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ABSTRACT

Kieras and Polson (1985) proposed an approach for making quantitative
predictions on ease of learning and ease of use of a system, based on a
production system version of the goals, operators, methods, and selection
rules (GOMS) model of Card, Moran, and Newell (1983). This article
describes the principles for constructing such models and obtaining predic-
tions of learning and execution time. A production rule model for a simulated
text editor is described in detail and is compared to experimental data on
learning and performance. The model accounted well for both learning and
execution time and for the details of the increase in speed with practice. The
relationship between the performance model and the Keystroke-Level Model
of Card et al. (1983) is discussed. The results provide strong support for the
original proposal that production rule models can make quantitative predic-
tions for both ease of learning and ease of use.
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1. INTRODUCTION

Because of the widespread use of computers in the modern workplace, it
has become increasingly important that computer systems and their software
are designed to be both easy to learn and easy to use. One good way to do this
is to make the knowledge needed to operate a system as simple as possible; in
other words, to minimize the cognitive complexity of the system. Kieras and
Polson (1985) proposed that, by expressing this knowledge as a production
system, the cognitive complexity of a proposed system could be quantitatively
evaluated both in terms of the ease of learning and the ease of use. There are
two important benefits to be obtained by such an analysis. This first is that
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it can be performed early in the design process, as soon as the user interface

is specified, allowing comparison and evaluation of different designs without

the expense of building prototypes. The second benefit is being able to predict

the amount of transfer of existing knowledge to new systems, which otherwise

involves especially expensive and difficult empirical studies.

Kieras and Polson have shown empirical support for the cognitive com-

plexity framework on text editing and menu systems in a series of papers

(Polson, Bovair, & Kieras, 1987; Polson & Kieras, 1985; Polson, Muncher

Engelbeck, 1986), as did Kieras and Bovair (1986) on a control panel device.

However, none of these papers included a full description of the production

system models or the principles by which they should be constructed. In this

article, these principles are presented followed by a detailed description of a

model for a simulated text editor, and it concludes with a detailed comparison

of the model to data. This work is a fully documented and revised version of

the preliminary and brief analyses appearing in Polson and Kieras (1985) and

also outlined in Polson (1987), in which the predictor variables were obtained

informally and were not based on a fully specified cognitive simulation model

such as the one that is described here.
The simulation model described and evaluated in this article is used to

provide quantitative predictions for the time to learn and the time to execute

the methods on a simple text editor. A useful model should be able to predict

how difficult it will be to learn a particular procedure as a function of how

complex the procedure is and which other procedures have already been

learned. The transfer model described in Kieras and Bovair (1986), which

predicted procedure learning time on a control panel device, is used in the

analyses described in this article to predict the time to learn text-editing

procedures in different training orders. In considering execution, there are

two major questions. The first is whether the model can predict the time

subjects take to perform specific editing tasks; in these analyses the simulation

model generated predictions by performing the same editing tasks as the

subjects. The second question is whether the model can predict the faster

performance that subjects display as they become more practiced in using the

editor; the model used a set of 'expert" rules generated from novice rules to

predict the time to perform the editing tasks after 8 days of practice.

Because this article presents not just experimental results, but also includes

a complex cognitive simulation model and the methodology used to construct

the model, it is necessarily lengthy and complex. The article is organized as

follows: Sections 2 and 3 present the theoretical background. In Section 2 the

production system model of the user's knowledge is described, with details of

the representation and the notation, and with guidelines for generating such

models. Some rules for how the novice representation changes with practice

are described, and finally, there is a description of the transfer and

performance models. Section 3 presents a description of the text editor used
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in the experiment and the cognitive complexity model generated for it. This
model provides a specific detailed example of the representation and illus-
trates many of the guidelines. Section 4 presents the data collected to test the
theoretical predictions. Two experiments and comparisons with the model are
reported; the first experiment addresses transfer and learning, and the second
examines performance. The final section, Section 5, contains some conclu-
sions that can be drawn from the experiments and a discussion of using the
approach as a design tool.

2. COGNITIVE COMPLEXITY MODELS OF USER
KNOWLEDGE

This section describes theoretical background and presents some principles
for constructing cognitive complexity models of a user's procedural knowl-
edge. First, the cognitive complexity approach is outlined and compared to
other approaches. The production system representation used in cognitive
complexity models is then described, followed by the presentation of the
principles for constructing such models, and then the derivation of transfer
and execution predictions is discussed.

2.1. GOMS and Cognitive Complexity Models

The GOMS model (Card et al., 1983) and the cognitive complexity
approach (Kieras & Polson, 1985) both characterize the procedural knowledge
the user has to have in order to operate software like an operating system, a
text editor, or a database manager. The GOMS formalism describes the
content and structure of this knowledge, whereas the cognitive complexity
approach represents the amount of the knowledge as well, and, therefore, can
be viewed as an extension or elaboration of the GOMS model. In fact, Card
et al. (1983), in their description of the Model Human Processor, assume a
production system architecture although this is not reflected in their GOMS
model.

In the Kieras and Polson (1985) cognitive complexity approach, the
predictions of training and performance can be derived from a computer
simulation that uses a representation of the user's procedural, or how-to-do-it
knowledge, to simulate the user's execution of tasks on a device. Figure 1
shows the components of this simulation. The most important part is the
simulation of the user's knowledge formalized as a production system that is
described in more detail later. The device model is formalized as a generalized
transition network as described in Kieras and Polson (1983, 1985). The
purpose of the device model is to generate the correct behavior of the device
so that the cognitive complexity model can be shown to generate the correct
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Figure 1. Organization of the user-device interaction simulation used in the
modeling work.

User Simulation

Device Simulation Working Memory

l GTN Prdcto Ru

Static Measures Dynamic Measures

sequences of actions; the details of the device model are not otherwise relevant
to the work described here.

Although the cognitive complexity model described in detail in this article
is for a text editor, the representation used and the guidelines described can
be applied to the construction of any cognitive complexity model. As well as
the text editor model described here, production rule models of the cognitive
complexity type for interaction with a control panel device (Kieras & Bovair,
1986) and a menu system (Polson et al., 1986) have also been constructed and
successfully used to predict difficulty of learning.

The cognitive complexity approach used here has been described elsewhere
(Kieras & Polson, 1985; Polson, 1987). It is most closely related to the GOMS
model described by Card et al. (1983). Like the GOMS model, cognitive
complexity models are descriptions of the knowledge required to use systems
and are not intended to be complete simulations of the actual mental processes
of the user. According to the rationality principle (Card et al., 1983), when
people act to achieve their goals through rational action, it is the task that
drives much of their behavior (cf. Newell & Simon, 1972; Simon, 1969).
Cognitive complexity models are descriptions of the required knowledge
expressed within a constrained production system architecture so that the
complexity of the rules and the number of rules needed to express the
knowledge are related to the complexity of the system for the user and the
amount of knowledge that must be acquired in order to use it.

Production systems are a good choice for building such models because they
have already been used successfully as psychological models, particularly in
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the important and successful work on cognitive skills and their acquisition.
One useful feature of production systems is that they demand the construc-
tion of explicit and detailed models. They can be constructed according to
rules that specify the style in which rules for such models should be written.
These style rules constrain the production rules to be uniform in size and
amount of content; then, as for propositions in text comprehension research,
the rules can be counted and used to generate quantitative predictions. Thus,
a cognitive complexity model can be viewed as a formalized and quantified
GOMS model.

2.2. Comparision With Other Models

Singley and Anderson (1987-1988) used the GRAPES production system to
quantify the transfer between two text editors. Their approach was to translate
a GOMS model into production rules and then count rules to predict the
amount of transfer between editors. Their work is clearly very similar to that
described in this article, and it uses a similar approach. One difference is that
in this article we attempt to spell out the details of mapping a GOMS model
into production rules. In addition, although the transfer models are similar,
the cognitive complexity model used here can also predict execution times.

Barnard's interacting subsystems model (Barnard, 1987) is a model human
information processor such as that proposed by Card et al. (1983). As such,
it is not a model of the user's knowledge like the GOMS model, and it seems
to have been used to account for differences found between interfaces rather
than to derive quantitative predictions.

The cognitive complexity approach is quite different from the task action
grammar (TAG) developed by Payne and Green (Green & Payne, 1984;
Payne & Green, 1986) that has been used to analyze computer dialogs in
terms of a two-level grammar. Thus, TAG uses the traditional linguistic
approach to human-computer interaction. In contrast, the cognitive com-
plexity approach treats human-computer interaction as the acquisition and
use of a cognitive skill. The TAG approach concentrates on the computer side
of the interface, generating a description of the device structure, but without
attempting to relate it to the purposes and goals of the user. In developing the
cognitive complexity approach, however, the decision was made to separate
the structure of the device from the structure of the user's knowledge and to
treat them differently (Kieras & Polson, 1985).

2.3. Production System Representation

Production Systems

Production systems, first proposed by Newell and Simon (1972) as a model
of the human information processing system, have been used as models of
cognitive processes by many workers. Examples include problem-solving
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Figure 2. Example production rules.

(NoviceCopy.P5
IF ((GOAL COPY STRING)

(STEP VERIFY COPY))
THEN ((VerifyTask COPY)

(Delete STEP VERIFY COPY)
Add STEP PRESS ACCEPT)))

(NoviceCopy.P6
IF ((GOAL COPY STRING)

(STEP PRESS ACCEPT))
THEN ((DoKeystroke ACCEPT)

(Delete STEP PRESS ACCEPT)
(Add STEP FINISH UP)))

models (Newell & Simon, 1972), models of reading comprehension (Just &

Carpenter, 1987; Kieras, 1982), and models of learning and skill acquisition

(Anderson, 1983, 1987; Kieras & Bovair, 1986; Singley & Anderson,
1987-1988). The specific production system notation used in this article is the

parsimonious production system (PPS) notation described in Covrigaru and

Kieras (1987).
A production system consists of a working memory, a collection of

production rules, and an interpreter. The working memory contains repre-

sentations of current goals and inputs from the environment and other
information about the state of current and past actions. A production rule is

a condition-action pair of the form:

IF (condition) THEN (action)

The condition of a production rule is a statement about the external

environment or the contents of working memory. If the condition of a specific

rule is matched, then the rule is said to "fire," and the action of the rule is

executed. The interpreter operates by alternating between recognize and act
phases. During the recognize phase, the interpreter matches the conditions of

all rules against the contents of working memory. During the act phase, all

rules that match will fire, and the interpreter will execute their actions. The

action part of a rule can consist of several elementary actions; these include

the modification of information in working memory by addition or deletion

and external actions such as pressing a key.
An example of two production rules in PPS notation can be seen in Figure

2. The first rule has the name NoviceCopy.P5 followed by the rule definition
in the form shown earlier. In the example rule, if working memory contained

the items (GOAL COPY STRING) and (STEP VERIFY COPY), then the

condition of NoviceCopy.P5 would be matched and the rule would fire,

executing the action of the rule. Then the actions of verifying the copy,
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deleting (STEP VERIFY COPY) from working memory and adding (STEP
PRESS ACCEPT) to working memory would be performed. A new recognize-
act cycle would begin and the condition of NoviceCopy.P5 would then be
matched, and this rule would fire.

