts who
were experienced Macintosh users were asked as to
what specific interface behavior and features they
would like to see in a Macintosh version. Beyond the
expectation of duplicated functionality, few other
concrete recommendations were expressed.

A working Macintosh interface was produced by
transferring the essential organization and content of
the user interface from the DOS application to the
new Macintosh interface. Care was taken to adhere
to Apple’s style guide [1] while preserving the
essential character of the commercially viable
interface. Figures 1 and 2 show the main display of
the commercial DOS application and the Macintosh
interface; not shown are several additional windows
and their associated controls.

Ideally, representative users would be recruited at
this stage of the project to work through carefully
selected task scenarios using the new interface while
usability problems would be carefully monitored and
recorded. The results from such an evaluation could
then be used to modify the interface, and the
representative users could then be called upon to re-
evaluate the interface [8].

However, the actual circumstances of this
development effort were far from ideal; the few
available “representative users” of such specialized
software (faculty, researchers, and advanced graduate
students) were unwilling to commit the necessary
time for participating in iterative cycles of user

testing and redesign. Most of these users did agree,
however, to informally evaluate the Macintosh
interface on their own schedule over a three week
period. Usability problems, interface feature
requests, and bugs would be documented on standard

forms by these users. While such a procedure would
hardly be considered representative of a full empirical
usability evaluation of an interface, we suspect that
the circumstances which led to such a procedure are
not uncommon in the development of specialized
software.

hwnk flexion

Trunk axial ~tation

Ttunk latmal binding

Right toece nag (lb) I’d fi!
hitfome nag (lb) 10

1P

fl:SNE f2:lE?411f3:ttEDFotUf4:N4hL’KIS fiLT+P:PREDICT

1

POSIUFJlW+D:3DFIU.WJ

Figure L User inte~ace for DOS version

“ c $,1. [(illI,, sk $,. t!,,,,, s ()!, !!!, !,s ll{,,,l,’ s,’

I Left Right

Hand ❑ m

Elbow ❑ 0

.. 1 3-- 0 “. ., w.

select a joint to mmlp.1.tc hb,, C+w
T.sk

W Lcal!mi & %m :
LMl RMt

+!m.aIt,l 24 h 24 h
L.,.F.? .,, . ,,,
Vwt$ml m , 30 h
%- lob, !Ok

1 Ilnkle ❑ ❑

I Mm, ❑

Twm[new..) ❑

Torso (Twisting) FL?,CIJ* et Ha, fi

Figure 2. Original Macintosh inte~ace

As might be expected, such an informal procedure
yielded less than satisfactory results. While several
usability problems were identified by the users, there
was little consensus as to the severity of any single
problem, At this point, a non-empirical approach to
evaluating and redesigning the interface was sought.

DEVELOPMENT OF THE REVISED INTERFACE

While one of the currently popular non-empirical
approaches (such as Heuristic Evaluation [16]) might
be a logical choice for a non-empirical approach, this
project seemed to provide a unique opportunity to
apply a formal GOMS model approach that is rarely

352

Boston,MassachusettsUSAo April24-28,1994
%?

HumanFactorsinComputingSystems

attempted in practice, at least to the extent that would
be required by this project. The formal GOMS model

approach was thus chosen to aid in the evaluation and
redesign of the Macintosh interface. The GOMS
model evaluation of the interface was then conducted
entirely by the designer and first author of this paper.
The designer had previously worked with GOMS
models [6] and consulted the guidelines in Kieras
[13] where necessary.

The first step of the methodology is to identify
users’ high level goals. In this project, the designer
identified these goals through contact with users
during two separate training seminars for users of the
commercial DOS version of the software. The
designer then constructed a GOMS model of the
original Macintosh interface. The GOMS model was
then examined for usability problems according to the
suggestions found in [4] and [13], which help to
identify characteristics of interface methods which
impede routine execution or ease of learning. Table 1
summarizes, at a high level, the nature of the usability
problems identified in this analysis. Many of the
problems contained multiple characteristics (see the
example described below), but the table classifies
each problem by its most salient characteristic.

