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Abstract

This report covers the modeling work performed in conjunction with a project at the Naval 
Research Laboratory, carried out by James Ballas, exploring the effects of using spatialized sound 
as a task cue in a visually-presented dual task setting that demonstrated an “automation deficit” 
effect. This effect is temporarily impaired performance when an automated task must be resumed 
by the human operator. Previous work on modeling this task and automation deficit effect led to 
the conclusion that the deficit effect was due to ambiguity in the visual display concerning which 
task event had priority for the operator’s attention. 

An hypothesis was that providing an auditory cue to supplement the visual display, in the form 
of synthetically localized sound, should allow the operator to attend to the highest-priority event, 
and thus mitigate the automation deficit effect. The observed results weakly supported this 
hypothesis, but a better characterization is that the use of localized sound led to a consistent, but 
small, effect of faster responding across the board. Additional modeling work suggests that the 
only simple explanation for this pattern of effects is that the onset of localized sound can produce a 
reflexive eye movement to the sound source. The magnitude of the effect is consistent with 
psychophysical tasks on the facilitation of visual choice reaction tasks by localized sound stimuli.
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Figure 1. Screen shot of display, showing feedback from input keystrokes.



Introduction

This report presents the modeling work performed in conjunction with a project at the Naval 
Research Laboratory, carried out by James Ballas, exploring the effects of using spatialized sound 
as a task cue in a visually-presented dual task setting that demonstrated an “automation deficit” 
effect. This effect is temporarily impaired performance when an automated task must be resumed 
by the human operator. Previous work on modeling this task and automation deficit effect led to 
the conclusion that the deficit effect was due to ambiguity in the visual display concerning which 
task event had priority for the operator’s attention. A preliminary study and its modeling supports 
this conclusion, in that a lower workload that removes the ambiguity from the task situation 
eliminates the automation deficit effect. However, another way to remove the ambiguity at high 
workload would be to use a spatialized sound cue to designate the highest-priority visual event. 
This hypothesis led to a series of experimental studies, whose results were explained with 
computational modeling presented in this reports.

The Task and Automation Deficit

A cockpit-like dual task. The task was developed by Ballas, Heitmeyer, & Perez (1992a, 
b) to resemble a class of multiple tasks performed in combat aircraft in which the subject must both 
perform a task such as tracking a target, and at the same time keep up with the tactical situation 
using sensors such as radar, with partial automation support by an on-board computer. Figure 1 
shows a sketch of the display. The right hand box contains a pursuit tracking task in which the 
circle cursor must be kept on the target with a joystick operated with the right hand. The left-hand 
box is a radar-like display that contains a tactical decision task in which objects (“tracks”) must be 
classified as hostile or neutral based on their behavior, and the results entered by means of a 
keypad under the left hand. These objects appear as icons that represent fighter aircraft, cargo 
airplanes, and SAM sites. A number identifies each object on the display. To avoid the overloaded 
term “object” or the military jargon of “track”, the term blip will be used to refer to the objects on 
the radar display. The center of the concentric circles at the bottom of the display represent the 
position of ownship, the position of one’s own aircraft.

The blips appear near the top of the display, and then move down. The fictitious on-board 
computer attempts to classify each blip, indicating the outcome after some time by changing the 
blip color from black to red, blue, or amber. These color changes are termed events because these 
color changes are the stimuli to which the subject must respond. If the blip changes to red (hostile) 
or blue (neutral), the subject must simply confirm the computer's classification by typing a code 
key for the hostile/neutral designation followed by the key for the blip number. If the blip changes 
to amber, the subject must observe the behavior of the blip and classify it based on a set of rules, 
and then type the hostility designation and blip number. After the response, the blip changes color 
to white, and then disappears from the display 10 sec later. The basic dependent variable is the 
reaction time to the events, measured from when a blip changes color to when each of the two 
keystrokes are made in response. 

The rules for classifying a blip depend on the type of the blip. A fighter blip is hostile if its 
trajectory will intersect the ownship position (indicated by a constant bearing from ownship). A 
cargo plane is hostile if it is traveling at a high speed down the display. A missile site is hostile if 
its position will lie within the outer range ring (the larger concentric circle) at some point. Note that 
the blips for cargo planes move vertically down the display, as do the blips for missile sites, 
corresponding to the ownship movement, but blips for fighters usually move diagonally down the 
display. 

Ballas et al. varied the format of the tactical display and the response. The above description is 
for the graphical keypad interface; the other combinations consisted of using a tabular display 
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instead of the graphical radar-like display, and a touchscreen response procedure instead of the 
keypad. This work concerns only the graphical display with the keypad responses. 

Ballas et al. also studied the effects of adaptive automation. From time to time during the task, 
the tracking task would become difficult, and the on-board computer would take over the tactical 
task, signaling when it did so. The computer would then generate the correct responses to each blip 
at the appropriate time, with the color changes showing on the display as in the manual version of 
the task. Later, the tracking would become easy again, and the computer would signal and then 
return the tactical task to the subject to perform. The signal was a loud buzzer sound and a change 
in the border of the tactical task window - a thick bright border meant that the task was in manual 
mode. How subjects dealt with the transition was measured by recording the time required to 
respond to the individual events, counting from when they had to resume the tactical task.

The experiments involved performing multiple scenarios, which are specified sequences of blip 
types, positions, trajectories, and color-change events. The scenarios relevant to the measurement 
of the automation deficit effect had epochs of manual tactical task performance. In what follows, 
the term event refers the the event of a blip changing color from the initial black color to red, blue, 
or amber. Each epoch consisted of a series of events whose timing and type were controlled. The 
major dependent variable is the response time for each event as a function of its position in the 
epoch.

In the scenarios resulting in automation deficit effects, the blips and color-change events within 
an epoch were not uniformly spaced in time; rather they occurred in two waves, the first when the 
task had to be resumed in manual mode at the beginning of each epoch, and the second about two-
thirds of the way through the epoch. Some of the event time structure was fixed, with the 
remaining allowed to vary stochastically within the overall two-wave structure. 
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Figure 2. Illustration of the automation deficit effect, using data from Ballas et al. (1992a, b). First response 
times (RT1) are shown for each event (blip color change) after the tactical task is resumed. The numbers above 
the x-axis are the interval in seconds between each pair of events. The event sequence 1, 2, and 3 have the same 
inter-event spacing as event sequence 7, 8 and 9. The automation deficit effect appears as elevated RTs for the first 
events (e.g. 1) relative to the comparison events (e.g. 7) after the task has been underway for some time.



To make this presentation concrete, Figure 2 shows the mean reaction time for the first response 
(RT1) from the experiment reported in Ballas et al. (1992a, b). The horizontal axis corresponds to 
each event following resumption of the manual tactical task; i.e., Event 1 is the first color-change 
event, Event 2 is the second, and so forth. Above the x-axis is shown the time interval between 
events in seconds. Events 1, 2, 3, and 4 were set to appear at closely spaced increasing fixed 
intervals, as are Events 7, 8 and 9. The other events are widely spaced at randomly chosen 
intervals whose mean values are shown. Thus there is a high workload at the beginning of task 
resumption, a low-workload period, followed by another high-workload peak with the same event 
types and spacing, and a final low-workload period. 