User's Task Knowledge

The GOMS model (Card, Moran, & Newell, 1980, 1983) describes the
knowledge that a user has of a task such as text editing in terms of goals,
operators, methods, and selection rules. Goals are the representation of a
user's intention to perform a task or a part of a task; operators are typically the
elementary physical or mental actions; methods are sequences of operators
performed to achieve some goal; and selection rules specify the method to be
used in a particular context. The user decomposes a complex task into
subtasks with a goal defined to perform the task and each subtask.

In the production system formalism, goals can be represented directly,
appearing in the conditions of most rules. The goal structure is determined by
the relationships between goals appearing in conditions of rules and the
actions of other rules that add or remove goals from working memory.
Methods can be represented as sequences of rules whose first member is
triggered by the appearance of the goal to do the method. Selection rules can
be represented as rules triggered by a general goal and a specific context that
assert the goal to perform a particular method. Operators consist of elemen-
tary actions and more complex actions that test the environment.

In the cognitive complexity approach, the production system model of the
user makes no attempt to represent fundamental cognitive processes such as
those that comprehend the manuscript in a word-processing task or perceptual
processes such as those that determine that the cursor of a text editor is on the
correct letter. Kieras and Polson (1985) proposed that dealing with the
representation of such processes would greatly increase the complexity of the
model of the user, without a corresponding gain in understanding of the
cognitive complexity of a particular user interface design. Such complex
unanalyzed cognitive processes are represented by the appearance of special
operators in the rule actions such as LookMSS, which represents the user's
looking in the manuscript for some needed information (see Kieras, 1988 for
further discussion). Similar considerations motivate the system's lack of
knowledge of the semantics of the items that appear in conditions and actions.

PPS Rule Notation

A PPS production rule consists of five terms enclosed in parentheses:

(< name > IF< condition >THEN < action >)

The label or name of the rule is not functional but is useful for the
programmer. The condition of a rule is a list of clauses that must all be
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matched for the condition of the rule to be true. Each clause of a condition

is a test for the presence of a pattern in working memory. A test for the
absence of a pattern in working memory can be made by negating the pattern
in the condition with a NOT function. The elements of a pattern may be
constants, or variables indicated by the prefix ?. The PPS interpreter decides
what values can be assigned to a variable to make the condition true, and

these values are used when the action of the rule is executed. If there is more
than one possible set of values, then the action is executed once for each set.
Variables keep these values only within the scope of the rule in which they

appear.
The actions are sequences of operators that can modify working memory to

add and delete goals and notes, usually enabling different rules to fire in the
next cycle. The actions of a rule can also generate external actions that will be
passed to the device simulation and cause it to generate the appropriate
response such as changing the screen display. For example, the operator
DoKeystroke simulates the action of pressing a single key on an editor

keyboard. In addition, actions can be complex operators such as LookMSS,
which is a placeholder for the scanning of a marked-up manuscript to find
information such as where the next edit is.

The interpreter contains no conflict resolution or data refractoriness. On any
cycle, any rule whose conditions are currently satisfied will fire. This means
that rules must usually be written so that a single rule will not fire repeatedly

and that only one rule will fire on a cycle. Because these aspects of control

structure are not built into the interpreter, the rules must make the flow of
control explicit. This was a deliberate decision, intended to ensure that almost
all of the procedural knowledge was explicit in the rules, rather than being
implicit in the interpreter.

Because the values of variables are computed separately for each recognize-

act cycle, the particular values of a variable in one rule are not known in
another rule unless the information is explicitly saved in working memory.
This ensures that items that the user must retain in short-term memory are
explicitly designated (as goals or notes) and are not kept hidden as variable

bindings.

2.4. Style Rules for Cognitive Complexity Models

Because production rules are a general programming language, arbitrary
programs can be written that generate the correct sequences of user actions.
If production systems are to be considered as serious psychological models,

however, the structure of the set of rules must be constant, reproducible, and
have some claim to psychological content. This can be ensured by style rules

that constitute assumptions about the representation of procedural knowledge
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in terms of production rules within the GOMS model framework. A detailed
description of a set of style rules follows that constitutes a first step toward a
complete set. These rules were generated in an attempt to ensure uniformity
of models constructed by different people, but they do not attempt to cover
every possible stylistic issue of constructing a production rule representation;
some of these can only be addressed empirically. The style rules provide some
extra constraint on the model that can be written and make it easier to write.
In addition to the style rules, notation conventions are described. These
conventions are for convenience only; they simply make rules easier for the
transfer simulation to handle.

Notation Conventions

Because the PPS interpreter imposes very few restrictions on the syntax of
rules, some conventions on the content of the rules were adopted to produce
uniform and consistent rules.

Clause Conventions. In a production rule, condition clauses have the
form: (Tag Term, Term2 ... Term,). By convention, the number of terms
that follow a particular type of tag is fixed: for example, two terms follow the
GOAL tag, three follow DEVICE.

Clause Tag Conventions. The tag of a condition clause indicates the type
of item that it is, for example, GOAL or NOTE. There are four tags normally
used in cognitive complexity analyses: GOAL, NOTE, STEP, and DEVICE.
These four seem to be adequate for all the models that have been built so far,
with the possible addition of an LTM tag to denote knowledge that the user is
assumed to have already. GOAL denotes a goal clause that corresponds
directly to the goals used in the GOMS model. Goal clauses are used to trigger
selection rules or to perform a particular method. The tag NOTE is used to
indicate information kept in working memory over the course of several rule
firings. Typically, NOTEs are used to pass parameters and to maintain
information from one recognize-act cycle to another. NOTEs can provide
specific context for a method and can also be used to control execution
("lockout" notes, to be discussed). The tag STEP is used for the "step goals"
that control the execution sequence within a method. The tag DEVICE
identifies the information that is provided directly by the device. An example
from text editing is the current cursor position, which is visually available on
the device screen.

Goal Clause Convention. The format of a goal clause is (GOAL Term,
Term2 ). The convention is that Term1 is the "verb" or action of the goal, and
Term2 represents the object of the verb or action. Thus, the goal of deleting
a character is represented as (GOAL DELETE CHARACTER).
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Style Rules

The style rules are presented both as a set of rules (such as those that follow)
and as "templates" that can be adapted to specific requirements. The template
is a generic set of rules that can be modified by changing some of the terms
in the rules from general terms into specific ones. The general terms are
shown on the templates enclosed in angle brackets. For example, to generate
rules for the top-level unit task structure for an actual analysis of an editor,
the template shown in Figure 3 could be modified by replacing <TOP-LEVEL-
TASK>with EDIT-MANUSCRIPT, and the new rules could be run.

Rule 1: The production rules must generate the correct sequence of user actions.

This is a minimum requirement for any how-to-do-it representation and
should be checked explicitly.

Rule 2: The representation should conform to structured programming principles.

The production rule representation should be written top-down as a strict
hierarchy. This means that routines will be called in a standard way, will not
affect the caller's context, and will delete local information they use or create.

Rule 3: The top-level representation for most tasks should have a unit task structure.

The unit task structure was proposed by Card et al. (1980, 1983); a task
such as editing a manuscript is broken up into a sequence of unit tasks. For
example, in text editing, each unit task involves searching the manuscript for
the next edit, discovering what is to be done, and then selecting and executing
the appropriate method. After each unit task is completed, the manuscript is
checked to see if there are more tasks to be done or not. If there are, the next

one is performed, and if there are no more tasks to be done, then the editing

session is terminated. This is the "default" top-level structure for a cognitive
complexity model, not just of text editing, but for most human-computer
interaction situations.

Rule 4: The top-level unit task structure should be based on the top-level goal.

The appearance of the top-level goal should trigger the rule that acquires
the next unit task and add the goal of performing it. Figure 3 shows a top-level
unit task template.

The first rule starts up the top-level task, while the second acquires the next
unit task and adds the goal of performing it, and the last rule recognizes when
there are no more tasks to do and stops the system.

5I
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Figure 3. Top-level unit task template.

(Top.Start IF ((GOAL PERFORM <TOP-LEVEL-TASK>)
(NOT (NOTE PERFORMING <TOP-LEVEL-TASK>)))

THEN ((Add STEP GET <UNIT-TASK>)
(Add NOTE PERFORMING <TOP-LEVEL-TASK>)))

(Top.P1 IF ((GOAL PERFORM <TOP-LEVEL-TASK>)
(STEP GET <UNIT-TASK>))

THEN ((<Get Next Unit Task>)
(Add GOAL PERFORM <UNIT-TASK>)
(Add STEP CHECK TASKS-DONE)
(Delete STEP GET <UNIT-TASK>)))

(Top.Finish IF ((GOAL PERFORM <TOP-LEVEL-TASK>)
(STEP CHECK TASKS-DONE)
(NOTE NO-MORE TASKS))

THEN ((Delete GOAL PERFORM <TOP-LEVEL-TASK>)
(Delete STEP CHECK TASKS-DONE)
(Delete NOTE PERFORMING <TOP-LEVEL-TASK>)
(Delete NOTE NO-MORE-TASKS)
(Stop Now)))

Rule 5: Selection rules select which method to apply.

Selection rules are a key idea in the GOMS model. Given a general goal,
they test for specific context and add the goal to perform a specific method.
A selection rule consists of two production rules: a Start and a Finish. In the
selection rule shown in Figure 4, the Start rule, SelectMethod, fires when the
general goal (GOAL PERFORM TASK) appears in working memory with the
particular context represented in the NOTEs, and the action asserts the goal of
performing a specific method.

