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ABSTRACT

This article investigates the cognitive strategies that people use to search computer displays.  
Several different visual layouts are examined: unlabeled layouts that contain multiple groups of 
items but no group headings; labeled layouts in which items are grouped and each group has a 
useful heading; and a target-only layout that contains just one item.

A number of plausible strategies were proposed for each layout.  Each strategy was programmed 
into the EPIC cognitive architecture, producing models that simulate the human visual-
perceptual, oculomotor, and cognitive processing required for the task.  The models generate 
search time predictions.  For unlabeled layouts, the mean layout search times are predicted by a 
purely random search strategy, and the more detailed positional search times are predicted by a 
noisy systematic strategy.  The labeled layout search times are predicted by a hierarchical 
strategy in which first the group labels are systematically searched, and then the contents of the 
target group.  The target-only layout search times are predicted by a strategy in which the eyes 
move directly to the sudden appearance of the target.

The models demonstrate that human visual search performance can be explained largely in terms 
of the cognitive strategy that is used to coordinate the relevant perceptual and motor processes; a 
clear and useful visual hierarchy triggers a fundamentally different visual search strategy and 
effectively gives the user greater control over the visual navigation; and cognitive strategies will 
be an important component of a predictive visual search tool.  The models provide insights 
pertaining to the visual-perceptual and oculomotor processes involved in visual search, and 
contribute to the science base needed for predictive interface analysis.
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1. INTRODUCTION

Cognitive models are computer programs that behave in some way like humans (John, 1998).  In 
the context of this article, and in most cognitive modeling in human-computer interaction (HCI), 
the models simulate the perceptual, cognitive, and motor processes that people use to accomplish 
a task, and predict the time required for the task.  Cognitive modeling is useful to the field of 
HCI because it reveals patterns of behavior at a level of detail not otherwise available to analysts 
and designers (Gray, John & Atwood, 1993).  The ultimate promise for cognitive modeling in 
HCI is that it provides the science base needed for predictive analysis tools and methodologies 
(Card, Moran & Newell, 1983).

There are two phases of cognitive modeling: (1) exploratory and (2) predictive.  In the trajectory 
of scientific development, exploratory modeling must precede predictive modeling.  In the 
exploratory mode, models are constructed to explain empirical data that have already been 
collected and analyzed.  In the predictive (or confirmatory) mode, models are constructed to 
make a priori predictions of user performance; that is, predictions before human data have been 
collected.  In both phases, the output from the model is referred to as a “prediction” even though 
in exploratory modeling it is really a post-diction.

Accurate high-fidelity a priori predictive models of visual search tasks are not currently 
attainable on a routine basis.  Computational cognitive modeling of visual search is currently in 
an exploratory mode.  This paper presents exploratory cognitive models of the visual search of 
hierarchical computer screen layouts, and contributes to the science base needed for predictive 
models.

This article has two main goals:  (1) Explain the perceptual, cognitive, and motor processing that 
people use to search hierarchical visual layouts on a computer screen.  The explanations should 
be useful to interface designers outside of the context of cognitive modeling.  (2) Provide 
guidance and insight, including details of the cognitive strategies and perceptual-motor 
parameters that are appropriate and not appropriate, for building future predictive models of 
visual search.

The bracketing heuristic (Gray & Boehm-Davis, 2000; Kieras & Meyer, 2000) guides the 
construction of the models in this article.  Following this approach, a slowest-reasonable--an 
upper bracket--and a fastest-reasonable model--a lower bracket--are identified early in the 
development of the models.  It is expected that human performance will fall in between the two 
brackets, and that the observed performance will vary based on motivation and task demands.  A 
final good-fitting model is developed by integrating aspects of the slowest- and fastest-
reasonable models.  Bracketing allows the analyst to examine the plausibility of model 
parameters early in the process, and provides guidance for closing in on the observed human 
data.

Visual search has been studied at great length, and many models have been constructed.  See 
Brogan (1993) for an extensive collection of work and Wolfe (1998) for an extensive review.  
But there is relatively little work that integrates the perceptual, cognitive, and motor processes 
involved in visual search tasks using a computational framework.  Individual instances of such 
work includes Byrne (2001), Ehret (2002), and Hornof and Kieras (1997).  This article 
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contributes to the growing body of integrative computational and psychological models of visual 
search.

1.2. Visual Search Task

The models presented in this article investigate the human information processing involved in 
searching for an item in a unlabeled or labeled hierarchical layout on a computer screen.  The 
task resembles searching a web page for a known target item.  In some visual layouts, group 
labels guide the user to the target item.  Figure 1 shows an unlabeled layout and a labeled layout 
that a user might encounter when browsing the web.  The search task used in the experiment is 
analogous, but emphasizes the core perceptual, cognitive, and motor processing required for 
visual search.  Reading and semantic processing are removed from the task, but will be 
examined in future experiments.

Figure 1.  A real-world analogy to the task modeled.  The layout on the left does 
not incorporate a labeled visual hierarchy to help the user find a story about the 
Mets baseball team.  The layout on the right does incorporate a visual hierarchy 
to help with such a task.  (Adapted from NYTimes.com, 5/30/01)

Sixteen participants completed the task.  Target and distractor items were three-letter words and 
pseudo-words.  Items were arranged in eight different layouts.  Figure 2 shows the eight layouts 
that were presented to the participants.  As can be seen in Figure 2, the design was based on a 2 
¥ 3 factorial design (label presence ¥ number of groups).  Two other layouts were also 
presented: a layout with one unlabeled group, and a target-only layout in which the target 
appeared with no distractors.  Group labels consisted of single numerical digits, flanked by Xs to 
inhibit parafoveal recognition (after Bouma, 1970).  Figure 3 shows the detailed measurements 
of the layouts, and the numbers assigned to the thirty positions on the layout.
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Figure 2.  Examples of the eight screen layouts used in the experiment.  In the 
target-only layout, the target appeared in any of thirty positions.  The precue 
always appeared just above the top left group.  (The layouts are not drawn to 
scale--the horizontal distance between the columns has been compressed.)

Each layout was presented in a separate block of trials so that participants could anticipate the 
structure of each layout before it appeared.  The order of the blocks for each participant was 
determined by a randomized Latin square.  Layout items were randomly selected for each trial, 
so the participant had to visually search to find the target.  In each trial, the participant was 
precued with the exact target item and, for labeled layouts, the label of the group containing the 
target.  Each group always contained five items.
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Figure 3.  A sample layout with six labeled groups, drawn to scale and annotated 
with the number of each target position.  The precue is X5X REJ.  The target is 
in position 20, in the group labeled X5X.  Two degrees of visual angle at a 
distance of 56 cm are shown.

Each trial proceeds as follows: The participant studies the precue and clicks on the precue; the 
precue disappears and the layout appears; the participant finds the target, moves the mouse to the 
target, and clicks on the target; the layout disappears and the next precue appears.  Participants 
were financially motivated to perform each trial as quickly as possible while maintaining a very 
low error rate.

There were sixteen participants, eight women and eight men, ranging from twenty-two to fifty-
one years of age, with a mean age of thirty-eight years. Ten participants were recruited from a 
church in Ann Arbor, Michigan.  Six were graduate students and support staff at the University 
of Michigan. All participants were experienced computer users and had no apparent visual or 
motor impairments.

Search time was separated from pointing-and-clicking time (hereafter referred to simply as 
pointing time) by means of a “point-completion deadline” (Hornof, 2001).  Participants were 
instructed to not move the mouse until they found the target.  Once they started to move the 
mouse, they had a small amount of time to click on the target.  The deadline was determined 
using Fitts’ law (see Card et al., 1983), but with slightly increased a and b parameters.  If the 
participant did not click on the target in time, the trial was interrupted and the participant lost a 
small amount of bonus pay.  The start of the mouse movement thus separated the search time 
from the pointing time, and these two times were recorded separately.

1.3. Observed Data

Based on a consistently low interruption rates, averaging 1.9% across all participants, it appears 
as if the point-completion deadline successfully motivated participants to wait until they found 
the target before starting to move their mouse.  Search time was thus measured from the 
appearance of the layout to when the participant started moving the mouse.

7



Figure 4 shows the search times for the three layout types: unlabeled, labeled, and target-only.  
As can be seen in the graph, unlabeled layouts take longer to search than labeled, and the target-
only layout requires only a very small search time.  There is a strong serial position effect for 
both unlabeled and labeled layouts, suggesting a top-to-bottom and left-to-right search pattern, 
but there is no serial position effect for the target-only layout, suggesting that the target is 
quickly acquired regardless of its position.  The variability in the search time data for the 
unlabeled layouts is much higher than in the labeled layout data, and is very low in the target-
only layout.
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Figure 4.  Mean search time as a function of the target position, for unlabeled, 
labeled, and target-only layouts.  The unlabeled and labeled data include layouts 
with two, four, and six groups.  Error bars indicate the standard error of the 
sixteen participant means for each plot symbol.

Figure 5 shows the search times for unlabeled layouts (in the left frame) and labeled layouts (in 
the right frame).  Each layout size (six groups, four groups, etc.) is shown in a separate curve.  
To reveal the overall trends in the data, search times are averaged by group (Positions 1-5, 6-10, 
etc.).  In unlabeled layouts, search time is higher for layouts with more groups and hence more 
items.  This will be refereed to as the number-of-groups effect, and is illustrated by the space 
between the curves on the graph.  Whereas unlabeled layouts produce a large number-of-groups 
effect, labeled layouts produce a very small number-of-groups effect.  In labeled layouts, it takes 
roughly the same amount of time to find an item in a particular location regardless of the size of 
the layout.  The view of the data in Figure 5 is the view that will guide the construction of the 
models.
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Figure 5.  Mean search time as a function of the target position for unlabeled 
layouts (left frame) and labeled layouts (right frame).  Each group of five items is 
averaged together, and each layout size is plotted separately.