Thus the two waves have similar high workloads in terms of the event spacing and number of 
blips on the screen, and are both followed by fairly inactive times. Performance on Events 1-3 can 
be compared with performance on Events 7-9 to compare initial resumption performance with 
steady-state performance. Thus although there is variation between the epochs in each scenario, the 
epochs have a definite structure which subjects were apparently were aware of. For ease in 
discussion in the rest of this paper, this structure can be described in terms of phases: an initial 
"resumption panic" phase in which the tactical task is resumed at the peak of the first wave of 
blips, followed by a post-panic catching-up phase at the tail of the first wave, followed by widely-
spaced events in the first "doldrums" phase. The next phase is a “clump panic” for the second 
wave of closely spaced events, then a second post-panic phase, and then a second, very short, 
doldrums phase.

The automation deficit effect. Ballas et al. (1992a,b) observed an automation deficit 
effect, in which during the resumption panic phase, the period after resuming the tactical task, 
subjects produced longer response times for matched events compared to their normal steady-state 
manual performance, that is, the events at the clump panic at the second wave. Thus, as shown in 
Figure 2, the times for Events 1, 2, and 3 are longer than the matched Events 7, 8, and 9, 
producing an overall descending shape to the RT profile. The reaction times for the first few events 
during the resumption panic and catching-up phase are substantially longer than those for later 
events of similar structure during the clump panic and its catching-up phase. Since Ballas et al. had 
arranged for Events 1 and 7 to be exactly matched in terms of the type of blip, they reported the 
automation deficit effect in terms of simply the difference between the RT for Event 1 and Event 7, 
which is 1312 ms for the first response keystroke. This effect represents some of the serious 
concerns about possible negative effects of automation in combat situations; if the automation fails, 
the operator can lack situation awareness, and it might take a long time to “catch up.” 

Not shown in this graph are other effects. For example, the different event types had very 
different reaction times across the board. The confirm events, in which a red or blue blip had to be 
responded to as hostile or neutral, were considerably faster than the classify events, in which an 
amber blip had to be studied to determine its hostility. The time for this depends on the type of the 
track (airplane, fighter, or missile site). Since the distribution of these event types was not uniform 
across the scenario epochs, one could wonder whether differences in these response time could 
account for the observed fluctuations in the RTs shown in these graphs. Some preliminary analysis 
shows that some minor fluctuations in the reaction time could be accounted for by the average RT 
for each event type weighted by the frequency of appearance of each event type at each event 
number. However, the features most clearly present in Figure 2 could not be accounted for so 
simply - rather the large fluctuations in reaction time are a result of a combination of the event 
spacing and whether the subject has just resumed the tactical task.

A preliminary explanation of the automation deficit effect. Before getting into the 
details of the models for this task, a simplified explanation for the automation deficit effect  can be 
presented. Such effects seem subtle, and would seem to require complex explanations in terms of 
ill-defined constructs such as situation awareness. However, the relatively simple explanation 
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advanced in this paper is based on the hypothesis that the subject monitors the tactical display 
(keeps track of tactical task events) when the tactical task is being done, but not when it is 
automated. We assume that when the tactical task is automated, the subject simply ignores the color 
changes appearing in the tactical display and does not bother to store any information about the 
state of the tactical display in working memory (otherwise, the automation is of little value!). 

When it is time to resume the tactical task, there are many blips on the screen that need to be 
inspected and possibly responded to. Since there is no record of which have changed colors prior 
to task resumption, or the order in which they did so, the subject simply picks a blip to inspect at 
random. After moving the eyes to it and waiting for its color to become cognitively available, the 
subject processes the blip as usual if it is red, blue, or amber. However, if it is white or black, it 
cannot be processed, and so another blip is picked at random. But once the eyes have been moved 
to the tactical display, the color of many of the blips can be seen, so that a colored blip can be 
chosen as the target for the second eye movement. This blip can then be responded to, and then 
any other colored blips readily selected for processing. 

When all candidate blips have been dealt with, the eyes are moved back to the tracking window, 
and tracking is resumed. When a blip changes color, the color change event will be detected (even 
in peripheral vision, as a change in luminance), and the eyes moved directly to the changed blip. 
This means that subsequent events are processed as they appear and in the same order.

The automation deficit results from the fact that when the tactical task is being performed in 
steady state, the blips are usually processed in the order that they change color, keeping the average 
reaction time to a minimum. In contrast, when the tactical task is resumed, multiple blips must be 
inspected, and no information has been kept on the order in which they have appeared or changed 
color. Thus the blips are inspected in random order, meaning that blips that changed first will have 
to wait longer on the average to be inspected than if they were processed in order. As the events 
continue to occur, the subject will begin to catch up, and blips will again be processed in the order 
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Figure 3. Reaction times (RT1) for events following task resumption in a level-load scenario in which only one 
blip at a time changes color. The inter-event times are shown above the x-axis. While there is some variation in 
RT, there is no automation deficit effect due to the lack of ambiguity immediately following task resumption.



that they change. Thus, relative to steady-state performance, performance on the tactical task is 
depressed for some time following its resumption; temporarily, events may take longer than normal 
to get processed. 

One implication of this explanation is that the size of the automation deficit effect depends on the 
event density at the time of task resumption - e.g., if there is only one blip to inspect at the time of 
resumption, then there will be no out-of-order processing to delay the response. Additional data 
collected by in Ballas’s laboratory shows just this effect, using a scenario in which the events after 
resumption are fairly widely spaced through the epoch. These results are shown in Figure 3, which 
shows the first reaction times for events that are spaced on the order of 10 - 13 seconds apart on 
the average. Thus, there is no wave of events at the time of resumption, and so there is no 
elevation of response times. Not only is the difference between Event 1 and Event 7 greatly 
reduced, the difference is actually about 200 ms in the reverse direction. 

Modeling the Task

Overview of the EPIC Architecture

The models for the task were constructed using the EPIC architecture for human cognition and 
performance, which provides a general framework for simulating a human interacting with an 
environment to accomplish a task. EPIC will not be described in full detail here. A more thorough 
description is presented in Kieras & Meyer (1997). In brief, EPIC resembles the Model Human 
Processor (Card, Moran, & Newell, 1983), but differs in that EPIC is an implemented 
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computational modeling system and incorporates more specific constraints synthesized from 
human performance literature. Figure 4 provides an overview of the architecture, showing 
perceptual and motor processor peripherals surrounding a cognitive processor; all of the processors 
run in parallel with each other. To model human performance of a task, the cognitive processor is 
programmed with production rules that implement a strategy for performing the task. When the 
simulation is run, the architecture generates the specific sequence of perceptual, cognitive, and 
motor events required to perform the task, within the constraints determined by the architecture and 
the interface. For example, the current orientation of the eye determines how visual events are 
detected and recognized, and movement times are governed by relationships such as Fitts’ Law. 

EPIC consists of a production-rule cognitive processor and perceptual-motor peripherals. To 
model human performance aspects of accomplishing a task, a cognitive strategy and perceptual-
motor processing parameters must be specified. A cognitive strategy is represented as a set of 
production rules, much the same way that the ACT-R (Anderson & Lebiere, 1998), and Soar 
(Laird, Newell, & Rosenbaum, 1987; Newell, 1990) represent procedural knowledge. The 
simulation is driven by a description of the task environment that specifies aspects of the 
environment that would be directly observable to a human, such as what objects appear at what 
times, and how the environment changes based on EPIC’s motor movements. EPIC computational 
models are generative in that the production rules only represent general procedural knowledge of 
the task, and when EPIC interacts with the task environment, EPIC generates a specific sequence 
of perceptual, cognitive, and motor activities required to perform each specific instance of the task.