Table 1. Usability problems identified by analysis of
GOMS model

Problem characteristic identified by GOMS Number

Frequent goal supported by inefficient method 4

Frequent goal not supported by any method 1

Similar goals supported by inconsistent methods 2

Method which relies heavily on long-term memory 2
Method which relies heavily on working memory 2

Method with multiple mouse and hand moves 1

Twelve major usability problems were identified.
A design solution was drafted for each problem based
on the specific details provided by the GOMS model
analysis. For example, most of the frequently
accessed dialog windows were modal windows, a
characteristic carried over from the DOS version.
The GOMS analysis revealed that when performing a
routine analysis, users must execute a lengthy series
of steps to retrieve and dismiss these dialogs. The
analysis further revealed that these steps are fraught
with time-consuming actions such as mouse moves to
access menu items, hand exchanges between the
keyboard and mouse, and the retention of information
from dismissed dialogues in short term memory.

The solution to this multi-dimensional problem
was guided by the problem characteristics identified.
In the revised design of the interface, all of the
frequently used dialogs became “modeless” dialogs,
reducing the number of steps needed to complete a
typical analysis by almost half, eliminating over 509Z0

of the mouse moves in the model, and eliminating
90% of the information that the GOMS model
described as having to be kept in the user’s memory.
An obvious potential tradeoff not addressed by the
GOMS analysis is that such a redesign increases the
density of the display space.

The redesigned interface is shown in Figure 3.

. * .,,. r“,, T.=.s.,,,”.. ..,,”.,

0 sth%11, ■ m
@Male O50tn %ile
o Fml.le (a 951h %il.

r

[Print]

o specific

llelght (Inches] ~

weight lm.nml ~

Left fight

H,wlzcl”tal~\ [v]
‘“’””’ m m
““’’C”’ ~ ~

o Suplm (Palms w

@ Semi-Prme

O Prone (Pelm* O.mm)

fill
~1 3D9SPI-’ Ill

)11

forces at Hand*

mtlm: Dlrectill” (Oeg.k
@)1111w

Magnltud<
Iwlz. Bert. (Poundsk

Figure 3. Redesigned Macintosh inte~ace

EMPIRICAL COMPARISON OF THE INTERFACES

While the GOMS evaluation resulted in what
appeared to be a better interface, two research
questions remained: Did the changes implemented as
a result of applying the GOMS model methodology
really improve the usability of the software interface?
And if so, can a GOMS model predict the extent of
the improvement? A formal experiment was thus
planned to compare the two interfaces and provide
the data to test the GOMS model predictions.

Method
Design. Subjects recruited for the experiment

were randomly assigned to one of two groups and
were asked to complete a representative set of tasks
using either the original or revised Macintosh version
of the software. These conditions will be hereafter
referred to as the “Original” and “Revised”
conditions. Each group used only one of the two
interfaces. To assess the subjective quality of
“usability”, two objective metrics were used, the
metrics of learning time and practiced, errorless,
execution time. Thus, if the usability of the software
had been improved through using the GOMS
methodology, there should be a decrease in the
learning and execution times for users of the revised
version compared to the users of the original version.

Subjects. Since the software assumes domain
knowledge, subject selection and training were
critical. Recall that one of the motivations for

353

al...– .–
HumanFactorsinComputingSystems CM’940 “Celebratinghtedependence”

adopting a formal GOMS model method was the lack
of domain experts who were willing to participate in
multiple evaluations in an iterative design scheme.
Therefore, subject recruitment was limited to
undergraduate and graduate students in the Industrial
Engineering Department of the University of
Michigan who had completed at least an introductory
course in Industrial Ergonomics. While training in
the domain would still be significant, it would be
greatly reduced by placing such a restriction on
potential subjects. Twenty-one subjects participated
in the experiment, with 10 assigned to the Original
condition and 11 assigned to the Revised condition.
Ail subjects were compensated for their time.