The Finish rule, FinishSelect, fires when the note appears that the specific
method is complete, removing the general goal, and any locally used NOTEs
or STEPs, and adding the note that the general goal has been satisfied. If the
same method could be invoked from several different contexts, then a
selection rule would be needed for each one of those contexts.

Rule 6: Information needed by a method should be supplied through working
mernmory.

When a method is invoked, there is often information that must be
provided for it to operate on. For example, in a text editor, a method for
moving the cursor needs to be supplied with the destination position of the
cursor. Such information is passed by means of notes in working memory.
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Figure 4. Template for a method.

(SelectMethod IF ((GOAL PERFORM <TASK>)
(NOTE <SPECIFIC CONTEXT>)
(NOT (NOTE EXECUTING <TASK>)))

THEN ((Add GOAL <DO SPECIFIC-METHOD>)
(Add NOTE EXECUTING <TASK>)))

(FinishSelect IF ((GOAL PERFORM <TASK>)
(NOTE <SPECIFIC-METHOD> FINISHED))

THEN ((Add NOTE <TASK> PERFORMED)
(Delete GOAL PERFORM <TASK>)
(Delete NOTE <SPECIFIC CONTEXT>)))

(StartMethod IF ((GOAL <DO SPECIFIC-METHOD>)
(NOT (NOTE EXECUTING <SPECIFIC-METHOD>))

THEN ((Add NOTE EXECUTING <SPECIFIC-METHOD>)
(Add STEP DO <First-Step>)))

(MethodRulel IF ((GOAL <DO SPECIFIC-METHOD>)
(STEP DO <First-Step>))

THEN ((<DoAct FirstAct>)
(Add STEP DO <Finish-Step>)
(Delete STEP DO <First-Step>)))

(FinishMethod IF ((GOAL <DO SPECIFIC-METHOD>)
(STEP DO <Finish-Step>))

THEN ((Add NOTE <SPECIFIC-METHOD> FINISH)
(Delete GOAL <DO SPECIFIC-METHOD>)
(Delete STEP DO <Finish-Step>)
(Delete NOTE EXECUTING <SPECIFIC-METHOD>)))

Rule 7: Sequencing within a method is maintained by chaining STEPs.

While executing a method, the sequence of steps in the routine must be
executed in order. This is accomplished by chaining STEPs to maintain the
correct sequence. Each method has a Start rule that asserts the first STEP, and
the presence of that STEP is tested for by the condition of the next rule in the
sequence. When that rule fires, it deletes the current STEP and adds a STEP
for the next step in the method. When the sequence is complete, the final rule
in the method should delete the goal to do the method and add a NOTE that
the method is finished. When using STEPs in this way, all rules except Start
and Finish rules will have a single STEP in their condition; a single rule
cannot have two STEPs.

In Figure 4, the method template illustrates the chaining of STEPs in a
method. The rule StartMethod starts up execution by adding the first STEP.
Rule MethodRulel tests for the presence of (STEP DO <First-Step>) and
then performs the action appropriate for the first step. It also deletes the first
step clause and adds the next, which in this case is the Finish step.
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Rule 8: Labelsfor STEPs should be based on the action of the rules and should be
used consistently.

The labels for STEPs should be chosen subject to two constraints. The first
is that in any set of rules that will execute in sequence, the step labels must be
chosen in order to preserve the sequential structure. For example, if the
STEPs in two rules of a sequence have the same step label, then they may fire
at the same time if their other conditions happen to be met.

The second constraint of step labels is that they should be based on the
principal action of the rule. Thus, a rule whose action does a VerifyPrompt on
a "To where?" prompt would be labeled as (STEP VERIFY-PROMPT
TO-WHERE). The label is not just VERIFY-PROMPT because there may be
several different prompts to be verified in a single method. Basing the label
on the principal action means that the labels will not be arbitrary and that
different analysts will generate similar labels for the same STEP. Another
approach would be to use simply the number of the step in sequence, but these
two approaches cannot be distinguished in any of the models tested so far.

Rule 9: Use a lockout NOTE to prevent a rulefromfiring repeatedly.

Because a method is triggered simply by the appearance of the goal to do
the method, a Start rule will fire as long as that goal remains in working
memory due to the lack of data refractoriness in the production rule
interpreter. To prevent this from happening, a Start rule adds a note to
working memory that the method is in progress. The condition of the Start
rule tests for the absence of this note with a NOT form clause. Thus, as soon as
the Start rule fires, the note will be added and the rule will be locked out from
firing again. Because the last rule of a method deletes this lockout note and the
goal at the same time, the method will not be executed until the goal is added
again.

In Figure 4, use of lockout notes can be seen for both the StartMethod rule
and the SelectMethod rule. In StartMethod, the appearance of the goal to do
the specific method adds the goal of doing the first step and tests that the
lockout note is absent. If this rule fires, it will add the goal of doing the first
step and the lockout note so that it cannot fire again. In both of the Finish
rules in Figure 4, the lockout note is deleted along with its goal.

Representing the Novice User

The term novice user used here does not mean naive user. A novice user has
acquired all the methods and can execute them correctly but has not had a
chance to extensively practice them. A characterization of a novice's knowl-
edge is especially important because it is the basic characterization of what has
to be learned and, therefore, is critical to predicting learning time and



COGNITIVE COMPLEXITY ANALYSIS 15

transfer. Thus, a novice model represents the knowledge that the novice user

must acquire in order to operate the system correctly; the model does not
attempt to represent the processes by which the knowledge is acquired.

Novice Rule 1: Each overt action requires a separate production rule.

Novice methods are represented so that each overt step in the method is
represented in a separate rule. Such steps include not just actions such as
pressing keys or flipping switches, but also actions such as looking at an editor
prompt on the screen or looking at a manual. Manipulations of working
memory such as adding and deleting notes are not considered to be separate
steps, and so there may be several of such manipulations in a single rule.

Novice Rule 2: Novices explicitly check all feedback.

It is assumed that novices explicitly check for all feedback from the device

before performing the next step in the method. This means that each prompt
will be explicitly checked and so represented in a separate production rule.

Representing the Practiced User

Our basic assumption is that it is rules that change with practice, not the
speed of execution of the rules. This means that practice in a domain such as

text editing will cause changes in the methods, and these changes will be
reflected in the number and content of the production rules. Clearly,

describing how to transform a novice rule set into an expert rule set is,
implicitly, a theory of how expertise develops and how expert and novice
procedural knowledge differ. Rather than developing a comprehensive model
of the processes involved, we have attempted to devise a simple method for

estimating these changes based on previous work on expertise.
Theoretically, there are several alternative ways to represent expertise

within the present framework. Card et al. (1983) defined the process of
acquiring skill as a change in problem-solving processes, such as the increase
in search-control knowledge described by Newell (1980). The representation
of a skill can be made more compact by using the reduced problem space, which

contains fewer states through which to search. Similarly, the mechanism of

composition, in Anderson's (1987) description of skill acquisition, increases the

compactness of the representation by collapsing production rules that always
execute in a fixed order into a single rule. The representation can be made

more specialized by using the skill space, which contains new operators and a
minimum of operations. Anderson's proceduralization mechanism also produces

a more specialized representation.
In our approach, practice is assumed to act by making the novice rule set

more compact rather than generating new specialized methods. The main
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reason for this is that it is simple to define a method for compacting a set of
rules based simply on the rule syntax. In contrast, developing specialized
methods depends on a detailed analysis or simulation of the system's learning
history. We are interested in exploring the value of a simpler analytic
approach. Although the rules resulting from compacting the novice rule set
are called "expert" in this article, it is important to note that our subjects are
not true experts, having had only eight practice sessions. Thus, the expert rule
set represents a well-practiced user rather than a true expert.

One way to compact methods is to assume that practiced users, unlike
novices, do not check every prompt provided by the system. For example, in
the text editor used for the experiments described later, the prompt Delete
what? appears on the screen after the DELETE key is hit. A novice model
includes a rule to check that this prompt appears, whereas the model of the
more practiced user does not. However, it is not clear whether or not the more
practiced user also verifies that a task has been performed correctly. For
example, in the experimental editor, the range of text to be operated on is
highlighted before the edit operation is performed. It is possible that even
practiced users verify that this highlighting is correct before performing the
operation. Because of this uncertainty, we assumed that, in the expert rule
set, such task verifications were always performed, and the time estimates
resulting from fitting the model to the data could then determine the
correctness of this assumption.

Another way we increased compactness is through a mechanism similar to
composition (Anderson, 1982, 1987), where rules that always execute in a
fixed order are composed into a single rule. In Anderson's model, composition
is based on the execution history of the rules; but in this model, composition
is done by collapsing rule sequences based on the content of the rules. This is
possible because the sequencing STEP goals in the rules cause the rules to be
executed in a fixed order. The same principle also means that if a method has
a selection rule, the selection rule and Start rule of the method will be
composed together. More details of this process follow.

Another potential source of increased efficiency for practiced users is that
they may have different strategies for performing some of the complex
operations such as searching the manuscript in a text-editing task or verifying
the correctness of a new state. However, in the model, these operations are
ones that have not been represented as rules but simply as complex operators.
Any such changes in strategy would be reflected in the estimated time to
perform the operator, with less time needed by the more experienced subjects.

In summary, representing how the methods change with experience has
been restricted to creating a more compact representation by collapsing rules
to remove extra steps and removing prompt-checking steps. The result is an
expert rule set with the same goal and method structure and the same general
sequence of events within methods as the novice rule set. The expert set is
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Figure 5. Flowchart of expert rule generation process.
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considerably shorter than the novice set, which means that all the overt actions

in an expert method can be achieved within fewer recognize-act cycles than

for novice methods.

Expert Rule Generation Process. The steps of the expert rule generation
process are shown in Figure 5. First, any prompt-checking rules are removed.

Then, each remaining rule is checked as follows to see if it can be composed
with the rule that will follow it in execution: There must always be a single
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Figure 6. Example expert method.