As shown in Figure 4, information flows from sense organs, through perceptual processors, to 
a cognitive processor (consisting of a production rule interpreter and a working memory), and 
finally to motor processors that control effector organs. All processors run independently and in 
parallel. 

In short, EPIC is applied to a task as follows: The production-rule strategy directs the eyes to 
objects in the environment. The eyes have a resolving power which determines the processing time 
required for different object features, such as location and text. When information needed to 
determine the next motor movement arrives in working memory, the strategy instructs the ocular 
motor and manual motor processors to move the eyes and hands as required to complete that 
portion of the task.
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A single stimulus in the task environment can produce multiple outputs from a perceptual 
processor to be deposited in working memory at different times. First the detection of a perceptual 
event is sent, followed later by features that describe the event. The perceptual processors are 
"pipelined." If an object’s features begin moving to working memory, the arrival of those features 
will not be delayed by any other processing. Working memory contains these items deposited by 
perceptual processors, as well as control information such as the current task goal. At the end of 
each simulated 50 ms cycle, EPIC fires all of the production rules whose conditions match the 
current contents of working memory. EPIC allows for parallel execution of production rules in the 
cognitive processor, and some parallelism in each motor processor.

Information processing and motor movement times are held constant across modeling efforts, 
and are based on human performance literature. The times for aimed manual movements, for 
example, are determined by Fitts’ law. 

A few additional key properties of EPIC can be mentioned; additional ones will be introduced as 
needed. The perceptual and cognitive processors are always operating in parallel, but it is up to the 
task strategy (the production rule programming) to take advantage of the parallel capabilities of the 
motor processors. Cognitive processing is multi-threaded, in that multiple sequences of 
production-rule execution can be underway simultaneously, which enables sophisticated models of 
complex multiple-task situations (Meyer & Kieras, 1997a,b; Kieras, Meyer, Ballas, & Lauber, in 
press).

Task Model Description

Task Strategy. To model the present task, a set of production rules were written to 
implement a task strategy; these rules are organized in a hierarchy shown in Figure 5 reflecting the 
overall structure of the task. Since EPIC allows fully multi-threaded cognitive processing, many of 
the tasks shown in the figure execute in parallel. 

Dual-task executive. The top level is a dual-task executive process that controls execution of 
the tracking task, the tactical task, and a task that monitors the tactical display for color changes and 
other relevant events. When the tactical task is automated, the dual-task executive runs only the 
tracking task, effectively ignoring the tactical display entirely. When the auditory signal to resume 
the tactical task is recognized, the executive shuts down the tracking task, starts the monitoring 
process and initiates the tactical task process to handle the first event. Notice that the tactical task is 
controlled by its own sub-executive process. When the tactical task no longer has events to 
process, it terminates, and the dual-task executive restarts the tracking task. If the monitoring task 
then detects events such as a color change in peripheral vision, the dual-task executive will shut 
down the tracking task and restart the tactical task to handle the event. When the signal is made to 
return to automated mode, the dual-task executive will shut down the tactical task process if it is 
still underway, and then allow the tracking task to execute continuously and then waits for the next 
resumption signal.

Tracking task. The tracking task, when active, simply keeps the eye on the tracking target 
with one production rule and keeps the cursor on the target with another rule. This tracking rule 
commands the manual motor processor to execute an aimed joystick movement whenever the 
cursor is too far from the target. Further details of how this task is represented is not necessary for 
the present description. However, because the tracking task is shut down while tactical task 
processing is underway, the model predicts that no tracking movements will be made during 
tactical task processing. Evidence supporting this assumption is presented in Ballas, Kieras, 
Meyer, Brock, and Stroup (1999).

Monitoring process. The monitoring process is responsible for monitoring the state of the 
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tactical display, and labeling newly appeared objects in working memory as blips - candidate 
stimuli to be processed, and deciding when a tactical stimulus is present. These functions are only 
performed if the monitoring task is active, which is normally only when the tactical task is in 
manual mode. The dual-task executive is responsible for activating and deactivating the monitoring 
process. 

The monitoring process posts a notice in working memory that a tactical stimulus is present if a 
blip has changed color, or has become "too close" to the ownship circle. The dual-task executive 
will respond to this notice and switch tasks. The model has three levels of closeness defined for 
when a blip is considered too close, whose specific values are free parameters set for a particular 
run of the simulation. The criterion level currently in effect can be changed by the dual-task 
executive. 

It is assumed that the relevant visual properties are available in peripheral vision: a color change 
event will show as a change in luminance even if the actual colors can not be seen, and the location 
of blips relative to ownship is available for closeness judgments.

Tactical task executive. The tactical task sub-executive process coordinates three 
subprocesses: Stimulus selection first selects a blip for processing, then the hostility response 
process selects and produce the hostility designation response keystroke for the selected blip, and 
then the identification response process selects and executes the response that identifies the track, 
namely a keystroke for the target ID (track number). During the tactical task, the eyes must be 
moved around the display; each subprocess is responsible for moving the eye, under supervision 
of the tactical task executive. The tactical task executive allocates the eyes to each subprocess in 
turn, and waits for each subprocess to release the eyes before allocating them to the next 
subprocess (see Kieras, Meyer, Ballas, and Lauber, in press, for more discussion of executive 
strategies for resource allocation). The stimulus selection process moves the eyes from one blip to 
the next until an appropriate blip has been located. The hostility designation process leaves the eyes 
on the chosen stimulus until the hostility characteristics can be determined. Finally, the 
identification response process moves the eyes to the track number in order to acquire it for the 
target ID response. The stimulus selection process gets control of the eyes next to search for the 
next blip to process. 

While logically the blip must first be selected and then the two responses made in order, it is 
possible for these three steps to be overlapped considerably as long as these basic response order 
constraints are satisfied for each blip. If the task strategy overlaps the processing heavily, then 
performance will be very fast; if not, performance will be substantially slower. Generally 
speaking, once basic perceptual and motor delays have had their effect, the performance speed 
depends primarily on the extent to which the task processes are overlapped by the task strategy. 
The tactical task executive coordinates the three subprocesses to control the extent to which the 
subprocesses overlap. 

Stimulus selection process. The basic signal to process an event is that a blip changes 
color from black to red, blue, or amber. Stimulus selection chooses a blip to process, taking into 
account that if tracking is underway, the eyes have been kept on the tracking target, so most of the 
tactical display is in peripheral vision. While the color change can be noticed in peripheral vision, 
the color itself is not available except parafoveally. But once the eyes are on the tactical display, the 
colors for most of the blips will be available. Thus stimulus selection may have to examine more 
than one blip before finding one ready to process. 