Tadtx, A set of 15 representative analysis tasks
were chosen from training and reference materials.
Each task differed slightly in the specific parameters
supplied by the users, such as worker size, type of
exertion performed, and postural description. One
task was used for a demonstration task, 7 of the tasks
were used for practice, and the remaining 7 for actual
data collection.

Procedure. Precise execution times were captured
through the insertion of program code into each
interface which time-stamped and recorded all user
actions and system events in log files.

After satisfactorily completing a short training
session in the requisite aspects of Industrial
Ergonomics, subjects in each condition completed the
demonstration task along with the set of seven
practice tasks. Next they completed the set of seven
analysis tasks and then repeated the same seven tasks
in order to produce routine and practiced
performance.

Task execution times were then extracted from the
time-stamped log files. This analysis included only
the times for the second execution of the analysis
tasks, corresponding to practiced performance.
Errors were rare in this portion of the data and
usually consisted of slips in key presses or mouse
button clicks. The time users spent committing or
recovering from these errors was identified in the log
files and subtracted from the execution times.

Results
Observed execution times. Table 2 shows the

average time to complete the entire set of seven tasks.
For practiced, errorless execution, users of the

Revised interface completed the set of analysis tasks
an average of 3970 faster than users of the Original
interface, which was highly statistically significant.
The differences in execution time for each task was
statistically significant, There was also a significant
main effect of task, but no interface by task
interaction. There were no significant differences in
the quality (accuracy) of the ergonomic analysis
completed by the subjects in each condition.

Table 2. Mean observed execution times

Original Revised
Task interface interface Percent

(seconds) (seconds) change

1 71.0 40.6 -43

2 82.6 53.3 -35
3 70.8 40.1 -43

4 55.3 36.4 -34

5 57.4 39.6 -31

6 82.4 51.1 -38
7 74.1 41.6 -44

Mean 70.5 43.2 -39

Predicted execution times. Would the GOMS
model have been able to predict the observed
reductions in execution time? To answer this
question, a GOMS model was constructed of the
redesigned Macintosh interface. Predictions of task
execution for each analysis task were then developed
for each interface from the GOMS model using the
method outlined by Kieras [13], which assigns time
values to the various operators and method steps, and
sums these values to produce a total time estimate.

Table 3 summarizes the predicted execution times,
and the predicted percent improvement for the
Revised interface over the Original interface. A
comparison of Table 3 to Table 2 reveals that the
predicted mean improvement of 40% closely matches
the observed mean improvement of 39Y0. However,
it can also be seen that absolute execution times are
badly overpredicted (by a factor of more than two)
consistently across the tasks.

Table 3. Predicted execution times

Original Revised
Task interface interface Percent

(seconds) (seconds) change

1 152.5 94.5 -38
2 199.5 111.5 -44
3 185,2 102.6 -45
4 130.6 87.4 -33
5 139.8 97,8 -30
6 191,0 108.6 -43
7 180.5 105.7 -41

Mean 168.4 101.2 -40

Learning times. Predicted learning times above a
baseline for each condition were determined by
multiplying the number of new NGOMSL statements
by a coefficient of 30 seconds per new statement, and
long-term memory associations by a coefficient of 10
seconds per new long-term memory association.
These values are recommended by Kieras [13] and
are based on earlier studies of learning and transfer
[2, 14], The baseline is defined as the time required
to work through a task when no new NGOMSL

354

Boston,MassachusettsUSAo April2428,1994

statements or long-term memory associations have to
be learned. In a manner analogous to one of the

earlier studies [2], the total training time for each
condition was determined by summing times required
by subjects to work through the demonstration task

and the set of 7 practice tasks. The predicted and
observed training times are summarized in Table 4.

‘I’able 4. Predicted vs. observed learning times

Condition Predicted time Observed time
over baseline (see) (see)

Original 1670 1601
Revised 900 871

Difference 770 730

Improvement 4670 46%

Although the observed differences in learning
time between conditions were reasonably well
predicted, the predictions of the absolute training

times are close to the observed times only if the
baseline time is assumed to be zero. However, such
an assumption is unrealistic; even if no new learning
takes place, a task will always require time for
method execution.