2. MODEL UNDERPINNINGS

2.1. Cognitive Architecture

The EPIC (Executive Process-Interactive Control) cognitive architecture (Kieras & Meyer, 
1997) was used to model the task.  A cognitive architecture represents the fundamental human 
information processing--perception, cognition, motor, and memory--by encoding them into data 
structures and algorithms in a computer programming language.  The analyst--the person using 
the architecture to build a cognitive model--starts with the computer code for the architecture, 
writes some additional code, combines the two sets of code, and runs the model.  The model 
generates a prediction of human performance.

Figure 6 shows an overview of the EPIC cognitive architecture, with all of its processors, 
memories, and the flow of control and data among the processors and memories.  The diagram 
also shows the simulated task environment.  The components that must be added by the analyst 
for each model are as follows.

• The cognitive strategy for accomplishing a task.
• The availability of visual features in visual zones, to represent a human’s increased acuity 

vision near the point of gaze.
• Details of the task environment, such as when and where objects appear, and how the user 

interface responds to mouseclicks and keystrokes.

Once the analyst adds each of these components to the modeling framework and runs the 
program, EPIC generates as output:
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• A prediction of the time required to execute the task.
• The mouseclicks and keystrokes in the task environment, to represent the human task 

execution.
• The simulated visual layout, including where the eyes are fixated during the task execution.
• A trace of the flow of information and control among EPIC’s processors and memories.

Task 
Environment 

Cognitive 
Processor

Working
Memory

Production Rule
Interpreter

Vocal Motor
Processor

Visual
Input

Auditory
Input

Long-Term
Memory

Ocular 
Motor

Processor

Auditory
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Visual
Processor

Production 
Memory

Tactile
Processor

Manual 
Motor

Processor

Simulated 
Interaction 

Devices

Figure 6. An overview of the EPIC cognitive architecture by Kieras and Meyer 
(1997).  On the left, the simulated task environment, including the simulated input 
and output devices, and the flow of data among the devices.  On the right, the 
various simulated sensory and motor organs, processors (ovals), memories 
(rectangles), and the flow of information among the various components.  This 
figure is reprinted from Kieras and Meyer (1997, p.399).  Reprinted with 
permission.

EPIC’s ocular motor, visual perceptual, and central cognitive processors will each be discussed 
briefly here.  A more detailed description is available in Kieras and Meyer (1996, 1997).

Ocular Motor Processor

With ocular motor and visual perceptual processors that account for the fundamental aspects of 
visual information processing, EPIC is true to the physical and functional decomposition of 
visual information processing and well-suited for modeling visual search.  In EPIC, visual acuity 
decreases for objects farther from the point of gaze, and the ocular motor processor can move the 
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eyes to get different parts of the world into high resolution vision.

EPIC does not commit itself to attentional-spotlight explanations at the architectural level 
because it is not clear whether such phenomena result from invariant aspects of the human 
architecture or are an artifact of a particular set of task strategies.  Furthermore it appears that 
“when the eyes are free to move, no additional covert attentional scanning occurs” (Findlay & 
Gilchrist, 1998, p.295).  For real world visual search tasks, it may be inappropriate to simulate 
attentional shifts independent of eye movements.

The ocular motor processor moves the gaze to objects in the environment as commanded by the 
executing strategy.  Time is required to both prepare and execute an eye movement.  In the 
models discussed here,  all eye movements are saccades, which are rapid and ballistic.  The 
phrases saccade destinations and fixation locations are used interchangeably.

Visual Perceptual Processor 

One of the analyst-defined components in an EPIC model is the availability of object properties.  
These parameters define (a) which properties are available in which zones, and (b) the sensory 
encoding time required for each property in each zone.  Figure 7 shows the retinal zones, which 
are defined as concentric circles around the center of the gaze.  The zones include the bouquet 
(with a radius of 0.25˚ of visual angle), the fovea (1˚), the parafovea, (7.5˚), and the periphery 
(60˚).

bouquet fovea

parafovea

periphery

center of gaze

0.25˚
1˚

7.5˚
60˚

ƒ
not in 
view

Figure 7.  The retinal zones defined in EPIC, and typical sizes used in modeling.  
Sizes are the radii in degrees of visual angle.  The visual stimulus “ƒ” appears 
outside of the bouquet and fovea, but inside of the parafovea and periphery.

The availability of each property is a function of the zone in which the object is located during 
the current fixation.  Thus, there is an availability and delay setting for each property in each 
zone (bouquet, fovea, parafovea, periphery, and not-in-view).  The LOCATION property, for 
example, is typically available for all objects that are in view, with an encoding delay of 50 ms.  
The TEXT property is typically available only in the fovea, with an encoding delay of 100 ms.  
The TEXT of a word appearing in the parafovea can be accessed by executing an eye movement to 
that object’s LOCATION.

Setting these zones with fixed boundaries is clearly a simplification of human visual processing, 
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but it is a very useful architectural feature.  The feature allows the availability of object 
properties to decrease as the objects appear farther from the center of the gaze.  This is a well-
documented aspect of human performance that is not present in other cognitive architectures 
such as Soar (Laird, Rosenbloom & Newell, 1986), ACT-R (Anderson & Lebiere, 1998), and 
ACT-R/PM (Byrne, 2001).  The effect of foveal eccentricity was added to a set of ACT-R 
models (Salvucci, 2001) but is not currently built into the architecture and has not been used for 
all ACT-R models of visual search.  The effect needs to be incorporated because it will constrain 
the strategies and ocular motor processing that can be used to explain and predict data.

Central Cognitive Processor

EPIC’s cognitive processor includes a production rule interpreter running PPS (the Parsimonious 
Production System, Covrigaru & Kieras, 1987), and a working memory (WM).  The cognitive 
processor works as a classic production rule system.  Production rules are if-then statements.  
The if part of each rule is the condition.  The then part is the action. The WM maintains the 
current state of the world.  In PPS, the WM is technically referred to as the database (DB) to 
distinguish it from human WM, but it will be discussed here as the WM.

A component found in most production rule systems but deliberately omitted from PPS is a 
conflict resolution algorithm.  The conflict resolution algorithm is used to decide which rule will 
fire when more than one rule’s conditions are satisfied by the current contents of WM.  This 
gives EPIC its capability of firing multiple production rules in parallel.  The analyst is 
responsible for writing PRs that do not conflict with each other.

The PPS production rule interpreter is multi-match and multi-fire.  Every 50 ms, every rule is 
compared in parallel against the current contents of WM.  All rules with conditions satisfied by 
the contents of working memory fire in the same cycle.  This is part of the parsimony of PPS, 
which permits EPIC to remove the “gratuitous” central cognitive processing bottleneck.  The 
multi-fire feature of EPIC permits the analyst to develop rich theories of executive process-
interactive control (hence the name EPIC), but also requires the analyst to write production rules 
that do not conflict with each other, such as by sending two different commands to move the 
eyes in the same cycle.

What follows is a PPS production rule to move the eyes and the cursor to the precue.  The IF part 
contains a number of clauses, each of which must exist in WM for the rule to fire.  When the rule 
fires, the THEN part commands the ocular motor and manual motor processors to move the eyes 
and mouse to the ?OBJECT variable, which will have been bound to the precue object.  The 
comments after semicolons explain how the rule works.

;; Look at and point to the precue.
(LOOK-AT-AND-MOVE-CURSOR-TO-PRECUE
IF
 (
  ;; This the current high level goal and step.
  (GOAL DO VISUAL SEARCH TASK)   
  (STEP LOOK AT AND MOVE CURSOR TO PRECUE)

  ;; The precue and cursor are identified.
  (VISUAL ?OBJECT OBJECT-TYPE PRECUE)  
  (WM CURSOR IS ?CURSOR-OBJECT)
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  ;; Wait until the motor processors are available.
  (MOTOR OCULAR PROCESSOR FREE)  
  (MOTOR MANUAL PROCESSOR FREE) 
)
 THEN
 (
  ;; Delete one items from WM, and add two items.
  (DELDB (STEP LOOK AT AND MOVE CURSOR TO PRECUE))
  (ADDDB (STEP GET TARGET PRECUE))
  (ADDDB (WM PRECUE IS ?OBJECT))

  ;; Move the eyes and cursor to the precue.
  (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)  
  (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?OBJECT)
  ))

Every EPIC model includes a task strategy, a set of production rules that represent the 
procedural knowledge used to coordinate the perceptual and motor processes to accomplish a 
piece of work.  Multiple strategies could accomplish the same task.  Strategies are developed 
based on cognitive task analysis (Schraagen, Chipman & Shalin, 2000), previous modeling and 
established conventions, and the bracketing heuristic.

2.2. Perceptual Settings

For every physical object perceived by EPIC’s simulated eyeball, a corresponding psychological 
object is created, with sensory properties that become available as a function of the visual zone 
in which the object appears.  Sensory properties are recoded into perceptual properties, which 
are deposited into visual WM.