The stimulus selection process selects a stimulus that is the highest priority for processing. The 
rule is as follows, in descending order of priority: (1) colored blips (red, blue, or amber) because 
these have already changed and need to be responded to quickly; (2) a blip that has changed color 
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but whose color is not yet available; (3) blips whose color is unknown; (4) blips that are 
considered close to ownship. If more than one blip meets the rule for highest priority, one is 
chosen at random. The process then moves the eyes to the candidate blip and waits until both the 
eye movement is complete and the color of the blip is available. If the blip is red, blue, or amber, it 
becomes the selected stimulus and the process terminates. If the blip is black or white, the selection 
process starts over to choose another candidate blip using the priority rules. But if the candidate 
blip is both black and tagged as close to ownship, the eyes are kept on it, and the stimulus selection 
process (and the tactical task as a whole) will continue to run, waiting for some blip to change 
color. If the watched blip changes color, it becomes the selected stimulus. If some other blip 
changes color first, the selection process starts over and chooses it. 

If the stimulus selection process successfully finds a blip that needs processing, it terminates 
with the chosen visual object tagged as the new stimulus and with the eyes already on it. If there is 
no blip suitable for processing, the stimulus selection process places a signal in working memory 
that no stimulus is available and terminates. The tactical task executive will terminate the tactical 
task, and the dual-task executive will then reactivate the tracking task. 

Once stimulus selection places the eyes on the blip, the visual processing necessary to recognize 
the hostility behavior of the blip is underway while other processing is going on. The time required 
to recognize the behavior is on the order of a second, and was independently estimated for each 
type of blip. 

Designation process. When the tactical task executive determines that the stimulus selection 
process has chosen a stimulus to work on, it places an item in working memory that identifies the 
stimulus visual object to the designation subprocess. 

Since the eyes are already on the selected blip, the designation subprocess simply checks the 
color of the blip and responds with a series of production rules similar to those in our other models 
of choice reaction tasks (see Meyer & Kieras, 1997a,b). If the blip is red or blue, then the correct 
designation response is simply hostile or neutral and the corresponding keystroke is selected. 
However, if the blip is amber, the process must wait until the behavior of the blip has been visually 
recognized; the time required (on the order of a second) depends on the type of the blip, and was 
independently estimated. Note that the blip types and whether they were red, blue, or amber, were 
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varied non-uniformly over the events, and so the average designation time for an event depends on 
the exact mix of blip types and colors. The process then signals that it is done with the eye, selects 
the proper keystroke, commands the motor processor to execute the selected keystroke response, 
and finally terminates when the response is deemed complete. 

Track identification process. The track identification process first moves the eyes to the 
track number, and waits until the track number is recognized. It signals that it is finished using the 
eye as soon as it has commanded the eyes to move to visual object for the track number. Under the 
EPIC architecture, the visual information for the track number will enter the visual processing 
"pipeline" and will eventually get recognized even if the eyes get moved shortly after they has 
foveated the track number. A sequential set of production rules then tests the recognized track 
number, in increasing order, and selects the corresponding keystroke response. 

Motor overlapping. In both the designation and track identification subprocesses, a single 
production rule commands the manual motor processor to make the selected response keystroke. 
This rule follows the motor-overlapping rubric of including a test that the manual motor processor 
has completed the preparation of any previously-commanded response and is now ready to accept a 
command for a new movement; the preparation of this new movement might overlap the execution 
of the previously-commanded movement. This rubric permits response movements to be made in 
sequence at top speed without motor "jamming" or omission of a movement. Thus if the 
designation and track identification processes select their responses quickly enough, the responses 
can be produced at the maximum possible speed allowed by the architecture.

Eye allocation. Since this is a visually demanding task, how the eyes are handled is critical to 
determining task performance. Since the dual-task executive enforces mutual exclusion between the 
tracking task and the tactical task, the eyes can be controlled by only one of the two tasks at a time. 
If the tracking task is active, a tracking task production rule ensures that the eyes are kept on the 
tracking target; this rule is disabled when tracking is not active. When the tactical task is started, the 
tactical task executive first allocates the eyes to the stimulus selection process, then to designation, 
then to track identification, and then back to stimulus selection again. Each subprocess signals 
when it is finished using the eyes, so that the tactical task executive can allocate them to the next 
process in sequence. When the tactical task terminates, it effectively surrenders control of the eyes 
to the tracking task.

Overlapping tactical task subprocesses. These three tactical subprocesses can run in 
parallel, or overlap, to a considerable extent, as long as the task constraints are observed. As 
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shown in Figure 6, two successive responses must be made for a single track, and the responses 
must be made in the correct order. Thus the second response process must wait for the first 
response to be produced, but the duration of the wait need only be long enough to produce the 
correct ordering. Thus some of the second response processing could be concurrent with the 
selection and production of the first response. In addition, the stimulus selection process for the 
next stimulus could overlap with the second response process. Thus if several stimuli are 
processed rapidly in sequence, the processing could overlap substantially, as illustrated in Figure 
7.

The models were built in such a way that the tactical task executive could dynamically control 
the amount of overlap in the tactical task subprocesses. The issues in such overlapping have a 
strong family resemblance to how computer Operating Systems are organized to allow prioritized 
concurrent task execution and manage the allocation of peripheral resources to different tasks so as 
to maximize system throughput (see Kieras, Meyer, Ballas, and Lauber, in press). In EPIC, the 
production rule subprocesses can all execute simultaneously, so the allocation management 
involves the peripheral resources of the eye and the hands. Of course, just as Operating Systems 
have different algorithms for scheduling processing and allocating resources, there are many 
possible executive task strategies within the limits imposed by the architecture and task structure. 
These limits will be described next. 

Architectural limits on overlapping. The eyes must be moved from one blip to another, 
and from a blip to its associated track number, and then to the next blip to be inspected. At each 
point, the eyes must be kept on its target for at least the minimum time required for the visual 
system to acquire the information about a blip or track number. Two factors determine the timing 
of when eye movements can be commanded. First, visual information is pipelined through the 
visual system, so the eyes need not remain on an object for the full time the information is needed; 
rather they can be moved after a short dwell time and the visual information will still be recognized 
and passed on to the cognitive processor. Second, as in the other motor processors, an eye 
movement takes time to prepare prior to the actual movement. Thus a movement can be 
commanded somewhat in advance of the actual time when it needs to be made, allowing for very 
quick eye movements (cf. Hornoff & Kieras, 1997, 1999).

The models assume that the subject gets enough practice so that it is not necessary to look at the 
keypad, opening the way for considerable overlapping. As soon as the color or behavior of a blip 
has been recognized, the eyes can be moved to the track number while hostility response is selected 
and produced. As soon as track number has started into visual processing, control of the eyes can 
be passed to the stimulus selection process, which could actually be started even earlier to choose 
the next blip to process. Thus the next stimulus selection can be underway while the track id 
response is selected and produced.

EPIC assumes that while the hands can only be executing a single (possibly two-handed) 
movement at a time, the preparation for the next movement can be made during execution of the 
current movement, so it is possible to “pipeline” a series of movements through the manual motor 
processor at high speed. But on the other hand, the motor processor can only prepare one 
movement at a time. Thus if two concurrent processes each want to produce a manual response, 
the executive must exert control to make sure that the response commands are sent to the manual 
processor one at a time and in the right order. 