Effort required
An important result from this study is the effort

expended by the designer when using the GOMS
approach. Table 5 summarizes the days spent in each
phase of the interface development. The table shows
that for this particular design project, the time
required for the GOMS method was reasonably small
relative to the time required to code and debug both
the original and revised interfaces.

Table”5. Effort required for project activities

Project Type of design activity Days
Dhase

Original Conduct informal user survey 6
interface Draft design objectives 3

development Code original Mac interface 52
GOMS Construct GOMS model 4

analysis Evaluate GOMS model 11

Revised Draft design solutions 8
interface Code interface revisions 17

Formal Recruit and train subjects 10
evaluation Run full formal evaluation 18

While there is a common belief that a formal
GOMS analysis is too laborious to be practical for
real software development, the actual experience of
this project appears to negate such a notion. The
GOMS analysis required only 12% of the total
project time and required only a fifth of the actual

interface coding time. The GOMS analysis also
required less than half the time as the informal user
survey and formal testing combined.

HumanFactorsinComputiigSystems
%?

REFINING GOMS MODEL PREDICTIONS

Refining execution time prediction techniques
While the design changes motivated by the

GOMS analysis resulted in a significant reduction in

practiced execution times (the relative amount of
which could have been accurately predicted), the
inability of the GOMS model to reliably predict
absolute execution times was disturbing. However,
the uniformity of the overprediction across interfaces
and tasks suggests that there is a systematic cause to
the overprediction.

One possibility is that GOMS models constructed
by the interface designer inaccurately describe the
methods used to accomplish goals. However, a
careful examination of the log files revealed that the
sequence of user actions conformed almost exactly to
the sequence of steps in the GOMS models.

A second possibility is that the time values used
for some of the GOMS model parameters are
incorrect. The values used to develop the original
predictions were recommended by Card, et al. [4]
and Kieras [13]. Other empirical studies have found
slight deviations from these recommendations for
many of the parameters [18]. Analysis of the data
from this experiment revealed that the values used for
keystrokes, hand movements, and mouse-button
clicks were reasonably accurate, but that the mouse
move value, recommended as an average of 1.1
seconds, was consistently inaccurate. However,
applying Fitts’ law to the actual mouse moves in the
interface results in the much smaller and more
accurate values of 0.1 to 0.5 seconds.

A third possibility is that the serial execution
assumption of Kieras’ form of the GOMS model may
be incorrect. Researchers who have been modeling
tasks in other domains have found that some
processes appear to occur in parallel, as postulated in
the Model Human Processor [4, 9, 11]. The log files
clearly suggest that for practiced execution, certain
physical operators are executed in parallel with
certain mental and perceptual operators required by
Kieras’ [13] methodology, This seems to hold in
three common, highly practiced situations: The
overlapped execution of the perceptual operator
“locate” with a subsequent mouse move to a menu,
the overlapped execution of the mental operator
“verify selection” with the next mouse move or
keystroke, and the execution of keystrokes and mouse
moves by users while the computer display is being
updated. The execution times of these pairs of steps
was more accurately estimated by dropping the
mental or perceptual step and simply using the
physical operator in the remaining step.

Table 6 summarizes all of the corrections to the
prediction rules described above.

355

mHumanFactorsinComputigSystems CHI’94* “Celebratinginterdependence”

Table 6. Corrected rules for developing execution
tinle predictions from NGOMSL methodology

● Use mouse movement times calculated from Fitts’ Law
where possible.

c if a locate is followed by a mouse movement, and this

is a well-practiced sequence, assign zero time for the
locate.

s [f a verification step is required, but is part of a well-

practiced sequence, assign zero time to the verification

(see [2]).
● [f the display changes in response to a user input, and

both the preceding and following user input are part of
a well-practiced sequence, then assign zero time for

the user waiting for the display to change.