What follows is a list of the object properties used in the models presented in this paper, and the 
corresponding availabilities and delays.  All visual objects have a LOCATION, ZONE, ONSET, and 
OBJECT-TYPE, available in all zones with a delay of 50 ms.  The mouse cursor and sometimes the 
group labels have a SHAPE, available in the fovea (and all zones within the fovea) with a delay of 
100 ms.  The cursor has a POINTS-TO property, which indicates the object to which the cursor is 
pointing, available in the parafovea with a delay of 50 ms.  All text items have a TEXT property, 
available in the fovea with a delay of 100 ms, but which also requires an additional 100 ms for 
perceptual recoding.  All items that get pointed-to by the mouse have a SIZE, available in all 
zones with a delay of 50 ms.  To indicate the group to which each belongs, all layout items have 
a GROUP-POSITION, NEXT-GROUP, and NEAR-TOP-IN-GROUP property, available in all zones with a delay 
of 50 ms.  To indicate their relative position to each other, all layout items have an IS-ABOVE, IS-
BELOW, and IS-n-ABOVE property (where n ranges from TWO to SEVEN), available in all zones with a 
delay of 50 ms.  Most of these parameters were established and validated in previous EPIC 
models that involved processing text on computer screens (Kieras & Meyer, 1997).

Most of the properties listed above can be extracted directly from the physical visual layout.  
This is important for the long term goal of building models that can predict search time based on 
physical features that are automatically extracted from a screen layout, which will be necessary 
to allow models to interact directly with interfaces (Ritter, Baxter, Jones & Young, 2000; Ritter 
& Young, 2001; St.!Amant & Riedl, 2001).  Properties that cannot be extracted directly from the 
layout but instead require some additional contextual knowledge include OBJECT-TYPE, which 
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represents whether a screen object is a precue item, layout item, or group label; and NEXT-GROUP, 
which imposes a top-to-bottom and then left-to-right search order on the groups.  The IS-ABOVE 
feature can be extracted directly from the layout, except for items at the bottom of a column, 
which are defined here as being above the top item in the next column.

A named location in EPIC is a point in the visual field that is available to WM even if no object 
is at that location.  Named locations have been created for the first five positions in the screen 
layout.  These are named ITEM-LOCATION-n where n is 1 through 5.  These named locations guide 
the first saccade that initiates the search of the layout.  Prior research (Hornof & Kieras, 1999) 
suggests that people are likely to initiate a visual search of a known structure before the layout 
appears using anticipated location knowledge.

A global feature is a visual feature that is available in WM but is not tied directly to a visual 
object.  The models use one global feature,  GAZE-IS-ON-MENU-ITEM, which keeps track of the 
object that is currently at the center of the gaze.  It is used once in each trial, to convert the 
fixation at the anticipated location into the object that appears at that location.

2.3. Task Strategies

One of the primary goals of this modeling project is to identify general-purpose strategies that 
people use to coordinate perceptual-motor processes when finding and clicking on an item on the 
computer screen.  Based on task analysis, the strategy used in each model can be decomposed 
into seven substrategies executed in roughly serial order: (1) Start the trial.  (2) Memorize the 
precue.  (3) Prepare for the search.  (4) Click on the precue.  (5) Find the target.  (6) Click on the 
target.  (7) Prepare for the next trial.

Though a different model was developed for each type of layout (target-only, unlabeled, and 
labeled), the only substantial difference across the various models, aside from the different 
layout configurations, was the “Find the target” substrategy for each layout.  The “Find the 
target” substrategy is at the core of the visual search models, and its development is discussed 
next.

3. VISUAL SEARCH MODELS

After the perceptual and motor parameters discussed in the previous section were established, 
cognitive strategies were developed for each type of layout.  Except in the few instances noted, 
the EPIC architecture was used with no modifications whatsoever.  This practice contributes to 
the long-term goal of developing cognitive architectures and modeling practices that can be used 
to routinely and accurately predict aspects of human performance.

Each layout was presented in a separate block, so participants could plan a unique search 
strategy for each layout before the layout appeared.  Blocking by layout type is critical for 
differentiating and identifying different task strategies.  If layouts are presented in every block 
(as in Byrne, 2001), then the participant has little motivation or opportunity to plan and prepare a 
search strategy unique to that layout, and will need to program eye movements based on stimuli 
presented during the task (local programming) rather than on the anticipated structure of the 
visual layout (global programming).  Models built based on such data might be biased in favor 
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of local over global strategies (as in Byrne, 2001), and may contribute to the conclusion that 
“that there is great power in considering tasks like this as being driven by local rather than global 
strategies.” (Byrne, 2001 #544, p.80.)  Not blocking by unique layout might also reduce features 
in the observed data such as the the space between the curves for different layout sizes, features 
that are useful for identifying differences in visual search strategies.

A different set of cognitive strategies are examined for each layout type--target-only, unlabeled, 
and labeled.  The strategies for unlabeled layouts include 20 to 25 rules; labeled layouts, 25 to 
30.  The exploration through plausible search strategies was guided by previous EPIC models of 
visual search, and by the bracketing heuristic discussed in the introduction.  Roughly 100 hours 
were spent developing the models.

3.1. Target-Only Layout

In the target-only layout, a single target item appears on the screen with no distractors.  To the 
extent that a search involves moving the eyes and looking for the target amidst distractors, there 
is little or no search required for this layout.  The intuitive perception when doing the target-only 
task is that the target suddenly ‘pops out’ in the periphery.  This intuition is supported by the 
fast, constant search times across all thirty positions (an average of 208 ms, which can be seen in 
Figure 4).

The very fast search times allow the target-only task to be used as a sort of lower bracket for all 
layouts.  It is important to correctly predict this base level search time in order to confirm that 
the subsequent models, which will require a more involved search, are starting with a reasonable 
lower bound of processing requirements.

The cognitive strategy used to search the target-only layout was developed primarily based on 
strategies developed in previous models (Hornof & Kieras, 1997; Hornof & Kieras, 1999).  The 
following straightforward strategy was developed: Click on the precue to make the target appear; 
move the mouse to the visual object that appears; click on the target.

Based on previous modeling (Hornof & Kieras, 1999), a CLICK-AND-POINT compound movement 
was simulated.  The CLICK-AND-POINT compound movement allows a POINT movement to be 
prepared at the same time as a PUNCH.  A compound CLICK-AND-POINT movement style is 
appropriate here because the participant knows that they will need to move the mouse as soon as 
they click to make the target appear, even though they do not know where the target will appear.  
A partial POINT movement could be prepared in advance, with the precise direction and extent 
determined after the target appears.  The movement style was implemented by reducing the 
number of POINT features to prepare after a PUNCH from 4 to 1.

The strategy predicts a target-only search time of 275 ms.  Compared to the observed search time 
of 208 ms, the average absolute error (AAE) of the model is 32%.  This is a large error in 
percentage, but not in magnitude (67 ms).  The discrepancy relates to how the manual motor 
processor functions in such a high speed task.  Studying the trace of information in EPIC, it is 
clear that the target is perceived after just 50 ms, and the manual motor response is prompted 
shortly thereafter.  The delay is in manual motor processing, not visual.  As soon as search times 
increase beyond 400 ms, as they do in all other layouts, visual and oculomotor processing 
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dominate, and the problem disappears.  This is an adequate prediction for the target-only layout, 
and an adequate lower bound prediction for this task.

3.2. Unlabeled Layouts

Three sets of models were built to explain the visual search of the unlabeled layouts: purely 
random, purely systematic, and noisy systematic.  Though it is unlikely that people are purely 
random or purely systematic, these two strategies are examined for three reasons: (1) These are 
the two prototypical search strategies proposed and examined in previous visual search studies, 
and models built with each strategy have been very informative (see Card, 1983; Hornof & 
Kieras, 1997; MacGregor & Lee, 1987). (2) Each strategy has its merits as a candidate for a 
priori predictive modeling--random search can be easily incorporated into practical modeling 
tools, and systematic search can leverage a designer’s intuitions of search order.  (3) The two 
strategies lend themselves to bracketing, with random search as the upper bracket, systematic 
search as the lower bracket, and the observed data falling in between.  The third strategy--noisy 
systematic--proposes one possible integration of random and systematic search that homes in on 
the observed data.

Random Search

The first search strategy examined is purely random.  The positive slope in the observed data 
(the serial position effect) suggests a self-terminating, systematically ordered search.  
Nonetheless, a random search strategy is useful to examine first because it can be implemented 
with a minimum of visual features (basically just LOCATION, TEXT, and SIZE) and might be useful 
as a first-guess predictor of search time, or as an upper bound when bracketing.

There are a number of ways to add randomness to a search.  One of the most parsimonious 
approaches, used here, is to randomly select the next item to examine from all of the objects 
outside of the fovea.  In the screen layouts, items were vertically spaced with one item every 0.8° 
of visual angle.  With EPIC’s fovea fixed at 2° of visual angle in diameter, at most three items 
could fit into the fovea simultaneously.  With the TEXT feature only available in the the fovea, 
each fixation could examine the TEXT feature of two or three items simultaneously.

The left frame of Figure 8 shows the search times predicted by the model, averaged across 100 
trials run for each target position for each layout.  The left graph in Figure 8 shows search time 
as a function of the target position, and the right graph shows search time averaged across all 
target positions in a layout.  As can be seen in the graphs, the model is within range of the 
observed data.  In the left graph, the predicted data intersect the observed data for each layout, 
but do not accurately predict the serial position effect (the slope).  The model explains this view 
of the data with an average absolute error (AAE) of 19% and a root mean squared error (RMSE) 
of 529 ms, which is not a good fit.  The rule of thumb applied in this paper is that a model that 
explains the observed data with an AAE that is greater than 10% is not a good fit, an AAE of 
less than 10% is a good fit, and an AAE of less than 5% is a very good fit.
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Figure 8. Unlabeled layout search times observed (solid lines) and predicted 
(dashed lines) by a random search strategy with two or three items fitting in the 
fovea with each fixation.  Though the location-based search times (left graph) are 
not accurately predicted (AAE=19%, RMSE=529 ms), the mean search times of 
the layouts (right graph) are accurately predicted (AAE=6%, RMSE=157 ms).  
The 1-group prediction is directly behind the 1-group observation.