Executive control of overlapping. The tactical task executive can control the extent to 
which these three subprocesses are overlapped, subject to the logical constraints on the overall 
task. It turns out that while the allocation of the eyes places strict constraints on the order of 
processing, it does not completely determine when the next process in order can be started. First, 
the designation process cannot begin executing until the eyes has been placed on a selected blip. 
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Thus no overlapping is possible between stimulus selection and designation response selection. 
However, once the designation information has been acquired, the eyes are free to be moved to the 
track number while the designation response is being produced. Once the process of recognizing 
the track number is underway, the eyes are then free to be used by the stimulus selection process to 
choose the next stimulus. The eyes can be allocated to the next subprocess well ahead of when the 
current subprocess completes, so the two response subprocesses are constrained only by the need 
to produce the responses in the correct order. The allocation of the eyes and the speed with which 
they can be moved determines the maximum extent of overlapping of the three processes. Below 
that maximum, the amount of overlap depends on whether the tactical task executive requires each 
subprocess to wait until the previous one is complete, or allows them to execute in parallel as much 
as possible.

The amount of overlapping between the three tactical subprocesses is controlled by unlocking 
events, a concept we had previously developed for the PRP task (Meyer & Kieras, 1997a,b). 
Unlocking events are the signals for when the next process is allowed to proceed in order to ensure 
that responses are made in the correct order. For example, an early unlocking event is the firing of 
the production rule that starts up the designation process. When the executive detects this event, it 
can start the track identification process. As soon as the track identification process gets control of 
the eye, it will move the eye to the track number and start its response selection processing as soon 
as the visual recognition of the track number is complete. These initial processing steps will happen 
simultaneously with most of the designation response selection and production. Thus this very 
early unlocking event means that the time required to start the track identification process and 
acquire the track number will be hidden by the completion of designation responding. 

A very late unlocking event would be when the designation process finishes its response 
keystroke. The tactical task executive would thus delay the start of track identification until all of 
the designation response process was complete. All of the time associated with starting the track 
identification process will appear in the second RT, along with all of the time required to select and 
produce the designation response. 

The unlocking delay between the designation process and the track identification process 
basically determines the inter-response-interval (IRI) of the two keystrokes for an event. Likewise, 
the unlocking delay between the track identification process and the stimulus selection process 
determines the IRI between the second keystroke for an event and the first keystroke for the next 
event. It is possible to change these IRIs over a wide range by choosing different unlocking 
events. In this work, early versus late unlocking events were always chosen to be events that 
occurred within the same process. The early unlocking event used in all the models reported here 
was that the current process was starting; the late events were either the commanding of a response 
movement, or the completion of a response movement. 

The Bracketing Heuristic

The amount of overlapping enforced by the executive strategy has a major impact on task 
performance (Meyer & Kieras, 1999); “daring” strategies that maximize overlapping can produce 
substantially faster performance than more “conservative” strategies. This aspect of task strategy is 
not strongly determined by either the task requirements or the architecture, but rather is a result of 
factors such as the amount of practice, level of motivation, or long-term fatigue avoidance, or even 
the subject’s possibly haphazard efforts to formulate a task strategy (Kieras & Meyer 2000). 

Kieras & Meyer (2000) pointed out that such optional aspects of task strategy can not be 
predicted reliably, but could only be identified by careful construction and evaluation of strategies 
that result in performance patterns that match the observed data in detail. Such models have been 
constructed for these data, but the task strategies they implement are quite complex: The subjects 
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can anticipate the workload based on the two-peak pattern repeated throughout the experiment, and 
dynamically modulate the extent of overlapping and whether close blips are watched in anticipation 
of color change.

Here we present a simpler, more robust, analysis based on the bracketing heuristic (Kieras & 
Meyer 2000). The concept is to start with a basic strategy for the task, such as the one just 
outlined, and permute it into two versions: a fastest-possible strategy that drives the architecture at 
the highest speed possible that still meets the basic task requirements, and a slowest-reasonable 
strategy that conforms to the task instructions and requirements with no “bells and whistles” to 
increase speed. Observed performance should fall somewhere between the performance predictions 
of models using these two strategies, which thus bracket the actual performance. 

Bracketing is a way to construct truly predictive models in complex task domains where the 
optional strategy optimizations subjects would devise cannot be forecast. In addition, bracketing 
could guide the construction of models that match the data. However, bracketing can also be used 
to explain phenomena independently of the optional aspects of task strategies. Thus, bracketing 
models for the sound and no-sound conditions may be able to account for the important effects in a 
simple and straightforward way without the elaborate detail of models that match the data and 
subtle hypotheses about how subjects chose to handle the tasks.

The Bracketing Strategies

The bracketing heuristic has to be elaborated in the context of a multitask situation like the Ballas 
et al. (1992a, b) task — what is the meaning of "slowest-reasonable" and "fastest-possible" when 
there are two tasks that must compete for processing resources? We resolved this in terms of the 
relative priorities of the two tasks. In the experimental procedure, the tactical task was designated 
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as the highest priority; fastest-possible thus means that the tactical task is executed as fast as 
possible regardless of the effect on the lower-priority tracking task. Slowest-reasonable means that 
the higher priority of the tactical task should honored, but no more so than the overall task 
instructions explicitly require.

The fastest possible and slowest reasonable models for the keypad interface had identical 
stimulus selection processes, and identical criteria for when the eye was deemed free to be used by 
the next subprocess. The fast model used a set of very early unlocking events, and the slow model 
used very late unlocking events.

Fastest-possible model. The fastest-possible task strategy corresponds to the most extreme 
interpretation of the task instructions. Because the tactical task supposedly has higher priority than 
the tracking task, this strategy ignores the tracking task if there is anything at all to be done on the 
tactical task. For example, if there is even a single blip on the tactical display, then the eyes are kept 
on it until it changes color, resulting in faster responding than if the eyes had been moved back to 
the tracking task display. This was implemented by simply setting the criterion for closeness to an 
extremely large value, so that all blips were considered close to ownship, and thus triggered the 
tactical task as soon as they appeared. 

In addition, the tactical display is monitored at all times, even while the tactical task is 
automated, because this will speed up identifying relevant blips when the tactical task is resumed in 
manual mode. Furthermore, the fastest-possible strategy overlaps the three tactical task 
subprocesses as much as possible, using the early unlocking events. Thus the fastest possible 
model was always ready to respond to a tactical stimulus right away, and heavily overlapped the 
response and stimulus selection processes.

Slowest-reasonable model. The slowest-reasonable task strategy implements a nominal 
adherence to the task instructions. The instructions imply that the tracking task should be 
performed until a blip changes color in the tactical task, so under the slowest-reasonable strategy, 
there is no attempt to anticipate when the tactical task needs attention. Likewise, the instructions 
imply that when the tactical task is automated, there is no need to monitor the tactical display. Thus 
this strategy only monitored the display when the task was in manual mode, and only initiated the 
tactical task when a color change event was noticed. The tactical task terminated as soon as there 
was no longer a colored blip to process. The tactical task executive coordinated the three 
subprocesses by using late events during designation and track identification. These late events 
were when the corresponding keystroke was physically completed, producing a very slow and 
deliberate style of responding and having little or no overlapping for the three subprocesses of the 
tactical task — each response movement must be complete before the next step in processing for 
the tactical task began; no advantage is taken of the ability of the EPIC architecture to overlap motor 
movements. Thus the only overlapping is that provided by perceptual processing, which always 
runs in parallel with other processing. 