(SelectMethod IF ((GOAL PERFORM <TASK>)
(NOTE <SPECIFIC CONTEXT>)
(NOT (NOTE EXECUTING <TASK>)))

THEN ((Add GOAL <DO SPECIFIC-METHOD>)
(Add NOTE EXECUTING <SPECIFIC-METHOD>)
(<DoAct FirstAct>.)
(Add STEP DO <Finish-Step>)))

(FinishMethod IF ((GOAL PERFORM <TASK>)
(GOAL <DO SPECIFIC-METHOD>)
(STEP DO <Finish-Step>)

THEN ((Add NOTE <TASK> PERFORMED)
(Delete GOAL PERFORM <TASK>)
(Delete GOAL <DO SPECIFIC-METHOD>)
(Delete STEP DO <Finish-Step>)
(Delete NOTE EXECUTING <SPECIFIC-METHOD>)
(Delete NOTE <SPECIFIC CONTEXT>)))

rule that executes immediately after the rule in question. This following rule
must not contain conditions that are complementary to the first rule. To
preserve the control structure of the rules, the following rule must not be a
selection rule or method return point. If the following rule meets these
conditions it can be composed with the first rule.

An example of the rule set generated by this process is shown in Figure 6,
which shows what the novice method template in Figure 4 would look like for
an expert. There are no rules that check prompts. The first step of the original
method can be collapsed with the Start rule of the method and that, in turn,
with the Start rule from the selection rule. Similar processes operate elsewhere
in the method to reduce the five-rule novice method to the two-rule expert
method. A further example in the description of the cognitive complexity
model for the experimental text editor follows.

2.5. Transfer Model

The original form of the transfer model is described in Kieras and Bovair
(1986) and can be considered a modern version of the classical common
elements theory of transfer originally proposed by Thorndike and Woodward
(1901), in which the common elements are production rules. The transfer
process is assumed to be based only on the syntax of rules; no attention is paid
to the semantic content.

The transfer process was simulated by a Lisp program based on the one used
in Kieras and Bovair (1986). The transfer simulation is given a series of sets
of production rules; in this work, each set represents a procedure for one of
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Figure 7. Transfer process flowchart showing possible transfer status of a new
rule.
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the editing functions and is based on the content of the training materials used

in the experiment for that editing function. The sets are presented to the

transfer simulation in the same order as the functions were trained in the

experiment. The transfer model allows specific predictions to be made of the

amount that must be learned for each of the methods for operating a text

editor, making different predictions for the same method depending on what

other methods have already been learned. The basic assumption of the

transfer model is that the amount that must be learned is linearly related to the

time it takes to learn. The production system representation provides a simple

way to quantify the amount that must be learned in order to make such

predictions. Note that the GOMS model, as described in Card et al. (1983),

does not provide a direct quantification. The transfer model also makes the

simplifying assumption that the linear relationship holds no matter what

cognitive processes are involved in how the procedural knowledge is learned.

Transfer Process

For each new rule set, the simulation considers each rule a candidate for

possible transfer with the rules that have already been learned. If it does not

transfer, it must be learned, that is, added to the set of known rules. Figure

7 is a flowchart that shows the transfer process and the possible transfer status

of a candidate rule; Figure 8 provides some examples drawn from the transfer

processing of the experimental editor whose cognitive complexity model is

described in Section 3.2.

For each candidate rule, there are four possible outcomes from the transfer

process. First, the candidate rule could be identical to some existing rule. This

means that it does not need to be added to the set of known rules and,



Figure 8. Examples of rules showing transfer status.

Example 1: New Rule Is Generalized With the Existing Rule

Old Rule New Rule:
(NoviceDelete.P5 (NoviceCopy. P5

IF ((GOAL DELETE STRING) IF ((GOAL COPY STRING)
(STEP VERIFY DELETE)) (STEP VERIFY COPY))

THEN ((Verify Task DELETE) THEN ((Verify Task COPY)
(Delete STEP VERIFY DELETE) (Delete STEP VERIFY COPY)
(Add STEP PRESS ACCEPT))) (Add STEP PRESS ACCEPT)))

Generalized Rule:
(NoviceDelete.P5

IF ((GOAL ?X STRING)
(STEP VERIFY ?X))

THEN ((Verify Task ?X)
(Delete STEP VERIFY ?X)
(Add STEP PRESS ACCEPT)))

Example 2: New Rule Is Subsumed Under an Existing Generalization

Old Rule: New Rule:
(NoviceDelete.P5 (NoviceMove.P5

IF ((GOAL ?X STRING IF ((GOAL MOVE STRING)
(STEP VERIFY ?X)) (STEP VERIFY MOVE))

THEN ((VerifyTask ?X) THEN ((VerifyTask MOVE)
(Delete STEP VERIFY ?X) (Delete STEP VERIFY MOVE)
(Add STEP PRESS ACCEPT))) (Add STEP PRESS ACCEPT)))

(Continued)



Figure 8. (Continued)

Example 3: New Rule Is Different From All Existing Rules

Old Rule: New Rule:
(Novicelnsert.P2 (NoviceDelete.P2

IF ((GOAL INSERT STRING) IF ((GOAL DELETE STRING)
(STEP CHECK-PROMPT INSERT)) (STEP CHECK-PROMPT DELETE))
(DEVICE USER MESSAGE Insert What)) (DEVICE USER MESSAGE Delete What))

THEN ((Delete STEP CHECK-PROMPT INSERT) THEN ((Delete STEP CHECK-PROMPT DELETE)
(Add STEP LOOKUP MATERIAL)) (Add GOAL SELECT RANGE)
(Add STEP PRESS ACCEPT))) (Add STEP SELECT-RANGE DELETE)))
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therefore, no learning would be needed. Second, the candidate rule could be
generalized with some existing rule that is similar. The first example in Figure
8 shows two rules that can be generalized as described in more detail later. A
generalized rule is created and replaces the original rule, but this is assumed
to involve very little learning. Third, the candidate rule could be subsumed
under an existing generalized rule as described later, requiring no learning.
Example 2 of Figure 8 shows a generalized rule and a rule that can be
subsumed under it. Finally, the candidate rule may not fall into any of these
three categories, meaning that it is a new rule that must be added to the rule
set, requiring the full amount of learning. Kieras and Bovair (1986) found
that learning time is mostly a function of the number of new rules, although
the presence of rules with other transfer status can also increase learning time.
In Example 3 of Figure 8, the conditions of the two rules make them apparent
candidates for generalization, but, because the actions of the rules are clearly
different, the transfer simulation counts NoviceDelete.P2 as NEW.

Generalization

The transfer model performs only a very limited form of generalization,
which is adequate to account for the transfer data to which it has been
applied, but more powerful forms of generalization in learning may well
exist.

Example 1 of Figure 8 shows an example of generalization. The rules are
similar but the goal clauses of the two rules differ in the verb of the clause
(DELETE in one, COPY in the other). The transfer model forms a generalized
rule by replacing the specific verb term with a variable both in the goal clause
and wherever it appears in the rule, provided that the difference in verb terms
is the only point of difference between the two rules.'

If a new rule can be generalized with an existing rule, then the transfer
model will count it as GENERALIZED. If the new rule fits the same
generalization criterion with an existing rule that has already been general-
ized, then it will be counted as SUBSUMED. In Example 2 of Figure 8, the
rule NoviceDelete.P5 has already been generalized and the only difference
between it and NoviceMove.P5 is that NoviceDelete.P5 has a variable form,
where NoviceMove.P5 has the specific term MOVE. Thus, the transfer model
counts NoviceMove.P5 as SUBSUMED. Thus, if the three methods, DELETE,
COPY, and MOVE, are learned in that order, only NoviceDelete.P5 will incur
the full learning cost as a new rule, NoviceCopy.P5 will result in a generalized
rule, and NoviceMove.P5 will be subsumed.

This generalization criterion is a less restricted form than the one used in Kieras and Bovair
(1986). In fact, no differences between the two were observed in these data. See Bovair, Kieras,
and Polson (1988).
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Independence of Transfer and Execution Models

The number of rules generated by the transfer model using the generali-

zation criterion previously described will be smaller than the full description

of the cognitive complexity model. If a different generalization criterion were

used, then the resulting rule set would probably be a different size. It is

important to note that these differences only affect transfer predictions and,

thus, the learning component of the cognitive complexity model; they have no

effect on execution. Looking at Figure 8, it is easy to see why this must be so.

If the generalized version of NoviceDelete.P5 is in the rule set, then the

specific DELETE and COPY versions will not be present. If the generalized

version is not in the rule set, then the specific versions will be present. In

executing the rules, it does not matter whether the generalized or the specific

version is present: A single rule will fire at this point in both cases and the

same actions will be executed.

2.6. Execution Model

The execution model can be described very briefly because it is based

simply on running the type of production system simulation model already

described. The simulation work used a current version of the "user-device

interaction simulation" package shown in Figure 1 and described in Kieras

and Polson (1985). In this simulation, the task specifications and the

production rules are used by the production rule interpreter to carry out tasks,

interacting with a simulated device. Based on the discussion in Kieras

(1984), the execution model can be characterized as deterministic, specifying

which processes and how many steps will be used for each task. The

simulation provides predictor variables by counting the number of recognize-

act cycles and the number and type of actions needed to perform each task.

These actions may be complex operators defined for the particular task,

simple operators such as pressing a key, or working memory operators that

add or delete items in working memory. Performance on a task is measured

in terms of the time to complete a task, and this time is assumed to be a

function of the number of recognize-act cycles and the operators:

Execution time = No. of cycles x time/cycle + time spent in operators (1)

This model is similar to the Card et al. (1983) Keystroke-Level Model with

the mental operators replaced by the number of recognize-act cycles and the

complex operators. One important difference from the principles described

by Card et al. as characterizing the Model Human Processor is that the time

for each recognize-act cycle of the performance model is assumed to be

constant, whereas Card et al. proposed a cognitive processing rate that could
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be variable, affected by both task demands and the amount of practice. In the
execution model, both experts and novices are assumed to have the same cycle
time; differences in speed must be caused by differences in the number of
cycles and the time to perform the complex operators. The assumption of
constant cycle time, regardless of the contents of working memory or
differences between subjects, has also been made in the simulation of reading
processes developed by Thibadeau, Just, and Carpenter (1982; see also Just
& Thibadeau, 1984).