Though the purely random strategy does a poor job of predicting search time as a function of the 
target position, the strategy does a good job of predicting the mean layout search time, in which 
all positions are averaged together.  The good fit is illustrated in the right frame of Figure 8.  
Averaging across all positions in each layout, the AAE is 6% and the RMSE is 157 ms.  It 
appears as if a purely random search strategy combined with the examination of multiple items 
with each fixation does not fully explain how people do the task, but may be useful model for a 
priori predictions of mean layout search times.

Systematic Search

A purely systematic search strategy was examined next.  Alongside a purely random search, this 
is the other prototypical visual search strategy discussed in the literature (Lee & MacGregor, 
1985).  A systematic search should be a good lower bracket for the observed data.  A systematic 
search strategy examines a layout in an efficient and regular order, leaving nothing to chance and 
never examining the same item twice.  Most features necessary to guide the search can be 
extracted directly from the physical representation of the layout.

A top-to-bottom and then left-to-right search order is assumed for the layout, based on (1) the 
physical structure of the layout, in which the precue appears above the top left, and items are 
arranged in three columns with some distance between the columns, and (2) a post-hoc analysis 
of the observed data, which shows a strong serial position effect in this search order.  Figure 9 
shows the search order of the systematic strategy.
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Figure 9.  A systematic and efficient search of an unlabeled six-group layout.  The 
gray circles represent the foveal coverage during successive fixations, and the 
arrows represent the search order.  Each column is scanned with a maximally 
efficient foveal sweep in which each item is captured by the fovea exactly once.

A systematic search that insures every object is examined once requires fixations to be spaced so 
that the foveal coverage of consecutive fixations does not overlap and does not skip over any 
items.  The systematic search uses maximally-efficient foveal sweeps, in which adjacent fixations 
capture every item in the foveal region exactly once, minimizing the number of fixations needed 
to search a layout.

The results of running the systematic search model are shown in Figure 10.  Overall, the model 
does not predict the data well at all.  The AAE is 41% and the RMSE is 1,065 ms.  But there are 
some interesting details that the model gets right.  The model very accurately predicts the search 
time for the 1-group layout, but underpredicts the search time for layouts with two or more 
groups.  The model correctly predicts the slope in the data, but the model does not predict the 
number-of-groups effect.  Because the predictions fall on or below all of the observed data, the 
strategy provides a good lower bracket.

Based on the predictions of the models, random and systematic search each appear to partially 
explain the observed data.  The purely random search model predicts the number-of-groups 
effect and the mean layout search times, but not the serial position effect.  The purely systematic 
search model predicts the serial position effect, but not the number-of-groups effect or the mean 
layout search times.  The next strategy incorporates elements of both strategies and homes in on 
the observed data.

Noisy Systematic Search

The purely random and purely systematic strategies each explain some aspects of the observed 
data, suggesting that people use a strategy somewhere in between the two.  There are many 
possible combinations of random and systematic search that could explain the data.  The noisy 
systematic search strategy is an attempt to introduce random noise into an otherwise systematic 
strategy.  It is difficult, with only the search time data available, to evaluate every assumption in 
the strategy.
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Figure 10.  Unlabeled layout search times predicted by the systematic search 
model when an average of 2.5 items are considered with each fixation.  The 
predictions for the four different layout sizes are superimposed.  This is perhaps 
the optimal search strategy for an unlabeled layout.  The model explains the data 
for the 1-group layout (superimposed with the lowest prediction), but 
underpredicts the data for the other layouts.

The noisy systematic strategy assumes that people will try to search a layout in a regular and 
systematic manner, examining each item exactly once (as shown in figure 9), but that random 
noise will disrupt the process.  Random noise is introduced into the strategy by (1) varying the 
destination of the first saccade and (2) varying the extent of each subsequent saccade.  In the 
systematic search strategy, the next item to fixate was always two- or three-below the currently-
fixated object.  Now the next item to fixate will vary randomly between two-below to seven-
below.  Varying these saccade destinations while maintaining a fovea of 2° of visual angle, 
which means that some items will not be foveated in a visual sweep and will need to be 
examined with additional sweeps.  Once the layout is searched, the search starts again at the 
beginning.

The strategy randomly selects the first fixation location from a set of candidate items, and selects 
subsequent fixation locations from a variety of distances below the current item.  The PPS 
production rules for the strategy are listed in the Appendix.

The noisy systematic strategy integrates both local and global programming of eye movements.  
It is local in that the parameters for the next saccade are programmed based on decisions made 
during the current fixation.  It is global in that the only alternatives that are considered are those 
that are part of the structure of the layout and the task at hand, which do not change during the 
task execution.  This interleaving is consistent with integrated theories of local and global 
search, such as Cohen’s (1981) hypothesis that people use schemata that are influenced by 
perceptual features.

The strategy is parsimonious in that it varies only two parameters--the set items considered for 
the first fixation, and the set of distances considered for subsequent fixations.  Eighty-four 
versions of the strategy were written independently varying each parameter.  Across different 
models, the first fixation varied among positions: 12, 123, 1234, 12345, 23, 234, and 2345.  
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Across different models, subsequent fixation distances were varied among items that were the 
following distances below the current fixation: 23, 34, 45, 56, 234, 345, 456, 2345, 3456, 4567, 
23456, 34567.  Each position and saccade distance was chosen with equal probability.  Each 
strategy was run in EPIC, and all of the predictions were compared to the observed data.  Figure 
11 shows a noisy systematic search that starts in Position 1, and in which subsequent fixations 
are three to seven items below the previous item.

Figure 11. EPIC’s visual space during a noisy systematic search of an unlabeled 
6-group layout.  The target is in Position 22, near the top of the third column.  If 
the fovea had missed the target on this sweep, it would have picked it up on a 
subsequent sweep.

All of the models assume a purely random search when there is only one group in the layout.  A 
purely systematic search strategy could just as easily have been assumed.  As could be seen in 
Figures 8 and 10, both explain the search times for the 1-group layout very well.  With either 
strategy, all items are usually examined within two or three saccades.

Figure 12 shows the noisy systematic model’s prediction when run with saccade distributions 
that provide the best fit with the observed data.  The first fixation is equally distributed among 
items 1234&5 and subsequent fixations are equally distributed among items 456&7 items below 
the currently-fixated item.  The model accounts for all primary features in the observed data, 
including the group size effect.  Across all eighty-four combinations of fixation settings that 
were evaluated, the best-fitting models tended to be those with subsequent saccade distances of 
45&6, 456&7, and 3456&7.  The initial fixation location did not affect the prediction as much as 
the subsequent saccade distances.

The noisy systematic model represents a parsimonious explanation of how random and 
systematic search could be integrated within the same strategy.  The model also fits with the 
intuitive perception that a person sometimes misses the target on the first pass, and finds it on a 
subsequent pass.  The model demonstrates how not fixating every word may lead to a more 
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efficient search, but might lead to a strategy in which people try to pick up more items than 
possible with a fixation, and sometimes miss items, thus introducing random noise into an 
otherwise systematic search.  The modeling has led to a plausible explanation of how random 
and systematic search can be integrated into a single strategy when searching layouts that are not 
organized with a clear and useful visual hierarchy.  
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Figure 12. Unlabeled layout search times predicted by the noisy systematic 
search strategy with the saccade distributions that best explain the data.  Initial 
fixations were distributed among positions 1234&5 and subsequent fixations 
among items 456&7 below.  The model predicts the data with an AAE of 6.0% 
and a RMSE of 171 ms.

3.3. Labeled Layouts

Three sets of models were built to explain the visual search of the labeled layouts:  random 
group-label search, systematic group-label search, and mixed group-label search.  Task analysis 
and the observed search time data suggest that participants used the group labels when searching 
the labeled layouts.  The search was likely two-tiered: first search the group labels first, and then 
search within the target group.  All three strategies discussed here assume a two-tiered search.

The bracketing heuristic was again applied to the development of the models.  The purely 
random search strategy for unlabeled layouts, with the predictions shown in Figure 8, might be 
considered an extreme upper bracket, predicting search times much higher than those observed 
for labeled layouts.  A more plausible upper bracket strategy might be a random search of the 
group labels until the target group is found, and then a search within the target group.  A good 
candidate for a lower bracket might be a systematic search of group labels followed by a search 
within the target group.

Random Group-Label Search

PPS production rules were written to represent a random group-label search followed by a 
random search within the target group (though a systematic search within the target group would 
perform roughly the same).  Figure 13 shows the search time results after running the model for 
100 trials per target position.  Overall, the model does not predict the observed data very well, 
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with an AAE of 35% and a RMSE of 605 ms.  The model accurately predicts a faster search than 
the models for the unlabeled layouts, but overpredicts the observed data.  The model does not 
predict the position effect, which suggests that people search the groups in a top-left to bottom-
right order.  Instead, the predicted slope is roughly zero.  The model also overpredicts the 
number-of-groups effect--there is too much space between the curves.  The strategy provides a 
good upper bracket for the modeling process.
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Figure 13. Labeled layout search times predicted by a random group-label search 
strategy model, with two or three items fitting in the fovea with each fixation.  The 
reduced layout-size effect is promising, but overall the model explains the data 
very poorly , with an AAE of 35% and a RMSE of 605 ms.

Systematic Group-Label Search

The next two-tiered strategy systematically searches labels until the target group is found, and 
then systematically searches within the target group (though a random within-group search 
would perform roughly the same).  This is somewhat analogous to the purely systematic search 
strategy used for unlabeled layouts, except that it utilizes the visual hierarchy.  It is anticipated 
that the strategy will provide a good lower bracket, consistently predicting search times faster 
than those observed.  An outline of the PPS production rules written for the hierarchical 
systematic group-label search strategy are listed in the Appendix.