Bracketing the Basic Performance

As an illustration of bracketing results, Figure 8 shows the predicted RT1s from the fast and 
slow models for data presented below when sound cues are neither present in the task nor used by 
the model, along with the observed RT1s from the no-sound condition. Throughout this paper, 
observed times are shown as solid plotting points and lines, and predicted times with open points 
and dotted lines. Note first that the predicted times indeed bracket the observed times; the slow 
model times are well above the observed, and the fast model times are substantially below. Also, 
both fast and slow models show an automation deficit effect in which the first few events take 
longer than the matching events during the second high-workload period. 
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Comparing the RTs for Events 7 and 8 relative to those for Events 5, 6, and 10, shows a 
general result that the second of a pair of closely spaced events has an elevated RT, especially for 
the slow model. The mechanisms in the model that produce this result are similar to those that 
produce the psychological refractory period (PRP) effect, a laboratory phenomenon obtained when 
two simple choice reaction tasks are overlapped in time. Basically, because the two events are 
closely spaced in time, the second event processing must wait for some part of the processing of 
the first event to be complete. If enough time intervenes between the events, the second response is 
not delayed because the first response processing will be complete. Extensively previous modeling 
work with EPIC (1997a,b) shows that the PRP effect is due either to conservative unnecessarily 
sequential task strategies, or to peripheral processing bottlenecks, such as the need to move the eye 
from the first to the second stimulus, or to responses having to queue up for control of the same 
motor processor. The fast model has less of this PRP-like effect because it overlaps processing 
very heavily. A similar effect would be expected to appear for the closely-spaced Events 1 and 2, 
but as discussed previously, the automation deficit effect can result in a substantially elevated time 
for Event 1, which can also spill over into Events 2 and 3, hiding the PRP-like effect.

Can Auditory Cues Reduce the Automation Deficit?

If the automation deficit is a result of the subject not knowing which blip to process first 
immediately after task resumption, then supplying a cue to this blip should alleviate the automation 
deficit. The visual display is ambiguous; once multiple blips are present and have changed colors, 
there is no information about which changed first. One approach would be to have the first-
changed blip displayed in some attention-getting fashion such as flashing. But such approaches 
have the disadvantage of making a complex display more complex. Rather, using the auditory 
channel to signal the high priority blip represents a potentially valuable supplement to conventional 
computer interfaces, which have generally emphasized the visual modality and underutilized the 
auditory. 

Ballas and his coworkers collected data in an version of the task that included localized sound 
cues. Since the blips appear at spatial locations on the display, the clearest way to single one of 
them out with an auditory cue would be provide a sound source located at the same apparent 
position. Additionally, the sound itself could indicate the type of the blip (fighter, missile, plane) 
which might help as well. As a brute-force attempt to determine whether a sound cue would 
overcome the automation deficit effect, this experiment used sound to provide both blip location 
and blip type information. 

The basic design of the experiments will be summarized here; details of the experiment can be 
found in (Ballas, Brock, Stroup, Kieras, & Meyer, 1999). Subjects were first trained on the 
tactical task and performed extended practice with the two tasks in a dual task mode - a pair of 
scenarios which did not have the epoch structure discussed above, but simply had a series of 
tactical task events that had to be handled concurrently with tracking. Then the subjects performed 
the adaptive automation version of the task in which they alternated between handling the tactical 
task themselves versus letting the fictitious on-board computer handle it. One experiment had 
subjects performing this task as before with a certain scenario without sound cues. A second, later, 
experiment had subjects performing this task both with and without sound cues, but with two 
different scenarios. For purposes of comparing the detailed strategy effects of sound cues in the 
modeling work, it is essential to compare performance under the same scenario; unfortunately, this 
could only be done by comparing the sound condition from the second experiment with the no-
sound condition from the first experiment that used the same scenario. Note that comparing sound 
and no-sound effects on a within-subject basis would require either exposing subjects to the same 
scenario twice, which would be suspect because subjects might recognize the event patterns, or 
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using two different scenarios, which would add considerable noise to the data since the specific 
event sequences in the scenario are extremely strong determiners of performance. However, the 
second experiment was planned as a within-subject design with two different scenarios, so getting 
a between-subject design on the same scenario required using two groups from two separate 
experiments. There is no compelling reason to consider the subjects in the two groups as being 
differently sampled, but the experiment is clearly not ideal in design. In the rest of the paper, these 
two groups of subjects and their data will be referred to as the sound condition (N = 13) and the 
no-sound condition (N = 11). 

In preview, the experimental results suggest that supplying auditory cues produces a small 
uniform speed-up in performance, rather than a specific elimination of the automation deficit. This 
effect has a straightforward explanation in terms of the EPIC architecture and models for the task. 
However, the final effect sizes are quite small compared to the total variability produced by 
relatively small numbers of subjects performing a quite complex task under conditions of only 
moderate practice. Contributing to the smallness of the effect is the problem that no-sound subjects 
had more practice in the task than than the sound condition subjects, which might have reduced the 
benefits of sound. The individual differences are quite substantial, and the within-subject 
variability is quite large as well. In short, the benefits of providing sound cues are modest and 
similar in size to the corresponding effects produced in psychophysical experiments on auditory 
localization (e.g., Perrott, Saberi, Brown, & Strybel, 1990; Perrott, Toktam, Saberi, & Strybel, 
1991). 

But in the present results, these small effects are appearing in a complex decision-making and 
performance task, and so do not achieve conventional levels of significance with ordinary statistical 
methods. Using unusually sensitive statistical techniques suggests that the effects are systematic. 
Moreover, they appear to be consistent, both across the data set, and in comparison to similar 
auditory location effects reported in the literature. In addition, the effects can be accounted for in a 
straightforward way in the computational models, which argues that they should be taken seriously 
as a basis for future exploration on the use of the auditory modality.
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Empirical Results

Other work with data from this task has concluded that the appropriate way to deal with the two 
responses made to each event is to treat them in terms of the reaction time for the first response, 
RT1, and the delay between the first and the second response to the event, the inter-response-
interval, or IRI. Generally, in the present results the IRI was not informative, so to save space, 
they will not be presented; all of the effects will be discussed in terms of the first response time, 
RT1. 

Effects of Sound during Practice Sessions

A coarse look at the effects of sound comes from comparing performance on two of the training 
scenarios used in the experiments. These scenarios did not involve any automation and resumption 
of the tactical task; rather the subjects performed both the tracking and tactical tasks continuously 
for some time. Thus there is no task resumption sequence of events. Rather, the reaction times for 
each color-change event in the entire scenario are simply averaged together. One group performed 
the scenarios without sound, and had an average RT1 of 2051 ms; the other group with sound 
cuing had an average RT1 of 1867 ms. The difference is 184 ms, or a 9% reduction in favor of the 
sound cuing. However, this difference was not significant at conventional levels (p > 0.2) in a 
between-subjects ANOVA conducted on the mean RT1s for each subject in the two conditions.

Effects of Sound on Automation Deficit Epochs

The more interesting data concerns the automation deficit effect, namely the times to respond to 
each event following task resumption. Figure 9 shows the mean RT1s for each event for the 
groups with sound cues and no sound cues, based on the mean RT1 for each subject for each 
Event number. The error bars shown are approximate 95% confidence intervals computed for the 
11 or 13 subject means underlying each plotted mean data point. While the variability is quite large, 
it is also clear that the mean for the sound condition is consistently lower on each event except for 
Events 2 and 8. The fact that the times are equal for the two groups at these two points is an 
argument that the generally lower times for the sound group was not simply a result of some 
overall gross difference between the two subject groups.