If execution time predictions are calculated using
these corrections, the overprediction factor for each
interface drops to an average of 9?Z0. Figure 4 shows
the observed and predicted execution times for both
Macintosh interfaces using the corrected prediction
rules. The predictions developed from these rules are
reasonably accurate and usable for design purposes.

90

80

70

Z

original design
- (predicted)

60

2 50 - original design
0 (obsewed)
: 40
W

30 revised design

20
- (predicted)

10 revised design
- (observed)

o~
1234567

Task Number

Figure 4. Corrected predicted vs. observed times for
the Original and Revised Macintosh interfaces

Revising learning time prediction coefficients
The predicted learning times compare favorably

with the observed data only if the baseline is assumed
to be zero. Therefore, new coefficients which reflect
the conditions of learning and practice of this study
are needed. If the baseline time is estimated using the
practiced execution time of analogous tasks and
subtracted from the total training time, then the
remaining time for the demonstration and set of 7
practiced tasks can be fitted to the following revised
coefficients: 17 seconds per new NGOMSL statement
and 6 seconds per new long-term memory
association. These coefficients reflect the conditions
of learning and practice used in this study, which are
more realistic than the experimental conditions of the
earlier studies of learning and transfer [2, 14].

CONCLUSIONS

This design project and the subsequent empirical

evaluation demonstrate that an analytical modeling
methodology such as the GOMS model method can
and should have a role in the iterative cycle of
software interface design and evaluation. This may
be especially true when resources do not permit
iterative design based on extensive user testing, or
when the application domain is so specialized that the
availability of users who can reliably test the software
with realistic tasks is minimal. The time required to
apply the GOMS methodology is reasonable, given
the overall effort to initially design and modify an
implementation,

Why use the GOMS model methodology as
opposed to other non-empirical methodologies such
as Heuristic Evaluation [16] or the Cognitive
Walkthrough method [19]? The strengths of these
approaches have been documented in case studies of
their application (e.g., [10]). Nonetheless, based on
the present study and the previously cited experiences
(e.g., [17]), the GOMS model methodology should
also be considered as an equally valid non-empirical
methodology. Not only is it based on a widely

accepted theoretical construct, but it can be applied,
with a reasonable amount of effort, identify
significant usability bottlenecks, provide guidance for
design solutions, and produce useful quantitative
predictions for design alternatives.

Because the informal evaluation approach initially

applied in this project was not representative of a full
empirical usability evaluation, the authors hesitate to
draw any strong conclusions from this phase of the
project. The purpose of this project was not to
directly compare different approaches, but to
demonstrate that a formal GOMS model approach
can indeed provide useful design guidance for a
realistic design problem. Designers seeking a non-
empirical approach when circumstances prevent a full
empirical evaluation should perhaps consider the
GOMS model method as a viable approach.

If a GOMS model approach is to be applied to the
development of alternative interface designs, how can
usable engineering predictions of learning and
execution be obtained? Based on the results of this
study, it appears that the recipe suggested by Kieras
[13] is a good starting point, but several

modifications to the recipe are required to produce
reliable predictions of absolute performance. For
predictions of execution time, mouse movement
times should be obtained using the appropriate Fitts’
law equation, if the actual required movements can be
determined. Mental and perceptual operators for
fixed and frequent aspects of the interface can be
assumed to overlap with the subsequent physical
operator. To predict learning time for certain training
situations, the revised coefficients for the number of
new NGOMSL statements and long-term memory

356

Boston,MassachusettsUSA* April2428,1994 HumanFactorsinComputiigSystems
%?

associations should be used. Baseline times, if
needed, can be estimated from the practiced
execution times of analogous tasks. Further research
is required to verify all of these revised guidelines.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Apple Computer, Inc. (1987). Human interface
guidelines. Reading, MA: Addison-Wesley.

Bovair, S, Kieras, D. E., and Poison, P. G.
(1990). The acquisition and performance of text
editing skill: A cognitive complexity analysis.
Human-Computer Interaction, 5(l), pp. 1-48.