Figure 14 shows EPIC’s visual space during one trial of the systematic group-label search 
model.  The model predicts the data rather well, with an AAE of 9.4%, but has a slightly larger 
slope than that in the observed data, and slightly overpredicts the search times for positions 16 
through 30.  The overprediction is troubling because this would seem to be the optimal strategy 
for a labeled layout and yet people accomplish the task faster than the model.  The first version 
of the strategy does not provide a good lower bracket.
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Figure 14. EPIC’s eye movements during a systematic group-label search of a 
labeled 6-group layout.  First the group labels are searched systematically, then 
the items within the target group.  The target is in Position 28 near the bottom of 
the third column.

The model was scrutinized for further opportunities to streamline for efficiency.  Two additional 
opportunities were found to speed the visual search.  The first was to assume that the group 
labels would be recognized based on their SHAPE rather than their TEXT.  The SHAPE feature arrives 
in the visual WM roughly 100 ms before the TEXT feature.  Since there is only one character that 
must be examined in each group label, perhaps the additional TEXT processing time is not 
required.

The second speedup was achieved by streamlining or “flattening” the rules to produce an 
optimal compilation of production rules, as in Anderson (1982).  Specifically, the step TARGET-IS-
LOCATED-SO-STOP-SCANNING was combined with the step SCANNING-IS-STOPPED-MOVE-GAZE-AND-CURSOR-
TO-TARGET, and the saccade-generating steps were given extra conditions to only continue 
searching if the target were not yet found.  Removing this extra search-stopping step effectively 
combines two parallel threads of cognitive processing into one.  Previously, one thread moved 
the eyes while the other waited for the target to appear.  Combining or “flattening” these two 
threads reduces each of the two searches (group label search and within-group search) by 
roughly 50 ms.

The model is now a streamlined systematic group-label search model.  The Appendix shows an 
outline of the production rules rules, and the code for a few of the rules.  Figure 15 shows the 
results of running the model for 20 trials per position.  The model provides a good fit with the 
observed data, for an AAE of 7.1%  and a RMSE of 122 ms.  The model does not seriously over-
predict any of the data.  Now that the strategy executes as quickly as possible, the model 
explains the data reasonably well.
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Figure 15.  Labeled layout search times predicted by the streamlined systematic 
group-label search strategy model.  The model explains the observed data rather 
well, with an AAE of 7.1% and a RMSE of 122 ms.

It appears as if participants searched labeled layouts more systematically than unlabeled layouts, 
and in a highly streamlined manner.  Interestingly, the model does not provide a great lower 
bracket because it predicts the observed data so well.  Evidently, participants adopted a near-
optimal search strategy.

It would be reasonable to end the search for the best-fitting strategy here.  However, the AAE is 
not below the 5%, which was the stated goal in this modeling exercise.  As well, there is a slight 
number-of-groups effect in the observed data (the space between the curves) that is not predicted 
by the model.  One additional strategy will be examined to explain this number-of-groups effect.

Mixed Group-Label Search

A final hybrid strategy assumes an mixed random and systematic search of the group labels 
(systematic 75% of the time, and random 25% of the time), and a systematic search within the 
target group.  The mixed group-label search model was simulated by taking a weighted average 
of the predictions made by the streamlined systematic group-label search model and an 
equivalently streamlined random group-label search model.  After trying all possible weightings 
of the two sets of predictions (using every 1-percent increment), it was found that a weighted 
average of 75% systematic and 25% random fit the observed data best.  Figure 16 shows the 
predictions of the model, which accounts for all of the features in the observed data and explains 
the observed data with an AAE of 3.6% and a RMSE of 61 ms.

There are many possible interpretations as to why 75% systematic search and 25% random 
search predicts the data.  One is simply that on some trials or saccades, people will follow a 
pattern determined completely in advance, and on some trials or saccades, people will add 
random variations to try to improve performance, and that the characteristics of this 
experimental design and participant selection resulted in these percentages.
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Figure 16.  Labeled layout search times predicted by the hierarchical mixed-
systematic search strategy.  The first-tier search of labels is 75% systematic and 
25% random.  The second-tier search within the target group is systematic.  The 
model explains the data very well, with an AAE of 3.6% and a RMSE of 61 ms.

The good fit suggests that participants (1) almost always examined the group labels first, (2) 
conducted a highly efficient almost-perfect streamlined search, and (3) usually searched the 
group labels systematically in the order assumed here, but sometimes used a slightly different 
order, perhaps searching from left to right across the top and then right to left across the bottom.  
A more sophisticated model could be developed in which the labels are searched in such orders 
within a single strategy, but for now the major claims of the model are adequately supported by 
the mixed model, and no further strategies are examined.  

4. DISCUSSION

The models presented in this paper identify aspects of visual-perceptual, strategic, and 
oculomotor processing that can be incorporated in exploratory and predictive models of visual 
search for a variety of layouts.  The models tell an interesting and detailed story about how 
people search.

For unlabeled layouts, it appears as if people consider more than one item per fixation.  Neither 
an all random nor an all systematic strategy accounts for every aspect of the data, though an all 
random strategy may be useful for predicting mean layout search times when there is no clear 
visual hierarchy to direct the search.  The noisy systematic strategy provides one possible 
explanation for how noise or randomness might enter an otherwise systematic search.

For labeled layouts, it appears as if people adopt a fundamentally different, multitiered, more 
efficient and systematic strategy.  It appears as if people can focus on one level of the hierarchy 
at a time, and that they will follow roughly the same search order at the top level, but that there is 
also some variability in that order.

4.1. Implications for Design

The models have immediate and practical applications for design.  The models demonstrate how 
a clearly organized and useful hierarchical layout can motivate a highly-efficient two-tiered 
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search.  Designers can leverage this by using clear, concise, peripherally salient, and mutually-
exclusive group labels.  For high-traffic web sites, it would be a good idea to user-test group 
labels for their effectiveness.  As suggested by Mullet (1995, p.94), grouping similar items 
together and imposing a high-level structure will help the user to establish a strategy for moving 
their eyes to the relevant part of the display.

The models demonstrate why a screen layout with a large number of items to choose from will 
not necessarily result in a long search time.  If the layout is well-organized, search times will not 
increase dramatically as the number of items on the screen increases.  Well-structured layouts 
may be searched in a predictable manner, giving designers control over search order.  These 
models demonstrate the fallacy of screen layout guidelines that set arbitrary limits to screen 
density, such as those proposed in Galitz (1996), and helps to explain why a densely packed 
screen is sometime preferable (Staggers, 1993).

4.2. Implications for Predictive Modeling

The models provide useful insight for predictive modeling, and may be immediately useful in 
tools such as in Apex (John, Vera, Matessa, Freed & Remington, 2002) and GLEAN (Kieras, 
Wood, Abotel & Hornof, 1995).  These tools simulate at the keystroke level and do not include 
models of visual search.  The models account for hierarchical search better than tools built to 
predict visual search, such as Lohse’s (1993) Understanding Cognitive Information Engineering 
(UCIE) and Tullis’ (1988) Display Analysis Program (DAP).

Neither UCIE nor DAP will automatically predict that a visual hierarchy decreases search time.  
UCIE incorporates strategies, but not specifically for hierarchical layouts.  DAP does not 
incorporate strategies, but instead predicts search times based on grouping, density, and layout 
complexity, and does not predict a faster search for a hierarchical layout.  Nonetheless, DAP is 
still the only empirically-validated self-contained tool for predicting visual search times, and 
provides a good benchmark for evaluating visual search models.

The screen layouts used in this experiment were converted into the 25¥80 alphanumeric 
screenshots required by DAP, and input into the tool.  Figure 17 (left frame) shows the mean 
search time observed for each layout, and DAP’s predictions for each layout.  As can be seen, 
DAP predicts the upper bound of the observed search times, but not the dramatic speed 
improvements observed with smaller layouts and labeled layouts.  Note that this view of the 
data--search time as a function of layout size rather than target position--is different from that in 
the previous graphs.

Figure 17 (right frame) shows the mean layout search times predicted by the preliminary models 
proposed for each layout discussed in this paper.  These are not the final best-fitting models, but 
rather the good-fitting models with strategies that could be easily reused for other, similar tasks.  
Each explains the mean layout search time very well.  Random search (RS) explains unlabeled 
layouts.  Systematic group-label search (SGS) search explains labeled layouts.  Target-only (TS) 
search explains the target-only layout.
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Figure 17. Mean layout search time as a function of the number of items in the 
layout, for all layout types (unlabeled, labeled, target-only).  The observed data 
are the same in both graphs.  The left graph shows the search times predicted by 
Tullis’ Display Analysis Program (DAP).  The right graph shows the search times 
predicted by three EPIC models: purely random search (RS), systematic group-
label search (SGS), and target-only search (TS).

When comparing the two sets of predictions in Figure 17, any criticism of DAP must be 
tempered by the fact that the DAP models are a priori predictive, whereas the EPIC models are 
post hoc explanatory.  But the take-home message is clear:  In order to predict that labeled 
layouts will speed visual search, a model needs to incorporate some form of a visual search 
strategy--the plan that is used to find a target given details of the task and layout.  Visual search 
strategies are an integral part of UCIE as well as the menu selection models built by Anderson, 
Matessa and Lebiere (1997), Byrne (2001), and Hornof and Kieras (1997; 1999).  Group labels 
are a small and subtle modification to the physical layout, but they can trigger a fundamentally 
different strategy.