As would be expected from the large confidence intervals, when these data were subjected to an 
ANOVA on each subject’s mean RT1 for each event number (made balanced at 11 subjects/group 
by dropping the fastest and slowest subject from the larger sound group), the effect of sound, and 
interaction of sound and event were clearly non-significant (p > .3). Of course, the effect of event 
was quite significant. 

Effects of Sound Cuing on Individual Performance

The overall mean RT1s for the no sound and sound conditions, averaged across events, were 
2449 and 2180 ms, respectively, a difference of 269 ms, similar to, and somewhat larger than, the 
effect size observed in the practice sessions. Inspection of the individual subject overall means 
suggested that the effect of sound was to speed up the slower subjects. That is, the slowest 
subjects with sound cuing were faster than the slowest subjects without sound, but there was little 
difference in the fastest subjects. To show this quantitatively, each group was split at its median. 
The average RT1 for the subjects below their group’s median was 1730 ms for no-sound versus 
1636 ms for sound, a difference of only 94 ms. In contrast, the average RT1 for subjects above 
their group’s median was 3210 for no-sound versus 2780 for sound, a rather large difference of 
430 ms. 
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Determining the statistical significance of the above-median difference in means is not simple, 
since under the null hypothesis of sampling subjects’ mean RT1s from the same population, the 
expected difference between the above-median means is not zero, because of the unequal group 
size and the clearly non-symmetrical distributions. Rather than attempt to derive the distribution of 
this statistic under assumed population distributions, a powerful, but little-known, technique was 
used to assess the statistical reliability of the observed difference in above-median mean RT1s. 
This is Fisher’s method of randomization (see Bradley, 1968, for a presentation). Basically, under 
the null hypothesis of sampling from identical populations, each subject’s score is equally likely to 
turn up in one group or the other (the different sample sizes taken into account). Thus the 
distribution of the test statistic (the difference between the above-median mean RT1s) can be 
computed by listing all possible assignments of the scores to the two groups, computing the test 
statistic for each combination, and tabulating the relative frequencies of each value. The 
significance level of the actual observed result (a difference of 430 ms) is given by the proportion 
of computed values equal to or greater than the observed result. This technique has the virtues of 
producing an exact significance value without the possible distortions produced by assuming a 
normal or other approximation to the population distribution, and uses all of the metric information 
in the data, unlike the closely related tests based on ranks. 

A simple computer program was used to generate all of the 2,496,144 possible data 
combinations and count the number whose test statistic exceeded the observed value. This yielded 
a significance level of 0.130952. As a check, another computation showed that the difference 
between the overall means of the two groups was significant at 0.200318, somewhat more 
significant than the routine ANOVA result. Thus, if one is willing to accept larger-than-customary 
probabilities of Type I error, these results suggest that the sound cuing did improve general 
performance, and did so primarily by helping the slower subjects perform faster.

Effects of Sound Cuing after Removing General Individual Differences

A final look at the data had two goals: one was to increase the sensitivity of the analysis of 
statistical reliability; the second was to put the data into a form more suitable for comparing to the 
computational models by removing general individual differences. The rationale for this 
transformation requires some discussion. 

Testing strategy versus general individual differences. Most computational models 
of cognition, or cognitive architectures used in building such models, make strong statements 
about the strategy subjects use to perform the task, because this determines the type and sequence 
of perceptual, cognitive, and motor operations involved in performing the task. Often it is 
impractical to model each individual subject’s strategy meaningfully, so the modeler simply devises 
some single strategy (or small number of strategies) that are believed to represent what the subjects 
generally do in the task. The extent to which the observed performance of the subjects departs from 
this assumed strategy is the critical measure of the accuracy of the model. This information is 
conveyed by the consistency with which each individual subject’s data follows the pattern of 
performance times predicted by the strategy-following operation of the model.

In contrast to this strong commitment to the architecture and task strategy, most models and 
architectures make no statements about the range of performance produced by general individual 
differences. For example, even if subjects all followed the same strategy, some subjects might be 
basically faster than others, or more strongly influenced by task factors than others. To use a 
computer analogy, all subjects might be executing the same program, but individual subjects might 
have their own CPU clock speed, their own LTM access time, and so forth. Such differences 
would produce a wide range not just of average baseline performance times, but also a wide range 
of average effects produced by factors incorporated in the strategy - essentially the scale of the 
effects in the data. 
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The architecture and models do not make any claims at all about the distribution of these 
differences in baseline or scale of performance times. Thus random variation between individual 
subjects’ overall mean times and scale of times is simply not relevant to assessing the validity of 
the model. However, this irrelevant variation increases the total noise level in the data, making 
significance tests less diagnostic of the effects of interest, and comparisons to models less valid. 
Thus a clearer picture can be obtained for how well performance data from a group of subjects 
conforms to a strategy-following model by removing the irrelevant variability in the data (between-
subject differences in baseline and scale) and leaving only the relevant variability (within-subject 
differences in due to noise and strategy variation). Ipsatization of the data, a technique used in 
individual-differences research, can perform this task in a straightforward way. 

Ipsatization method. The ipsatization process puts all of the subjects on the same baseline 
and scale, thereby removing between-subjects variability, but leaves within-subject variability. The 
raw data, consisting of the mean RT1 for each subject on each event, were first replaced by within-
subject z-scores calculated as follows: For subject i, the mean mi and standard deviation si  of his 
or her set of 10 xi,j  RT1 values were calculated. Then for each score j for subject i, the RT1 value 
xi,j was replaced by the z-score having the value: 

 z
i,j

 = s
i

x
i,j

 - m
i

The resulting set of z-scores will have a mean of zero and standard deviation of one, meaning 
that all of the subjects now have the same baseline (mean) and scale (standard deviation). The 
remaining variability in the data directly reflects the extent to which the pattern of changes in RT1 is 
the same across subjects. For example, if all subjects have a large z-score for Event 1, and a small 
z-score for Event 7, then they all demonstrate an automation deficit effect that is independent of 
their individual differences in baseline and scale.
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It is difficult to reason about effect sizes with this z-score form of the data. Thus, for 
convenience in plotting and working with the data, it was transformed back to the original domain 
of baseline and scale. The overall mean M and standard deviation S of the raw mean scores (mean 
RT1s for each subject on each event) was calculated separately for the no-sound and sound 
groups. This single pair of values for each group was then used to transform the individual z-
scores back to same overall mean and variability shown in the previous plots for each group:

 T
i,j

 = S • z
i,j

 + M

The final result is a set of transformed scores in which the individual differences in between-
subject baseline and scale have been removed, but the within-subject variability remains and has 
been normalized to the same value, and the mean difference between the two groups has been 
preserved. 

Ipsatization results. Figure 10 compares the raw and ipsatized mean RT1s to show how the 
overall means are unaffected, thanks to the back-transformation of the z-scores to the original 
baseline and scale. Figure 11 compares the ipsatized data for the two groups with approximate 
95% confidence intervals based on the variability of the scores underlying each plotted mean. Since 
these intervals are based only on within-subject variability, they are rather smaller than in the raw 
data (Figure 9), but they still reflect important variability in task performance. Overall, this plot 
bolsters the suggestion that the sound group generally performs faster than the no-sound group, 
with definite exceptions on Events 2 and 8, as mentioned above. The transformed data plotted in 
Figure 11 will be used in the modeling results reported below.