3. EXPERIMENTAL EDITOR AND ITS COGNITIVE
COMPLEXITY MODEL

In this section, the experimental editor is described and then its cognitive
complexity model is presented as a complete example of a model constructed
using the style rules. Although the editor used in the experiments was actually
a simulated one, it was chosen to be realistic in its performance. This means
that although it did not have the full range of functionality that a real editor
would have, the functions that it did have are commonly used ones, such as
inserting or deleting text, and the methods are those used by an actual editor.

3. 1. Editor Description

The editor used for these experiments was based on the IBM Displaywriter,
greatly simplified by removing all menus and implementing only a subset of
the possible editing functions: INSERT, DELETE, COPY, and MOVE. In
addition, a new function was defined, TRANSPOSE, that, although it is not
a realistic function, was intended to provide a relatively complicated function
that still had definite transfer possibilities with the other functions. Cursor
positioning in the experimental editor was done using cursor Arrow keys only;
there was no find function.

To perform an editing function, the user first positions the cursor at the
starting location of the edit and then indicates the operation to be performed
by pressing the appropriate function key. The user then performs the
appropriate actions for that function. At the end of the edit, the user can
indicate that the edit was correct by pressing an ACCEPT key, or can undo the
edit by pressing a REJECT key.

After pressing a function key, the following actions have to be carried out.
For the INSERT function, the user simply types in the text to be inserted and,
at the end, presses the ENTER key to indicate that insertion was complete. The
DELETE, MOVE, COPY, and TRANSPOSE functions involve specifying the
range of the operation by highlighting the corresponding text on the screen.
This is done by moving the cursor across the text, either by using the cursor
keys or by entering a single character, which causes the cursor to move to the
next instance of that character in the text. An arbitrary sequence of character
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Figure 9. Method hierarchy for experimental editor.

Top-level

Editor
| Unit Task |

and cursor keys can be used to select the range. Range selection is terminated

by pressing the ENTER key. During range selection, the editor prompts with a
message such as "Delete what?"

For the DELETE function, after specifying the range, pressing the ENTER

key causes deletion to take place. For both MOVE and COPY, once the range

has been selected, the prompt message "To where?" appears, and the cursor

keys are used to move to the target location, followed by pressing the ENTER

key to perform the operation. For the TRANSPOSE function, the two target

ranges to be transposed have to be specified. Once the first range is specified,
the cursor keys are used to move to the beginning of the second range, then
pressing the special T2 key indicates that the second range is to be selected.
After selecting the second range, pressing the ENTER key causes the transpo-

sition of the two pieces of text.

3.2. Cognitive Complexity Model

In developing the cognitive complexity model for the experimental editor,

the method hierarchy shown in Figure 9 was constructed, and then the
specific steps for each method were generated. The production rule model was
then written using both the hierarchy and the specific steps. This is a
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Faqure 10. Steps of general methods in the experimental editor.

Unit Task Select Range Move Cursor

Start unit task Start select range Start move cursor
Look up task location Look up range end REPEAT:

Do task function Select end character Figure distance to move
Finish unit task Verify highlighting Press arrow key

Press ENTER UNTIL: cursor is positioned
Finish select range Finish move cursor

conventional, structured programming approach to building the production
rule representation. A preferable alternative would be to use the same
information to first write a GOMS model in a notation similar to that of Card
et al. (1983) or Kieras (1988). Many of the necessary decisions, such as how
to decompose the user's knowledge into methods, would be made while
writing the GOMS model. Then, the style rules could be applied to quickly
produce the production rule representation.

Overview. The diagram in Figure 9 illustrates the hierarchy of methods.
At the top is the top-level method that will acquire each unit task and add the
goal of performing it until there are no more tasks to do. The editor UnitTask
method moves the cursor to the start of the next unit task to be done and adds
the goal of performing the method for that unit task. There are five possible
specific editing methods that can be selected to do the edit in the unit task. In
addition, there are the two general purpose methods; SelectRange, which is
used by four of the five specific editing methods, and MoveCursor, which is
used by the editor UnitTask method as well as three of the specific editing
methods.

Figure 10 shows the individual steps of the methods for doing a unit task,
for selecting the range, and for moving the cursor; Figure 11 shows the steps
of the specific editing methods from Figure 9. The UnitTask method consists
of locating the task, moving to the task location, and actually performing the
task functions. Locating the task is done by looking in the manuscript for the
location information, and the MoveCursor method is used to move to the task.
Performing the task consists of first acquiring the task information by looking
in the manuscript and then selecting and executing the editing function. If the
method is DELETE, then it consists of pressing the DELETE key, checking the
delete prompt, selecting the text to be deleted, checking the accept prompt,
verifying that the task was performed correctly, and pressing the ACCEPT key.

Editor UnitTask Method. Figure 12 shows the representation of the unit
task structure for text editing. Given the goal of performing the unit task, the



COGNITIVE COMPLEXITY ANALYSIS 27

Figure 11. Steps of specific editing methods in the experimental editor.

Insert Delete Copy Move Transpose

Start insert Start delete Start copy Start move Start transpose
Press INSERT Press DEL Press copy Press MOVE Press Ti

Check prompt Check prompt Check prompt Check prompt Check prompt
Type in text Select range Select range Select range Select range
Verify insert Verify delete Check prompt Check prompt Look up start

of second text
Press ACCEPT Press ACCEPT Look up where Look up where Move cursor

to copy to move to
Finish insert Finish delete Move cursor Move cursor Press T2

Press ENTER Press ENTER Check prompt
Verify copy Verify move Select range
Press ACCEPT Press ACCEPT Verify transpose
Finish copy Finish move Press ACCEPT

Finish transpose

first step, shown in UnitTask.P1, is to find the location of the next unit task

and add the goal of moving the cursor there. The second step, UnitTask.P2,
recognizes that the cursor is in the correct position so that the third step,

UnitTask.P3, finds the information needed to select an editing method. When

the specific method is complete, signaled by the appearance of the note,

(NOTE TASK PERFORMED), the last rule fires, deletes the goal of performing
the unit task, and returns control to the top level. If there are more unit tasks

to do, then the top level adds the goal of performing a unit task and this

method then runs again.

Example Representation of a Method. Figures 13 and 14 provide a

complete example method for deletion, under novice user assumptions.
Figure 13 shows the selection rule for this method. In the start rule,

SelectDelete, the general goal to perform the unit task is (GOAL PERFORM

UNIT-TASK). The STEP clause and the various NOTE clauses in the condition
of this rule form the specific context. The rule action adds the goal of doing

the DELETE method and a lockout note. The Finish rule, FinishDelete, will

be triggered by the appearance in working memory of (NOTE DELETE

DONE) as all the other condition clauses are already present. It deletes the

notes about the specific context, the general goal to perform the task, and

adds a note that the general goal has been satisfied.
In Figure 14, the rules NoviceDelete.P2 and NoviceDelete.P3 illustrate

how the method for a subtask, namely, the SelectRange method is invoked.
In NoviceDelete.P2, the goal of selecting the range is added to working

memory. This assertion of the goal suffices to invoke the SelectRange

method. When the method terminates, it adds a note to indicate the
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Figure 12. Editor unit task method.

(StartUnitTask IF ((GOAL PERFORM UNIT-TASK)
(NOT (NOTE PERFORMING UNIT-TASK)))

THEN ((Add STEP LOOKUP TASK-LOCATION)
(Add NOTE PERFORMING UNIT-TASK)))

(UnitTask.P1 IF ((GOAL PERFORM UNIT-TASK)
(STEP LOOKUP TASK-LOCATION))

THEN ((LookMSS TASK LOCATION)
(Add STEP MOVE CURSOR-TO-TASK)
(Add GOAL MOVE CURSOR)
(Delete STEP LOOKUP TASK-LOCATION)))

(UnitTask.P2 IF ((GOAL PERFORM UNIT-TASK)
(STEP MOVE CURSOR-TO-TASK)
(NOTE CURSOR IN-POSITION))

THEN ((Delete STEP MOVE CURSOR IN-POSITION)
(Add STEP LOOKUP TASK-FUNCTION))

(UnitTask.P3 IF ((GOAL PERFORM UNIT-TASK)
(STEP LOOKUP TASK-FUNCTION)))

THEN ((LookMSS FUNCTION ENTITY)
(Delete STEP LOOKUP TASK-FUNCTION)
(Add GOAL PERFORM EDIT-TASK)
(Add STEP DO TASK-FUNCTION)))

(UnitTask.Done IF ((GOAL PERFORM UNIT-TASK)
(STEP DO TASK-FUNCTION)
(NOTE EDIT-TASK PERFORMED))

THEN ((Delete GOAL PERFORM UNIT-TASK)
(Delete STEP DO TASK-FUNCTION)
(Delete NOTE EXECUTING TASK)
(Delete NOTE EDIT-TASK PERFORMED)))

termination, and in NoviceDelete.P3 the presence of this note is tested for. In
this way, the deletion method waits for the SelectRange method to finish
before it continues its own processing.

The rule NoviceDelete.P2 in Figure 14 also illustrates how the user's
perceiving a prompt on the screen is represented. The perceptual and reading
comprehension processes involved in reading a prompt are not modeled;
rather, when the device provides a prompt, the simulation adds a clause with
the tag, DEVICE, directly into working memory where it can be tested by the
condition of a production rule.

Figure 14 clearly illustrates the style&rule that each overt action should be
represented in a separate production rule. After the start rule, the first rule
performs a keystroke, the second checks a prompt, the third waits for another
method to be completed, the fourth checks another prompt, the fifth verifies
that the appropriate text was deleted, and the sixth performs a keystroke.
Each action has its own rule, and each rule contains a single user action.
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Figure 13. Example of novice method selection rules.