Butler, K. A., Bennett, J., Poison, P., and Karat,
J. (1989). Report on the workshop on analytical
models: Predicting the complexity of human-
computer interaction. SIGCHI Bulletin, 20 (4),
pp. 63-79.

Card, S,, Moran, T,, and Newell, A. (1983). The
psychology of human-computer interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Endestad, T., and Meyer, P. (1993). GOMS
analysis as an evaluation tool in process control.
Technical Report HWR-349, OECD Halden
Reactor Project, Instituut for Energiteknikk,
Halden, Norway.

Gong, R., and Elkerton, J. E. (1990). Designing
minimal documentation using a GOMS model:
A usability evaluation. Proceedings of CH1 ’90,
pp. 99-106. New York: ACM.

Gould, J. D, , Boies, S. J., Levy, S., Richards, J.
T., and Schoonard, J. (1987). The 1984 Olympic
Message System: A test of behavioral principles
of system design. Communications of the ACM,
30, pp. 758-759.

Gould, J. D,, and Lewis, C. H. (1983).
Designing for usability — Key principles and
what designers think. Proceedings of CHI ’83,
pp. 50-53. New York: ACM.

Gray, W, D., John, B. E., & Atwood, M. (1992).
The precis of Project Ernestine, or an overview
of a validation of GOMS. Proceedings of

CHI’92, pp. 307-312. New York: ACM.

Jeffries, R., Miller, J. R., Wharton, C., and
Uyeda, K. (1991), User interface evaluation in
the real world: A comparison of four techniques.
Proceedings of CHI ’91, pp. 119-124. New
York: ACM.

11.

12.

13.

14.

15.

16,

17.

18.

19.

20.

21.

John, B. E. (1988). Contributions to engineering
models of human-computer interaction. Doctoral
dissertation, Carnegie Mellon University,
Pittsburgh, PA.

Karat, J., and Bennett, J. (1989). Modeling the
user interaction methods imposed by designs.
Technical report RC 14649. IBM T. J. Watson
Research Center, Yorktown Hts., NY.

Kieras, D. E. (1988). Towards a practical
GOMS model methodology for user interface
design. In M. Helander (Eds.), Handbook of
human-computer interaction, pp. 135-57. New
York: North-Holland.

Kieras, D. E., and Poison, P. G. (1985). An
approach to the formal analysis of user
complexity. International Journal of Man-
Machine Studies, 22(4), pp. 365-394.

Mulligan, R. M., Dieli, M., Nielsen, J., Poltrock,
S., Rosenberg D., and Rudman S. E. (1992).
Designing usable systems under real world
constraints: A practitioner’s forum. Proceedings
of CHI ’92, pp. 149-152. New York: ACM,

Nielsen, J. (1992). Finding usability problems
through heuristic evaluation. Proceedings of
CHI ’92, pp. 373-80. New York: ACM.

Nielsen, J. and Phillips, V. L. (1993). Estimating
the relative usability of two interfaces: Heuristic,
formal and empirical methods compared.
Proceedings of INTERCHI ’93, pp. 214-221.
New York: ACM.

Olson, J. R., and Olson, G. M, (1990). The
growth of cognitive modeling in human-
computer interaction since GOMS. Human-
computer interaction, 5(1), pp. 221-265,

Poison, P. G., Lewis, C., Rieman, J., and
Wharton, C. (1992). Cognitive walkthroughs: A
method for theory-based evaluation of user
interfaces. International Journal of Man-
Machine Studies, 36(5), pp. 741-73.

Steinberg, L. S., & Gitomer, D. H. (1992).
Cognitive task analysis, interface design, and
technical troubleshooting. Proceedings of the
1993 International Workshop on Intelligent User
Interfaces, pp. 185-191. New York: ACM.

The University of Michigan (1990). The Three
Dimensional Static Strength Prediction
Program TM. Ann Arbor: The University of
Michigan.

357