The models presented here improve over previous flowchart models (Norman, 1991, Chapter 4) 
and mathematical models (such as MacGregor & Lee, 1987) of menu search by more precisely 
defining the perceptual, cognitive, and motor processes involved, and by simulating the 
interactions among these processes.  This precision allowed earlier EPIC models (Hornof & 
Kieras, 1997) to demonstrate that the serial processing assumption in the Norman flowchart 
models is not plausible.

4.3. Reusable Cognitive Strategies

The EPIC models presented here predict the search times better than DAP largely because the 
EPIC models incorporate central cognitive strategies.  Reusable cognitive strategies will be an 
important component for a predictive visual search analysis tool.  The production rules used in 
the models here are themselves derived from those developed for searching pull-down menus of 
single numerical digits (Hornof, 1999; Hornof & Kieras, 1997).  With the modeling work here, 
the production rules have further matured as a general-purpose reusable set of production rules 
for visual search, and have perhaps gotten closer to the general cognitive strategy that people 
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really use.

The target-only strategy can be used to predict visual acquisition of a single item that appears 
suddenly on the screen, and can also be used to find items that “pop-out” (Treisman, 1986).  For 
the latter, the model would simply be modified so that, instead of looking for the onset, the 
strategy looks for a peripherally salient feature such as color.

The purely random search strategy, with parallel consideration of adjacent items, is a good first-
cut search model for predicting mean layout search time for unhierarchical layouts.  This is 
consistent with Neisser’s (1963) simple search model that predicts that response time will 
increase linearly as a function of the total number of objects that must be examined.

The noisy systematic strategy is useful for predicting search times to different regions of an 
unhierarchical layout.  The strategy may also be useful for predicting visual search when there 
are many items in a single level of a hierarchical display.  For example, if the groups here were 
much larger, a noisy systematic search should probably be used for the within-group search.  The 
noisy systematic search strategy provides a different integration of random and systematic search 
than was earlier proposed by Hornof and Kieras (1997) and by Hornof (1999), but supports the 
main point of the earlier models which is that human search behavior can be characterized by 
some sort of combination of random and systematic search.

Cognitive strategies in predictive tools need to incorporate both local and global programming of 
eye movements.  Here, global programming kept the eyes on the group labels until the target 
group was found, but local programming decided exactly which item to fixate next.  The models 
suggest that global programming of eye movements is necessary for a predictive model, though 
it as been suggested that local programming is sufficient (Byrne, 2001).

4.4. Visual Perceptual Parameters

The visual-perceptual parameters used here continue to be useful for modeling visual search 
tasks.  Previous assumptions appear to hold, including the assumption that people consider 
multiple adjacent items with a single fixation (Hornof, 1999; Hornof & Kieras, 1997).

This research contributes to the practice of predictive modeling by converting visual objects into 
visual working memory objects as directly as possible, using the encoding parameters listed in 
Section 2.2.  This explicit listing of these parameters in is provided in part for the benefit of 
researchers who are working on the front end of the process--tools that take screenshots of 
graphical user interfaces as input, automatically parse the screenshot, and generate visual objects 
that can be fed directly into a cognitive model (Ritter et al., 2000; Ritter & Young, 2001; 
St.!Amant & Riedl, 2001).

It remains an open question whether people miss items simply because the items fall too far from 
the fovea and people cannot perceive them, as in the model here, or whether there is a processing 
limit on the number of items that can be perceived with a single fixation regardless of whether 
the items appear in the fovea.  Sperling (1960) found a “span of apprehension” of about four 
items per fixation, but this was found studying single fixations.  Perhaps the number of objects 
that can be examined with a single fixation further decreases in the course of a rapid sequence of 

28



saccades, such as when conducting a visual search.  Perhaps the four slots in visual working 
memory (Cowan, 2000; Vogel, Woodman & Luck, 2001) or four visual indexes (Pylyshyn, 
2001) are sometimes occupied with processing a previous fixation even though the eyes have 
moved on to a new location, and few if any slots are available for processing anything new.

Eye tracking analyses of the current experiment will help to evaluate these questions, as well as 
other assumptions of the models.  Note that, in the two best-fitting noisy systematic models, 
subsequent saccade distances are on average about five items below the current item.  This 
means that on average there would be about one fixation per group, with multiple passes of the 
layout starting from the top left and going down each column.  It should be relatively 
straightforward to determine, based on eye movement data, whether people exhibit this precise 
pattern, or whether the integration of random and systematic search needs to be further refined.

4.5. Developing the Architectures

Though this research demonstrates the viability of EPIC, it also identifies potential 
improvements to the architecture.  In order to account for the target-only search times, it appears 
as if EPIC needs a more complex PUNCH-AND-POINT compound motor program.  It appears as if the 
architectures should support the full preparation of the POINT subprogram even before the POINT 
distance is known, finalizing the distance during the POINT.  Any architecture that inherit EPIC’s 
motor modules, such as ACT-R/PM, will have the same issues.

EPIC’s fovea is currently fixed at 2° of visual angle.  It has been proposed that EPIC should vary 
the size of its fovea when items are spaced more widely apart in order to accurately represent 
how visual acuity gradually decreases as a function of the distance from the center of the gaze 
(Nilsen & Evans, 1999).  This was not done here in part because this recommendation was made 
based on screen layouts less dense that those used here.  The author is, however, currently 
examining the issue of how many items can be perceived in parallel as a function of item 
proximity and other visual features, and how to incorporate these details into the models.

It may also be appropriate to impose a limit on the number of items that can be perceived in 
parallel, in line with the evolving research on the limitations of visual working memory.  These 
modifications to the architecture would permit a richer set of noisy systematic models to be 
developed, as may be necessary to explain the eye movement data for this task, which is also a 
current research endeavor of the author.

5. CONCLUSION

This article provides numerous applied and theoretical contributions with respect to predictive 
modeling of human-computer visual tasks, model-based evaluation of computer interfaces, 
interface design and analysis, integrated and unified theories of visual search, and the 
development of cognitive architectures.

The ultimate promise for cognitive modeling in human-computer interaction is that it provides 
the science base needed for predictive analysis tools and methodologies.  It will be evident that 
the practice has arrived in the predictive phase when the methodology is as well-defined as 
NGOMSL (John & Kieras, 1996), can be taught in a short-course, is routinely applied to real-
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world engineering problems with automated predictive tools, is routinely validated with human 
data collected after the model is built.  Until then, further exploratory modeling will be 
conducted. The cognitive models presented in this article build on the growing body of modeling 
research, and contribute to exploratory and predictive cognitive modeling.
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APPENDIX

This Appendix lists the production rules for three of the visual search strategies discussed in this 
article: noisy systematic search; systematic group-label search; and streamlined systematic 
group-label search.  First, the names of the rules for noisy systematic search are organized 
around the seven substrategies involved in completing the task.  Second, the full source code is 
shown for three rules central to the strategy.  Third, the names of the rules for systematic group 
label search are shown, before and after the strategy is streamlined.  Fourth, the code is shown 
for three rules in the streamlined strategy.

Noisy Systematic Search Strategy

The names of all rules in the noisy systematic search strategy are listed here, organized within 
the seven subtasks.  The three rules marked with an * are listed in full after the outline.

1. Memorize the precue.
CHOICE-START
START-CURSOR-TRACKING

2. Memorize the precue.
GET-THE-PRECUE-BUT-NOT-THE-GROUP-LABEL
LOOK-AT-AND-MOVE-CURSOR-TO-PRECUE
MEMORIZE-PRECUE

3. Prepare for the search.
IDENTIFY-POSSIBLE-FIRST-SACCADE-LOCATIONS--UNLABELED *
GET-SET

4. Click on the precue.
CLICK-ON-PRECUE-TO-SHOW-LAYOUT
PREPARE-POINT

5. Find the target.
FIRST-SACCADE-TO-NAMED-OBJECT-LOCATION--UNLABELED-LAYOUTS
REMOVE-FIRST-SACCADE-LOCATIONS-FROM-WM--UNLABELED-LAYOUTS
CREATE-COLLECTION-OF-POSSIBLE-NEXT-SWEEP-ITEMS--FIRST-FIXATION-LOCATION
CREATE-COLLECTION-OF-POSSIBLE-NEXT-SWEEP-ITEMS--FIRST-FIXATION-LOCATION--SMALL-LAYOUT
CREATE-COLLECTION-OF-POSSIBLE-NEXT-SWEEP-ITEMS *
SACCADE-TO-RANDOMLY-CHOSEN-NEXT-SWEEP-OBJECT--UNLABELED-LAYOUTS *
REMOVE-ALL-NEXT-SWEEP-ITEMS-FROM-WM

6. Click on the target.
TARGET-IS-LOCATED-SO-STOP-SCANNING-AND-MOVE-GAZE-AND-CURSOR-TO-TARGET
PREPARE-TO-PUNCH-MOUSE-BUTTON-ON-TARGET
PUNCH-MOUSE-BUTTON-ON-TARGET

7. Remove used items from WM.  There are a few other similar rules not listed here.
CLEANUP-TARGET-OBJECT
CLEANUP-CURRENT-ITEM
CLEANUP-WM-POSSIBLE-NEXT-SWEEP-ITEMS

In the best-fitting version of the strategy, the first five menu items are considered as possible 
candidates.  The source code for this version of the rule is as follows.  The comments after 
semicolons explain how the rule works.
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(IDENTIFY-POSSIBLE-FIRST-SACCADE-LOCATIONS--UNLABELED
;; Identify possible first-saccade locations.