(SelectDelete IF ((GOAL PERFORM EDIT-TASK)
(STEP DO TASK-FUNCTION)
(NOTE FUNCTION DELETE)
(NOTE ENTITY STRING)
(NOT (NOTE PERFORMING EDIT)))

THEN ((Add GOAL DELETE STRING)
(Add NOTE PERFORMING EDIT)))

(FinishDelete IF ((GOAL PERFORM EDIT-TASK)
(STEP DO TASK-FUNCTION)
(NOTE PERFORMING EDIT)
(NOTE FUNCTION DELETE)
(NOTE ENTITY STRING)
(NOTE DELETE DONE))

THEN ((Add NOTE EDIT-TASK PERFORMED)
(Add STEP FINISH TASK)
(Delete GOAL PERFORM EDIT-TASK)
(Delete STEP DO TASK-FUNCTION)
(Delete NOTE FUNCTION DELETE)
(Delete NOTE ENTITY STRING)
(Delete NOTE DELETE DONE)
(Delete NOTE PERFORMING EDIT-FUNCTION)))

Some methods, such as the MoveCursor method, were represented in the
editor cognitive complexity model without selection rules. In the editor used
in our experiments, such methods have no options, no context sensitivity, and
are heavily used, and would thus seem to be stripped down to a minimum of
rules. For example, although the subtask of moving the cursor appears in a
variety of contexts, its execution is independent of where it was invoked. In
addition, moving the cursor is a frequently performed method. All these
characteristics of the MoveCursor method suggest that it does not need to be
represented with selection rules. However, including such rules would not
affect the pattern of the results (to be presented) and would produce a more
consistent set of rules.

The results of applying the expert rule generation process to the method in
Figures 13 and 14 are shown in Figure 15. The two prompt-checking steps
were simply removed, and the remaining rules were collapsed together.
Although all the rules through NoviceDelete.P2, including the selection rule,
could be collapsed together into a single rule, SelectDelete, NoviceDelete.P3
contains the return point for the range-selection method and, therefore,
cannot be collapsed with the preceding rules.

Transfer Between Methods. The transfer process was described in an
earlier section (Section 2.5), and some example rules drawn from the
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Figure 14. Example of novice method.

(StartNoviceDelete IF((GOAL DELETE STRING)
(NOT (NOTE EXECUTING DELETE)))

THEN ((Add STEP ACTIVATE-FUNCTION DELETE)
(Add NOTE EXECUTING DELETE)))

(NoviceDelete.P1 IF((GOAL DELETE STRING)
(STEP ACTIVATE-FUNCTION DELETE))

THEN ((DoKeystroke DEL)
(Delete STEP ACTIVATE-FUNCTION DELETE)
(Add STEP CHECK-PROMPT DELETE)))

(NoviceDelete.P2 IF((GOAL DELETE STRING)
(STEP CHECK-PROMPT DELETE)
(DEVICE USER MESSAGE DeleteWhat))

THEN((Delete STEP CHECK-PROMPT DELETE)
(Add GOAL SELECT RANGE)
(Add STEP SELECT-RANGE DELETE)))

(NoviceDelete.P3 IF((GOAL DELETE STRING)
(STEP SELECT-RANGE DELETE)
(NOTE RANGE SELECTED))

THEN((Delete NOTE RANGE SELECTED)
(Delete STEP SELECT-RANGE DELETE)
(Add STEP CHECK-PROMPT ACCEPT)))

(NoviceDelete.P4 IF((GOAL DELETE STRING)
(STEP CHECK-PROMPT ACCEPT)
(DEVICE USER MESSAGE PressAcceptOrReject))

THEN((Delete STEP CHECK-PROMPT ACCEPT)
(Add STEP VERIFY DELETE)))

(NoviceDelete.P5 IF((GOAL DELETE STRING)
(STEP VERIFY DELETE))

THEN((Verify Task DELETE TEXT)
(Delete STEP VERIFY DELETE)
(Add STEP PRESS ACCEPT)))

(NoviceDelete.P6 IF((GOAL DELETE STRING)
(STEP PRESS ACCEPT))

THEN ((DoKeystroke ACCEPT)
(Delete STEP PRESS ACCEPT)
(Add STEP FINISH UP)))

(NoviceDelete.Done IF((GOAL DELETE STRING)
(STEP FINISH UP))

THEN((Delete GOAL DELETE STRING)
(Delete STEP FINISH UP)
(Delete NOTE EXECUTING DELETE)
(Add NOTE DELETE DONE)))

experimental editor were shown there in Figure 8. More details are illustrated
by examining the transfer status of the novice deletion rules after the 33 rules
for inserting a text have already been acquired.

First, note that two general methods, UnitTask and MoveCursor, have
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Figure 15. Example of expert method.

(SelectDelete IF ((GOAL PERFORM EDIT-TASK)
(STEP DO TASK-FUNCTION)
(NOTE FUNCTION DELETE)
(NOTE ENTITY STRING)
(NOT (NOTE PERFORMING EDIT)))

THEN ((Add GOAL DELETE STRING)
(Add NOTE PERFORMING EDIT)
(DoKeystroke DEL)
(Add GOAL SELECT RANGE)
(Add STEP SELECT-RANGE DELETE)))

(ExpertDelete.P1 IF ((GOAL DELETE STRING)
(STEP SELECT-RANGE DELETE)
(NOTE RANGE SELECTED))

THEN ((Delete NOTE RANGE SELECTED)
(Delete STEP SELECT-RANGE DELETE)
(Verify Task DELETE TEXT)
(DoKeystroke ACCEPT)
(Add STEP FINISH UP)))

(FinishDelete IF ((GOAL PERFORM EDIT-TASK)
(GOAL DELETE STRING)
(STEP DO TASK-FUNCTION)
(STEP FINISH UP)
(NOTE PERFORMING EDIT)
(NOTE FUNCTION DELETE)
(NOTE ENTITY STRING))

THEN ((Add NOTE TASK PERFORMED)
(Add STEP FINISH TASK)
(Delete GOAL PERFORM EDIT-TASK)
(Delete GOAL DELETE STRING)
(Delete STEP DO TASK-FUNCTION)
(Delete STEP FINISH UP)
(Delete NOTE FUNCTION DELETE)
(Delete NOTE ENTITY STRING)
(Delete NOTE PERFORMING EDIT)))

already been acquired as part of the INSERT method. Thus, in processing the
DELETE method, the transfer model designates all of the rules for these two
methods as being identical to already learned rules, meaning that they
transfer. However, the general range-selection method has not been already
learned and, therefore, must be acquired during learning of the deletion
method. So, all eight rules in the range-selection method are designated new.
Figure 17, in the data analysis section that follows (Section 4.1), shows the
total numbers of rules of each transfer status for each method for the different
training orders used in the experiment. Note that the numbers for the same
method are different, depending on what methods have already been learned.
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Veifying and Running the Model. The complete cognitive complexity
model involved a total of 99 production rules in the novice form and 71 in the
expert form. The expert and novice rule sets were both tested by running
them in the user-device interaction simulation package to ensure that they
correctly performed all 112 editing tasks used in Experiment 2. Once the rule
sets were fully tested and corrected, then the learning predictions were
generated from the novice rule set, and the performance predictor variables
were generated from both the novice and expert rule sets.

4. EVALUATION OF THE MODEL

To evaluate the model, two experiments were conducted to test its
predictions. In the first, predictions from applying the transfer model were
tested against subjects' performance as they learned the editor. In the second
experiment, the execution model generated predictions for how long it should
take to perform various editing tasks, both as a novice and then after practice.
These predictions were tested against subjects' performance as they per-
formed a set of editing tasks, after training and after 8 days of practice.

4.1. Experiment 1: Test of Learning Predictions

The purpose of this experiment was to test the predictions made by the
model for the learning of the procedures. Three different training orders were
chosen in order to maximize the differences predicted by the transfer model.
Evaluating the model was done by using multiple-regression to fit it to the
data, along the lines of Kieras (1984).

Method

Procedure. In the experiment, subjects first read instructions on the
structure of the editing task and how to use the cursor positioning keys. They
then learned the five text-editing methods. Subjects learned each method in
two phases: First, subjects studied detailed instructions on how to perform the
method. These instructions included information about how to select the
range. Second, subjects practiced the method by editing a two-page manu-
script with four edits on each page. The manuscripts were taken from the
draft of an introductory psychology textbook and had been reverse edited so
that when subjects completed a given edit the text made sense. If a subject
made an error, appropriate feedback was given immediately after pressing the
ACCEPT key, and the subject then reviewed the instructions for the method.
Subjects were required to redo an edit if they made any errors. The learning
criterion was one error-free repetition of all eight edits, whereupon subjects
immediately went on to the instructions for the next method.



COGNITIVE COMPLEXITY ANALYSIS 33

Figure 16. Training order of procedures.

Serial Position

1 2 3 4 5

Order I INSERT DELETE COPY MOVE TRANSPOSE
Order 2 INSERT TRANSPOSE DELETE COPY MOVE
Order 3 INSERT COPY MOVE TRANSPOSE DELETE

Apparatus. The experimental environment consisted of two video termi-
nals driven by programs running under DEC VAX VMS that communicated
with each other. The first program implemented the simplified screen text
editor, and the second was a computer-assisted instruction (CAI) package that
presented all instructional material and provided feedback.

When the ACCEPT key was pressed, the editor sent a description of the edit
just completed to the CAI package where it was evaluated. If the subject had
made an error, the CAI package could determine what kind of error had been
made, for example, typing in the incorrect text for an insert. The CAI
package then gave feedback to the subject that indicated the type of error.

Subjects. Subjects were recruited from the Boulder, Colorado community
by means of a newspaper advertisement; they were paid $15 for participating
in the experiment. Subjects were required to be able to type and to have had
no computing or word-processing experience. A total of 90 subjects partici-
pated in the experiment.

Design. Training-order condition was a between-subjects factor, with 30
subjects in each condition; each subject was randomly assigned to one of the
three training-order conditions. Each subject learned all five editing functions
in all three conditions. For each training order, the INSERT method was
learned first, followed by the other four methods. The three training orders
are shown in Figure 16.

Results and Discussion

Analysis Variables. The dependent variables were study time (the time
spent studying the initial instructions for each editing method), practice time
(the time from the end of study of the instructions until subjects reached
criterion performance, including all error recovery and method review), and
the total training time (the sum of the study and practice times).

For each method in each training order, the transfer model generated the
total number of production rules (TOTALRULES), the number of new rules to be
learned (NEW), the number of rules that were the same as an existing rule
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Figure 17. Number and type of rules to be learned in each training order.

Order I

INSERT DELETE COPY MOVE TRANSPOSE

NEW 33 18 7 3 10
SAME 0 21 34 34 34
GENERALIZED 0 5 2 4 0
SUBSUMED 0 0 5 7 5

Order 2

INSERT TRANSPOSE DELETE COPY MOVE

NEW 33 23 5 7 3
SAME 0 21 34 34 34
GENERALIZED 0 5 0 2 4
SUBSUMED 0 0 5 5 7

Order 3

INSERT COPY MOVE TRANSPOSE DELETE

NEW 33 20 3 10 5
SAME 0 21 34 34 34
GENERALIZED 0 7 4 0 0
SUBSUMED 0 0 7 5 5

(SAME), the number of rules that could be generalized with an existing rule
(GENERALIZED), and the number of rules subsumed under an existing general-
ized rule (SUBSUMED). These numbers are shown in Figure 17. Figure 17 shows
that the number of new rules decreases rapidly, but not uniformly for the
different training orders.

Analysis Results. The first analyses were performed using only the
number of new rules as a predictor variable. This simple analysis parallels
that in Polson and Kieras (1985). The regression equation for mean total
training time as a function of the number of new rules is:

Total training time = 683.2 s + 34.7 s X (number of new rules) (2)

This equation accounts for 88% of the variance among the 15 mean training
times; the coefficient for the number of new production rules is about 30 s.
This result, that the number of new production rules is a strong predictor of
learning time, is comparable to the results obtained in Polson and Kieras
(1985) and Kieras and Bovair (1986).

More extensive stepwise multiple-regression analyses were performed on
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Figure 18. Regression analyses of training time (N = 450).

Total Training Time (R2 
= .50)

Final
Final Standard

Variable Coefficient Coefficient F

CONSTANT - 1200.35
SMEAN 1.00 .40 140.56
NEW 33.77 .55 52.25
TOTALRULES 22.78 .20 13.09
ORDER -96.80 -. 20 9.40

Study Time (R2 = .65)

CONSTANT - 181.40
SMEAN 1.00 .46 277.01
NEW 5.95 .57 79.37
ORDER -21.36 - .26 122.44
TOTALRULES 3.63 .18 16.27

Practice Time (R2 = .44)

CONSTANT -1018.94
SMEAN 1.00 .40 128.63
NEW 27.82 .50 38.25
TOTALRULES 19.15 .18 9.98
ORDER -75.44 - .17 6.16

the individual subject data. The dependent variables were the three described
previously (study time, practice time, and total training time) for each subject
on each method. In addition to the predictor variables from the transfer
simulation, the analysis included, as predictors, the subject's mean training
time for all procedures (SMEAN) to handle the within-subject design (see
Pedhazur, 1982) and the main effect of serial order (ORDER). For each
dependent variable in the analysis, there were 450 data points, one for each
subject on each editing function in each training-order condition.

The results of this analysis are shown in Figure 18, which shows the
coefficients in the final equation for the variables that entered the stepwise
analysis. The F ratios are the "F to remove" and provide the appropriate test
of significance of each variable in the final equation under the assumption
that each variable was the last to enter. In addition, the standardized
regression coefficients allow comparisons of the importance of each variable
to be made, independent of scale. The predicted and observed mean times for
each training-order condition for the three dependent variables are shown in
Figures 19, 20, and 21.

For total training time, about 50% of the variance in individual subject
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Figure 19. Predicted and observed mean total training times for each training-
order condition.
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time on each function is accounted for by the final equation. When the
components of training time are analyzed separately, about 657% of the
variance in individual subject study time and about 42% of the variance in
practice time are accounted for by the final equations. The most important
predictor variable for all three dependent variables is the number of new rules
in each editing function (NEW). By itself, NEW accounts for 42 % of the variance
in study time, 26% of that of practice time, and 33% of total training time.

For total training time, the coefficient of TOTALRULES shows that each rule
requires about 22.8 s, but each new rule requires an additional 33.8 s. Thus,
there is a cost for each rule, because the subject had to read about and execute
every step of the editing function, regardless of whether that step had already
been learned or not. But each new rule to be learned requires a substantial
additional amount of time, about 30 s. In addition to this effect of NEW, there
was also a learning-to-learn effect as shown by ORDER. Each editing function
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Figure 20. Predicted and observed mean study times for each training-order
condition.
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was learned about 97 s faster than the previous one, after the decreasing

number of new rules was taken into account. The small standardized
coefficient of ORDER, compared to NEW, makes clear that this is a relatively
small effect.

The results for study time and practice time are comparable to that for total

time; the standardized coefficients are similar in all three analyses. There is

a suggestion that study time is more closely related to the predictors than
practice time, although, as would be expected, most of the total training time

can be attributed to practice, rather than study of the instructions.
A puzzling result, not apparent from Figure 18, is that NEW uniquely

accounts for only 5% of the variance in practice time and 6% of both study

time and total training time. This low proportion of variance uniquely

accounted for is a result of the presence of ORDER in the equation. Figure 18

illustrates the relationship between ORDER and training time quite clearly; the

later a method is learned, the faster it is learned. The curve in this figure is
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Figure 21. Predicted and observed mean practice times for each training-order
condition.
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similar to a learning curve with a rapid monotonic decrease in time over trials.
However, this is not the same task being repeated on each trial, as in a typical
learning curve, but different tasks on each trial. Thus, the decrease in time
for later methods does not simply reflect the effect of practice, but the effect
of transfer in that a decreasing amount of new information must be learned
for each new method. This means that there is a close relationship between
training order and the amount of new information that must be aquired, as
shown by the correlation of -. 86 between ORDER and NEW. However, it is
important to note that this is a characteristic of training order and the
methods for this particular device. In fact, it could be argued that transfer
functions such as this are characteristic of a consistent user interface.

It is quite possible to use training orders and devices where training order
and amount of transfer are much less confounded, as in Kieras and Bovair
(1986), in which NEW uniquely accounts for 47% of the variance even when
ORDER is in the equation. In the present results, if ORDER is omitted then NEW

uniquely accounts for 19% of the total training time (23% of study time, 15%
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of practice). Also, NEW is a better predictor than ORDER. NEW has a larger

standard regression coefficient (.55) than ORDER (-.20); in total training

time, NEW accounts for 33% alone, 6% uniquely, whereas ORDER accounts for

28% alone, 1% uniquely. In addition, NEW is of more theoretical interest,

both because it explains most of the ORDER effect, and because it can predict

training times when the relation between training order and training time is

nonmonotonic, as in Kieras and Bovair (1986) and in Polson (1987).

Summary. Despite the effects of learning to learn, the production system

variables provided by the transfer model explain training times quite well.

The number of new rules accounts for 33 % of the variance in total training

time by itself, and is a better predictor of total training time on a particular

edit than is the subject's individual mean, which accounts for only 16% of the

variance by itself. Thus, by analyzing these editing functions in terms of

transfer of production rules, it is possible to account well for the relative

difficulty of learning.

4.2. Experiment 2: Test of Performance Predictions

The second experiment was performed in order to test the performance

predictions of the model. Subjects were trained to use the experimental editor

as in Experiment 1, and then data were collected on their performance of

editing tasks over the course of 8 days. The total time required by subjects to

complete each edit was compared to the model predictions.

Method

Apparatus, Design, and Procedure. The experimental environment and

instructional materials were the same as for Experiment 1. This experiment

required 9 days to complete. On the first day, subjects were trained using the

same training procedures as those in Experiment 1, with half using Training

Order 1 and half using Training Order 3. On 8 practice days, subjects edited

a new manuscript for each day, with each manuscript containing a total of 70

edits. Edits were randomized in blocks of 10 edits per page, with two of each

of the five types on a page. Each day began with a brief review of the

instructions for the five editing methods. The correctness of each edit was

checked by the CAI package after the ACCEPT key was pressed. Incorrect edits

were repeated.

Subjects. Eight subjects were recruited from the same community and in

the same way as for Experiment 1. They were paid $15 for each day.

Not all of the subjects were used in the analysis. To properly compare the

cognitive complexity model predictions to the task completion times, both the
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Figure 22. Predictor variables generated by the simulation.

CYCLES Number of recognize/act cycles required to complete the task
NLOOKMSS Number of times LookMSS used
NVERIFYTASK Number of times VerifyTask used
NFIGUREDISTANCE Number of times FigureDistance used
NKEYSTROKES Total number of keystrokes
ADD- < item> Number of times an item was added to working memory
DELETE- < item> Number of times an item was deleted from working memory
ORDER Sequential order of edit (8-56)
EXPERT Dummy variable for the effect of expertise
EXPNLOOKMSS Interaction variables to test effect of expertise
EXPNVERIFY

EXPORDER

model and the subjects needed to use the same methods, defined as the same
keystroke sequences. The problematic method was range selection. The
criterion was that subjects should use the same range-selection method as the
simulation, or a simple variant of it, on approximately 80% of the edits. The
simulation selects the range by entering the last character of the range,
repeatedly if necessary, until the correct range is highlighted. Seven of the
eight subjects used this method; only one subject used the cursor keys
exclusively to select the range of editing operations; this subject's data were
dropped.

Results and Discussion

Analysis Variables. The dependent variable was performance time, de-
fined as the time to perform a single editing task, extending from the last
cursor keystroke prior to range selection until the ACCEPT key was pressed at
the end of the edit. This time was averaged over subjects. The times for the
INSERT method and cursor movement between editing tasks were not
included because they were dominated by typing time. The first eight edits for
each day's practice session were dropped. For simplicity, only the first and last
days' data were included; on the first day subjects were assumed to perform
as novices, and on the last day subjects were assumed to perform as experts.

Performing the same tasks, the simulation used the production rules to edit
exactly the same text for both days as the subjects did. Various statistics were
collected from these simulation runs in order to generate predictor variables.
These predictor variables are shown in Figure 22.

An especially important predictor is the number of cycles required by the
production system to execute each task. This was generated using both the
novice and the expert rule sets. The variable, CYCLES, was defined such that
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Figure 23. Regression analysis on performance time (N = 48, R2 = .79).

Final
Final Standard

Variable Coefficient Coefficient F

CONSTANT 1.597
NLOOKMSS 3.395 .303 1.35
EXPERT -. 462 -. 029 .01
NVERIFY 1.199 .289 11.59
ORDER - .142 - .248 12.56
EXPNLOOKMSS - 1.952 -. 389 2.61
EXPORDER .186 .446 10.45
EXPNVERIFY -1.297 -.409 7.95
CYCLES .107 .531 59.48

for Day 1, CYCLES was the number of execution cycles for the novice rules,
and, for Day 8, CYCLES was the number of execution cycles for the expert rules.