IF
((GOAL DO VISUAL SEARCH TASK)
 (STRATEGY DO NOT USE GROUP LABELS)
 (STEP PREPARE SACCADE TO FIRST LOCATION)
 (MOTOR OCULAR PROCESSOR FREE))

THEN
((DELDB (STEP PREPARE SACCADE TO FIRST LOCATION))
 (ADDDB (STEP GET SET))
 ;; The first five items are candidates for the first saccade.
 (ADDDB (WM ITEM-LOCATION-1 IS POSSIBLE FIRST FIXATION LOCATION))
 (ADDDB (WM ITEM-LOCATION-2 IS POSSIBLE FIRST FIXATION LOCATION))
 (ADDDB (WM ITEM-LOCATION-3 IS POSSIBLE FIRST FIXATION LOCATION))
 (ADDDB (WM ITEM-LOCATION-4 IS POSSIBLE FIRST FIXATION LOCATION))
 (ADDDB (WM ITEM-LOCATION-5 IS POSSIBLE FIRST FIXATION LOCATION))))

After this rules fires, the rule FIRST-SACCADE-TO-NAMED-OBJECT-LOCATION--UNLABELED-LAYOUTS 
randomly selects a destination and commands the eyes to move there.  The next two rules fire 
repeatedly during the search.  A set of saccade destinations are proposed, and one is randomly 
chosen.  This version of the strategy repeatedly considers the four items that four, five, six, and 
seven items below the currently fixated object.

(CREATE-COLLECTION-OF-POSSIBLE-NEXT-SWEEP-ITEMS
;; Take the items that are n-below the current object, and create WM items for them.

IF
;; Searching an unlabeled layout
((GOAL DO VISUAL SEARCH TASK)
 (STRATEGY DO NOT USE GROUP LABELS)
 (STEP VISUAL SEARCH)
 (NOT (WM TARGET IS FOUND))
 ;; The layout has not just appeared
 (NOT (WM CURRENT-ITEM IS FIRST-FIXATION-LOCATION))
 ;; No next-sweep-item candidates are currently in WM.
 (NOT (WM ??? IS POSSIBLE NEXT-SACCADE-ITEM))
 ;; Only fire this rule if the target has not yet been found.
 (WM TARGET-TEXT IS ?TEXT)
 (NOT (VISUAL ?TARGET-OBJECT OBJECT-TYPE LAYOUT-ITEM)   ;; The conjunction is negated.
      (VISUAL ?TARGET-OBJECT LABEL ?TEXT))
 ;; Get the objects that are n-below the current object.
 (WM CURRENT-ITEM IS ?CURRENT-OBJECT)
 (VISUAL ?CURRENT-OBJECT IS-FOUR-ABOVE ?FOUR-BELOW)
 (VISUAL ?CURRENT-OBJECT IS-FIVE-ABOVE ?FIVE-BELOW)
 (VISUAL ?CURRENT-OBJECT IS-SIX-ABOVE ?SIX-BELOW)
 (VISUAL ?CURRENT-OBJECT IS-SEVEN-ABOVE ?SEVEN-BELOW))

THEN
;; Put the items into WM as next-sweep-item candidates.
((ADDDB (WM ?FOUR-BELOW IS POSSIBLE NEXT-SACCADE-ITEM))
 (ADDDB (WM ?FIVE-BELOW IS POSSIBLE NEXT-SACCADE-ITEM))
 (ADDDB (WM ?SIX-BELOW IS POSSIBLE NEXT-SACCADE-ITEM))
 (ADDDB (WM ?SEVEN-BELOW IS POSSIBLE NEXT-SACCADE-ITEM))))

(SACCADE-TO-RANDOMLY-CHOSEN-NEXT-SWEEP-OBJECT--UNLABELED-LAYOUTS
;; Randomly select one of the possible next-sweep-items in WM, and move
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;;   the eyes to that item.  Delete all of the remaining WM items.

IF
;; Searching an unlabeled layout
((GOAL DO VISUAL SEARCH TASK)
 (STRATEGY DO NOT USE GROUP LABELS)
 (STEP VISUAL SEARCH)
 (NOT (WM TARGET IS FOUND))
 ;; Only fire this rule if the target has not yet been found.
 (WM TARGET-TEXT IS ?TEXT)
 (NOT (VISUAL ?OBJECT OBJECT-TYPE LAYOUT-ITEM)   ;; The conjunction is negated.
      (VISUAL ?OBJECT LABEL ?TEXT))
 ;; Choose one of the next-sweep-item candidates currently in WM.
 (WM ?NEXT-OBJECT IS POSSIBLE NEXT-SACCADE-ITEM)
 (RANDOMLY-CHOOSE-ONE ?NEXT-OBJECT)
 ;; Make sure the eye has landed on the current object.
 (WM CURRENT-ITEM IS ?CURRENT-OBJECT)
 (VISUAL ?CURRENT-OBJECT FOVEA YES)
 (MOTOR OCULAR MODALITY FREE))

THEN
((DELDB (WM CURRENT-ITEM IS ?CURRENT-OBJECT))
 (ADDDB (WM CURRENT-ITEM IS ?NEXT-OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?NEXT-OBJECT)))

Systematic Group-Label Search Strategy

The rules for the systematic group-label search strategy are almost identical to those written for 
the noisy systematic strategy, above, except for Substrategy #5 “Find the Target.”  For searching 
labeled layouts, this substrategy is expanded into two, one for finding the group, and one for 
finding the target in the group.  The rules include:

5a. Find the target group with a systematic search of the group labels.
FIRST-SACCADE-TO-GROUP-LABEL-LOCATION
IDENTIFY-THE-FIRST-CURRENT-GAZE-ITEM
SACCADE-TO-THE-NEXT-GROUP-LABEL-IN-ORDER
TARGET-GROUP-IS-FOUND

5b. Find the target with a systematic search in the group.
START-SYSTEMATIC-SEARCH-IN-TARGET-GROUP
SACCADE-TO-NEXT-SWEEP-ITEM-DOWN-IN-TARGET-GROUP
TARGET-IS-LOCATED-SO-STOP-SCANNING

6. Click on the target.
SCANNING-IS-STOPPED-MOVE-GAZE-AND-CURSOR-TO-TARGET
PREPARE-TO-PUNCH-MOUSE-BUTTON-ON-TARGET
PUNCH-MOUSE-BUTTON-ON-TARGET

The PPS production rules for the streamlined  systematic group-label search are listed next.  In 
this strategy, the two rules for identifying the target group and starting the within-group search 
are combined into one, as are the two rules for identifying the target and moving the cursor to it.  
The full source code for the rules marked with an * are listed after the outline.

5a. Find the target group with a systematic search of the group labels.
FIRST-SACCADE-TO-GROUP-LABEL-LOCATION
FIRST-SACCADE-TO-THE-NEXT-GROUP-LABEL-AFTER-LAYOUT-APPEARS
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SACCADE-TO-THE-NEXT-GROUP-LABEL-IN-ORDER *
5b. Find the target with a systematic search in the group.

TARGET-GROUP-IS-FOUND--START-SYSTEMATIC-SEARCH-IN-TARGET-GROUP *
SACCADE-TO-NEXT-SWEEP-ITEM-DOWN-IN-TARGET-GROUP

6. Click on the target.
TARGET-IS-LOCATED-SO-STOP-SCANNING-AND-MOVE-GAZE-AND-CURSOR-TO-TARGET *
PREPARE-TO-PUNCH-MOUSE-BUTTON-ON-TARGET
PUNCH-MOUSE-BUTTON-ON-TARGET

The following rule moves the eyes from label to label using the NEXT-GROUP property.

(SACCADE-TO-THE-NEXT-GROUP-LABEL-IN-ORDER
;; Move from group to group based on the NEXT-GROUP feature

IF
((GOAL DO VISUAL SEARCH TASK)
 (STRATEGY USE GROUP LABELS)
 (STEP VISUAL SEARCH)
 (NOT (WM TARGET GROUP IS FOUND))
 (VISUAL ?CURRENT-OBJECT OBJECT-TYPE GROUP-LABEL)
 (VISUAL ?CURRENT-OBJECT NEXT-GROUP ?NEXT-GROUP-POSITION)
 ;; Identify the next group label to which the eyes will be moved.
 (VISUAL ?NEXT-OBJECT OBJECT-TYPE GROUP-LABEL)
 (VISUAL ?NEXT-OBJECT GROUP-POSITION ?NEXT-GROUP-POSITION)
 ;; The next group label object is different from the current.
 ;; Also makes sure rule doesn't fire when CURRENT-ITEM IS FIRST-FIXATION-LOCATION.
 (WM CURRENT-ITEM IS ?CURRENT-OBJECT)
 (DIFFERENT ?CURRENT-OBJECT ?NEXT-OBJECT)
 ;; The target-group-label object has not yet been identified.
 (WM TARGET GROUP LABEL IS ?TEXT)
 (NOT (VISUAL ?OBJECT SHAPE ?TEXT))
 (MOTOR OCULAR MODALITY FREE))

THEN
((DELDB (WM CURRENT-ITEM IS ?CURRENT-OBJECT))
 (ADDDB (WM CURRENT-ITEM IS ?NEXT-OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?NEXT-OBJECT)))

In the following rule, the target group is found and the within-group search is immediately 
started.

(TARGET-GROUP-IS-FOUND--START-SYSTEMATIC-SEARCH-IN-TARGET-GROUP
;; The target group label has been found.
;; Focus the rest of the search in that group.

IF
((GOAL DO VISUAL SEARCH TASK)
 (STRATEGY USE GROUP LABELS)
 (STEP VISUAL SEARCH)
 (NOT (WM TARGET GROUP IS FOUND))
 (NOT (WM TARGET IS FOUND))
 ;; The target-group-label object has been identified.
 (WM TARGET GROUP LABEL IS ?TEXT)
 (VISUAL ?OBJECT SHAPE ?TEXT)
 (VISUAL ?OBJECT GROUP-POSITION ?POSITION)
 ;; Don't respond to the precue.
 (NOT (VISUAL ?OBJECT OBJECT-TYPE PRECUE))
 ;; Randomly choose one of the top objects in the group to start the sweep.
 (VISUAL ?NEXT-OBJECT NEAR-TOP-IN-GROUP ?POSITION)
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 (RANDOMLY-CHOOSE-ONE ?NEXT-OBJECT)
 ;; Just so we can delete it
 (WM CURRENT-ITEM IS ?LAST-OBJECT)
 (MOTOR OCULAR MODALITY FREE))

THEN
((DELDB (WM CURRENT-ITEM IS ?LAST-OBJECT))
 (ADDDB (WM CURRENT-ITEM IS ?NEXT-OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?NEXT-OBJECT)
 (ADDDB (WM TARGET GROUP IS FOUND))
 (ADDDB (WM TARGET-GROUP-POSITION IS ?POSITION))))

In the following rule, the target is found, and the eye and mouse movements to the target are 
initiated.

(TARGET-IS-LOCATED-SO-STOP-SCANNING-AND-MOVE-GAZE-AND-CURSOR-TO-TARGET

IF
((GOAL DO VISUAL SEARCH TASK)
 (STEP VISUAL SEARCH)
 (NOT (WM TARGET IS FOUND))                  ;; Target is not found yet.
 ;; The target is found.
 (WM TARGET-TEXT IS ?T)
 (VISUAL ?TARGET-OBJECT LABEL ?T)
 (VISUAL ?TARGET-OBJECT OBJECT-TYPE LAYOUT-ITEM)   ;; Don't react to the precue!
 (MOTOR OCULAR PROCESSOR FREE)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE))

THEN
((DELDB (STEP VISUAL SEARCH))
 (ADDDB (STEP PREPARE TO PUNCH MOUSE BUTTON ON TARGET))
 (ADDDB (WM TARGET IS FOUND))
 (ADDDB (WM TARGET-OBJECT IS ?TARGET-OBJECT))  ;; Needed for PUNCH below
 (SEND-TO-MOTOR OCULAR MOVE ?TARGET-OBJECT)
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)))

35



REFERENCES
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369-406.

Anderson, J. R., & Lebiere, C. (Eds.). (1998). The Atomic Components of Thought. Mahwah, NJ: 
Erlbaum.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition 
and its relation to visual attention. Human-Computer Interaction, 12(4), 439-462.

Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226, 177-178.

Brogan, D., Gale, A., & Carr, K. (Eds.). (1993). Visual Search 2. London: Taylor and Francis 
Ltd.

Byrne, M. D. (2001). ACT-R/PM and menu selection: Applying a cognitive architecture to HCI. 
International Journal of Human-Computer Studies, 55, 41-84.

Card, S. K. (1983). Visual search of computer command menus. In H. Bouma & D. G. Bouwhuis 
(Eds.), Attention and Performance X:  Control of Language Processes. London: Lawrence 
Erlbaum Associates, 97-108.

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer 
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Cohen, K. M. (1981). The development of strategies of visual search. In D. F. Fisher, R. A. 
Monty, & J. W. Senders (Eds.), Eye movements, Cognition, and Visual Perception. Hillsdale, NJ: 
Lawrence Erlbaum Associates, 271-288.

Covrigaru, A., & Kieras, D. E. (1987). PPS: A Parsimonious Production System. (Tech. Rep. 
No. 26, TR-87/ONR-26). Ann Arbor: University of Michigan Technical Communication 
Program.

Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental 
storage capacity. Behavioral and Brain Sciences, 24, 87–185.

Ehret, B. (2002). Learning where to look: Location learning in graphical user interfaces. 
Proceedings of ACM CHI 2002: Conference on Human Factors in Computing Systems, New 
York: ACM, 211-218.

Findlay, J. M., & Gilchrist, I. D. (1998). Eye guidance and visual search. In G. Underwood (Ed.), 
Eye Guidance in Reading and Scene Perception. Amsterdam: Elsevier, 295-312.

Galitz, W. O. (1996). The Essential Guide to User Interface Design: An Introduction to GUI 
Design Principles and Techniques. New York: John Wiley & Sons.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: An introduction to 
microstrategies and to their use in describing and predicting interactive behavior. Journal of 
Experimental Psychology: Applied, 6(4), 322-335.

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a GOMS 
analysis for predicting and explaining real-world task performance. Human-Computer 
Interaction, 8, 237-309.

Hornof, A. J. (1999). Computational models of the perceptual, cognitive, and motor processes 

36



involved in the visual search of pull-down menus and computer screens. Doctoral dissertation in 
Computer Science and Engineering. The University of Michigan, Ann Arbor, Michigan.

Hornof, A. J. (2001). Visual search and mouse pointing in labeled versus unlabeled two-
dimensional visual hierarchies. ACM Transactions on Computer-Human Interaction, 8(3), 171-
197.

Hornof, A. J., & Kieras, D. E. (1997). Cognitive modeling reveals menu search is both random 
and systematic. Proceedings of ACM CHI 97: Conference on Human Factors in Computing 
Systems, New York: ACM, 107-114.

Hornof, A. J., & Kieras, D. E. (1999). Cognitive modeling demonstrates how people use 
anticipated location knowledge of menu items. Proceedings of ACM CHI 99: Conference on 
Human Factors in Computing Systems, New York: ACM, 410-417.

John, B., Vera, A., Matessa, M., Freed, M., & Remington, R. (2002). Automating CPM-GOMS. 
Proceedings of ACM CHI 2002: Conference on Human Factors in Computing Systems, New 
York: ACM, 147-154.

John, B. E. (1998). Cognitive modeling for human-computer interaction. Graphic Interfaces '98.

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques: 
Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3(4), 320-351.

Kieras, D. E., & Meyer, D. E. (1996). The EPIC Architecture: Principles of Operation. 
(Published electronically at http://www.eecs.umich.edu/~kieras/epic.html).

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and 
performance with application to human-computer interaction. Human-Computer Interaction, 
12(4), 391-438.

Kieras, D. E., & Meyer, D. E. (2000). The role of cognitive task analysis in the application of 
predictive models of human performance. In J. M. C. Schraagen, S. E. Chipman, & V. L. Shalin 
(Eds.), Cognitive task analysis. Mahwah, NJ: Lawrence Erlbaum.

Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A. (1995). GLEAN: A computer-based tool 
for rapid GOMS model usability evaluation of user interface designs. Proceedings of the ACM 
Symposium on User Interface Software and Technology, UIST ‘95, New York: ACM, 91-100.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Universal subgoaling and chunking. Boston: 
Kluwer Academic Publishers.

Lee, E., & MacGregor, J. (1985). Minimizing user search time in menu retrieval systems. Human 
Factors, 27(2), 157-162.

Lohse, G. L. (1993). A cognitive model for understanding graphical perception. Human-
Computer Interaction, 8, 353-388.

MacGregor, J., & Lee, E. (1987). Menu search: Random or systematic? International Journal of 
Man-Machine Studies, 26(5), 627-631.

Mullet, K., & Sano, D. (1995). Designing Visual Interfaces: Communication Oriented 
Techniques. Englewood Cliffs, New Jersey: Prentice Hall PTR.

Neisser, U. (1963). Decision-time without reaction-time: experiments in visual scanning. 

37



American Journal of Psychology, 76, 376-385.

Nilsen, E., & Evans, J. (1999). Exploring the divide between two unified theories of cognition: 
Modeling visual attention in menu selection. CHI 99 Extended Abstracts, New York: ACM, 288-
289.

Norman, K. L. (1991). The Psychology of Menu Selection: Designing Cognitive Control of the 
Human/Computer Interface. Norwood, N. J.: Ablex.

Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 
80, 127-158.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (2000). Supporting cognitive models as 
users. ACM Transactions on Computer-Human Interaction, 7(2), 141-173.

Ritter, F. E., & Young, R. M. (2001). Embodied models as simulated users: introduction to this 
special issue on using cognitive models to improve interface design. International Journal of 
Human-Computer Studies, 55, 1-14.

Salvucci, D. D. (2001). An integrated model of eye movements and visual encoding. Cognitive 
Systems Research, 1(4), 201-220.

Schraagen, J. M., Chipman, S. F., & Shalin, V. J. (Eds.). (2000). Cognitive Task Analysis. 
Mahwah, NJ: Lawrence Erlbaum.

Sperling, G. (1960). The information available in brief visual presentations. Psychological 
Monographs, 74, 1-29.

St.!Amant, R., & Riedl, M. O. (2001). A perception/action substrate for cognitive modeling and 
HCI. International Journal of Human-Computer Studies, 55, 15-39.

Staggers, N. (1993). Impact of screen density on clinical nurses’ computer task performance and 
subjective screen satisfaction. International Journal of Man-Machine Studies, 39, 775-792.

Treisman, A. (1986). Features and objects in visual processing. Scientific American, 255, 114B-
125.

Tullis, T. S. (1988). A System for Evaluating Screen Formats: Research and Application. In R. 
Hartson & D. Hix (Eds.), Advances in Human-Computer Interaction. (Vol. 2). Norwood, NJ: 
Ablex, 214-286.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and 
objects in visual working memory. Journal of Experimental Psychology: Human Perception and 
Performance, 27(1), 92-114.

Wolfe, J. M. (1998). Visual Search. In H. Pashler (Ed.), Attention. Philadelphia: Taylor & 
Francis Press, 13-73.

38