The simulation monitored the three complex operators, LookMSS,
VerifyTask, and FigureDistance, to generate three corresponding predictor
variables. These were NLOOKMSS, which is the number of times information
had to be looked up from the manuscript; NVERIFY, which is the number of
task verifications (e.g., verifying that highlighting was correct or that the
correct material was deleted); and NFIGUREDISTANCE, which is the number of
times that the distance of the current cursor location from the desired location
was computed. Additional predictor variables were NKEYSTROKES, which is the
total number of keystrokes used by the simulation to perform the task; and
ORDER, which is simply the sequential order of the edit, with values ranging
from 8 to 56.

In addition, predictor variables were generated to test for the effects of
expertise over the course of the training period. The variable, EXPERT, was a
dummy variable that was zero for Day 1 and one for Day 8. Several expertise
interaction variables were defined (e.g., EXPNLOOKMSS, which was zero for
Day I and had the value NLOOKMSS for Day 8). The simulation also generated
variables that were used to test for effects of load on working memory; a
discussion of the results for these variables follows.

Analysis Results. Figure 23 shows the multiple-regression analysis of
performance time using the predictors generated by the simulation. This
analysis includes both the times from Day I and the times from Day 8.
Examination of Figure 23 shows that a total of 80 % of the variance among the
96 means was accounted for. Predicted and observed means for each type of
edit on Day I and Day 8 are shown in Figure 24.

There are several points of interest in the analysis shown in Figure 23. The
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Figure 24. Predicted and observed mean performance times for novices (Day 1)
and experts (Day 8).
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first is that CYCLES has a coefficient of about one tenth of a second per cycle.
This. result is similar to the cognitive processor cycle time assumed in the
Model Human Processor of Card et al. (1983). The preliminary analysis in
Polson and Kieras (1985) yielded a comparable coefficient of .17, although
there were some important differences in the role of memory load predictors
(to be discussed).

The analysis also indicates some striking changes as subjects increased their
expertise. The two actions of looking at the manuscript and verifying the task
both take a substantial amount of time for novice users; the final coefficients
are 3.4 s for NLOOKMSS and 1.2 s for NVERIFY. For the practiced user, the
negative final coefficient of -1.952 for EXPNLOOKMSS indicates that the
amount of time spent looking at the manuscript is reduced by about 2 s to only
about 1.4 s, although this coefficient is not significant. The negative final
coefficient for EXPNVERIFY shows that the time for task verifications is reduced
by 1.3 s to about zero for practiced users. As suggested earlier in the style
rules, this implies that practiced users do not check device prompts and do not
constantly verify that their work is correct, whereas novices seem to do so.

The effect of practice within a session is shown by the variable, ORDER,

whose value is simply the sequential order of the edit and is 8 for the first and
56 for the last edit of the day. As shown by the coefficient for ORDER, subjects
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Fire 25. Regression analysis using keystrokes on performance time (N = 48,
R = .79).

Final
Final Standard

Variable Coefficient Coefficient F

CONSTANT .664
NLOOKMSS 4.773 .426 26.52
EXPERT .377 .024 .01
NVERIFY 1.117 .269 10.08
ORDER - .133 - .232 11.10
EXPNLOOKMSS -3.066 -. 612 6.73
EXPORDER .190 .454 10.81
EXPNVERIFY -. 371 -. 433 8.81
NKEYSTROKES .259 .480 59.81

speed up somewhat during their first session so that they perform each edit
.14 s faster than the previous one. The variable, EXPORDER, shows that on Day
8 this slight practice effect had disappeared almost completely.

Comparison of cYCLES With Number of Keystrokes. To assess the value of
CYCLES as a predictor variable, a similar analysis was performed using the
number of keystrokes instead of the number of cycles; all other operator
predictor variables were also used. Card et al. (1983) showed that the number
of keystrokes was a good predictor of performance time, and CYCLES should be
at least as good or even better. Note that NKEYSTROKES is the number of
keystrokes needed to do the task as predicted by the simulation, not the
number of keystrokes observed in the data. This model is essentially a form
of the Card et al. (1983) Keystroke-Level Model.

The results of this regression analysis are shown in Figure 25. The final R2

is .79, the same value as in the CYCLES analysis. The coefficient for
NKEYSTROKES is .259, which is well in line with the figures reported by Card
et al. (1983) of .20/keystroke for the average skilled typist and .28 for the
average nonsecretary typist. An interaction variable was defined for expertise
and number of keystrokes, but it did not enter the equation, meaning that
there was no difference in keystroke times on Day 1 and Day 8.

The similar power of number of cycles and number of keystrokes as
predictors is not surprising, given that the correlation between them is .921.
When either one of the two is in the equation, the other does not contribute
significantly. Some additional analyses showed that the number of keystrokes
is not a particularly good predictor by itself, accounting for only 33% of the
variance, compared to 58% for CYCLES by itself. It is only when given the
benefit of an analysis that includes complex operators and expertise that the
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number of keystrokes becomes as good a predictor as CYCLES. Thus, despite
the high correlation, CYCLES is a more useful and theoretically relevant
predictor than the number of keystrokes.

Validity of Expert-Novice Distinctions. To test that the novice and expert
rule sets were actually predicting performance differentially, an analysis
similar to that shown in Figure 23 was performed, but with the CYCLES

predictor reversed, so that the number of cycles derived from the novice rules
was used for Day 8, and the number of cycles from expert rules was used on
Day 1. In this case, CYCLES becomes a poorer predictor than keystrokes. This
result, in conjunction with the intuitive appeal of the expertise results in the
Figure 23 analysis, gives some support to the distinctions made between the
expert and novice representations.

These results on modeling the expert-novice distinction suggest that a
simple form of rule composition is a reasonable explanation of faster
execution time with greater expertise. In addition, an important difference
between practiced users and novices is that practiced users spend much less
time looking at the screen to check for prompts or the accuracy of their work.
This suggests that feedback to the user may only be useful to novices at an
early stage of learning. On the other hand, the provision of feedback may not
hurt users with greater expertise because practiced users learn not to pay
attention to it.

Memory Load. A final point of interest, not immediately apparent from
Figure 23, is that no memory-load variables, such as the number of items
added to working memory, were significant predictors. These variables are
highly correlated with other variables that appear in the Figure 23 analysis,
such as CYCLES and NLOOKMSS. But it was decided to give CYCLES and counts
of overt operators, such as LOOKMSS, priority in the prediction equation, and,
as a result, the memory-load variables cannot account for additional variance
in our study. The number of LOOKMSS operators, in particular, is highly
correlated with the measures of memory load because performing a
LOOKMSS to get the information needed to perform a task results in several
NOTEs being added to working memory. Therefore, if the number of
LOOKMSS operators is used as a predictor, the memory load variables will
not contribute additionally to the regression equation.

The results described here found no effect of working memory load, but the
Polson and Kieras (1985) preliminary model analysis found that the number
of goals and notes added to working memory are an important predictor. One
possible reason for this discrepancy is that the cognitive complexity model in
Polson and Kieras did not follow the style rules described earlier, meaning
that the structure of the two rule sets is somewhat different and, therefore,
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would be expected to generate different predictions. However, the difference
between the rule sets is not very great. Rather, the probable reason why the
Polson and Kieras analysis found an effect of memory load is that they did not
use the number of operators such as LOOKMSS as predictor variables.

It is an interesting result that in an ordinary text editor, possible memory-
load contributions to execution time are not apparent once cycles and complex
operators are taken into account. In fact, the text-editing task may not be a
good one for detecting such working memory-load effects. In this editor and
these tasks, the maximum number of NOTE items in working memory at any
one time is only six, well within the capacity of working memory, and so
perhaps no effects should be expected.

5. GENERAL DISCUSSION

5.1. Conclusions

The results provide strong support for the cognitive complexity theory
proposed by Kieras and Polson (1985). The predictions derived from the
model predict both learning and execution data quite well, accounting for a
substantial portion of the variance in both learning and execution time.

Another major piece of support for the theory comes from the work
described in Kieras and Bovair (1986) and its essential agreement with the
work described here. Although the two studies were made on different types
of systems and used different paradigms, there is a striking similarity in the
learning predictions. In both studies, the number of new rules to be learned
is an excellent predictor of the learning time for a procedure -both the total
learning time and the study time for the instructions. No learning overload
effects due to the length of the first procedure were observed in this study, as
they were in Kieras and Bovair, perhaps because a simple procedure (INSERT)
was always trained first.

The correlation between cycles and keystrokes could be expected. In the
task of text editing, the mental time required for a procedure is strongly
dependent on the number of keystrokes that need to be made, and so this
result is not surprising. As Card et al. (1983) suggested, to the extent that
using a text editor is a routine cognitive skill (i.e., it does not involve much
problem solving), there is not much cognitive activity preceding each
keystroke, and thus the number of keystrokes should be a good predictor.
However, describing methods just in terms of the number of keystrokes and
complex operators along the lines of a Keystroke-Level Model does not make
predictions about learning and transfer. In contrast, the production rule
implementation of a GOMS model can be used to make predictions about
both learning and performance.
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5.2. Applying the Cognitive Complexity Approach

If cognitive complexity models can account for important aspects of
learning and performance, they should be useful as a quantitative design tool,
in the spirit advocated by Card et al. (1983). But as Kieras (1988) pointed out,
there are problems with using the cognitive complexity approach as a design
tool. One problem is the technical difficulty of constructing a production
system model; because of the simplicity of its notation and the constraints
imposed by the style rules, writing a PPS production rule model such as the
one described in this article is probably as easy as writing a production system
model could be. Note that many of the methods (e.g., cursor movement)
could be shared between models for different systems, meaning that the cost
of constructing new models would diminish as more were built. Even so,
production rule modeling is potentially a difficult job for the nonspecialist.
The solution that Kieras (1988) suggested was to develop a high-level GOMS
modeling language that includes English-like statements that represent indi-
vidual production rules. Thus, when constructed correctly, the high-level
model has a specified relationship to the underlying production rule model,
and the same quantitative predictions can be made. Thus, many of the
benefits of generating a production rule model can be achieved more simply.

Thus, the purely technical problem of applying cognitive complexity theory
has a straightforward solution. But by far the most difficult problem is
conducting the GOMS-based task analysis that provides the information
required for a cognitive complexity model. A proposed GOMS task analysis
methodology is discussed at some length in Kieras (1988) but has yet to be
tested and refined in practice.
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