The transformed ipsatized scores can also be subjected to an ANOVA, but the results require 
careful interpretation. Dropping the same fastest and slowest subjects from the sound group as 
before to get equal sample sizes, the main effect of both event and sound was strongly significant 
(p < .00), but the interaction of event and sound was grossly non-significant. The no-sound/sound 
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difference appears significant in this analysis because the difference between the groups was first 
removed along with the other between-subjects variability, and then replaced as a constant 
difference between the groups in the back-transforming process. Since the within-subjects 
variability is not involved in testing this effect, the error term has thus been reduced to practically 
zero. (Note that an ANOVA on the z-score data would by definition produce no effect at all of the 
group factor, since all subjects would have a mean of zero.) However, it is useful to note that the 
lack of a significant interaction suggests that the effect of the sound difference is indeed uniform 
across the events; there is no evidence that the sound cue resulted in a fundamentally different task 
strategy, even when the sensitivity of the analysis to the sound effect was greatly enhanced by the 
ipsatization.

Despite the lack of a meaningful main effect in this last ANOVA, the difference between the two 
groups in Figure 11 relative to the confidence intervals based on within-subject variability, 
suggests that the sound group was consistently somewhat faster than the no-sound group, by a 
constant amount, with the exception of Event 2 and 8, as noted before. There is a hint that Event 1 
is somewhat faster with sound present than without sound, relative to the time for subsequent 
events.Taking the difference between Event 1 and Event 7 as a basic measure of automation deficit, 
gives a difference of 824 ms for the no-sound group, and a difference of 698 ms for the sound 
group. This difference of only 124 ms does not approach significance. Thus there is no evidence 
for a difference in strategy produced by the availability of sound; rather there is simply a somewhat 
faster responding across the board. Although this effect is not significant at the normal levels of 
significance, it is still a useful exercise to see how an effect like this could be accounted for within 
a computational cognitive architecture.

Modeling the Effects of Localized Sound

Hypothesis 1: Localized Sound Guides Stimulus Selection

If sound helps to identify the relevant blip, then it should play a role in stimulus selection. More 
specifically, the stimulus selection process could give priority to a blip that is making a sound (an 
unambiguous indicator of the high-priority blip) rather than choosing only on the basis of the 
possibly ambiguous visual information. Following through on this hypothesis required that the 
EPIC architecture be able to associate a sound source at a location with a visual object at that same 
location. EPIC as originally developed (Kieras & Meyer, 1997) did not have an spatial 
representation in the auditory modality, so a significant change to the architecture had to be made. 
EPIC originally had an internal representation of visual objects arranged in space - in essence a 
computational representation of the notion of object files (cf. Treisman, 1988). When a production 
rule commanded the oculomotor processor to move the eyes to fixate one of these objects, the 
oculomotor processor would retrieve the location of the object from this internal spatial 
representation, and use it to program the eye movement to the object. A similar approach is used 
for aimed manual movements such as pointing, or the movement used to operate the joystick in the 
tracking task. 

To accommodate auditory localization, the architecture was generalized: The objects in the object 
file representation were generalized to have not just visual properties, but auditory properties as 
well. If an object is emitting localized sound but is not visible, it will still be present in the object 
file spatial representation, with its location in space specified by the location of the sound source. 
The visual location, if available, is assumed to be more accurate and so dominates the auditory 
location information. Thus an object can now be selected based on its sound properties, and the 
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eyes moved to it using the sound location. This model will be called the sound-selection model.

The corresponding modification to the model strategy was limited to the stimulus selection 
rules. First priority was given to an object designated by sound over objects with a color, and the 
eyes immediately moved to it. Since the sounding object was always the highest priority blip, this 
approach guarantees that the blips would be inspected in correct priority order. This was the only 
change made to the model strategy.
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Figure 12. Comparison of the bracketing models that do not use sound with observed RT1s from both the no-
sound condition (upper panel) and the sound condition (lower panel). 



Results. The first question is how the sound and no-sound data compare to a model that does 
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not use sound. Accordingly, both panels of Figure 12 show predictions from the fast and slow 
models that do not use sound. The upper panel shows the data from the no-sound condition (and is  
identical to Figure 8), and the lower panel shows the data from the sound condition. The no-sound 
model still brackets the sound data, but since the sound data is somewhat faster than the no-sound 
data, it lies closer to the fast no-sound model. Relative to the model predictions, the sound and no-
sound data follows the same pattern, but the sound data is closer to the fast model overall. The 
hinted-at smaller automation deficit for the sound condition shows up as an apparent decrease in 
the Event 1 time relative to the models in these plots. But the basic result is that both sound 
conditions are consistent (inside the brackets) with a model that does not use sound. This is a 
simple consequence of the fact that this model has a very wide bracket since it does not constrain 
the predicted data very much, and so a wide range of observed data would be consistent with it.

However, the sound-selection model does constrain the predicted data to a greater extent. The 
key result appears in Figure 13, which shows the sound data with the bracketing sound-selection 
models that use sound to guide stimulus selection. Both the slow and fast model are quite close to 
the observed value on Event 1. The use of the sound cue immediately directs the model to work on 
the correct first blip; the slow model performs quite rapidly at this point because most of the slow 
model strategy options affect what the model does while underway, and not so much how quickly 
it resumes the tactical task. Compared to the no-sound slow model, the sound-selection slow 
model demonstrates a huge reduction of automation deficit as represented by the Event 1 versus 
Event 7 difference. In contrast, the fast model does not change much between selection and no-
sound versions, as is made clear in Figure 14.

Figure 14 compares just the model predictions. The fast model benefits not at all from the use of 
sound. The reason is that the fast model is monitoring the tactical display at all times, and when the 
tactical task is in manual mode, the fast model keeps the eyes on a blip in the tactical display as 
long as there is an unprocessed blip present. Thus a sound cue to the highest priority target is no 
benefit, because the eyes are probably already on the relevant blip. The slow model only benefits 
substantially from the sound cue on the Event 1, because there can be considerable uncertainty in 
the absence of sound about which blip is highest priority. Once the eyes are on the tactical display, 
as for Events 2, 3 and 4, again the sound cue is only slightly useful in distinguishing the correct 
blip. Thereafter, again the sound cue does not help distinguish the blips to any great extent because 
the tactical display is being monitored.

Conclusion. Thus the benefit of sound for stimulus selection appears to be quite limited in 
terms of the shape of the automation deficit profile - the very first blip can be selected more quickly 
if the subject is following something like the slow strategy, but that is the only substantial effect. 
This comparison does lend some credence to apparent but non-significant result in the data that 
sound produces a lower RT1 on Event 1 compared to the no-sound condition. If some of the 
subjects were following something like the slow strategy, they would benefit somewhat on Event 
1, but as both the data and models suggest, sound really doesn’t change the task strategy for 
subsequent events - both the fast and slow models are almost indistinguishable. While this explains 
the lack of a different pattern produced by sound cues in the subjects’ performance, it does not 
explain the general, across-the-board, improvement in performance produced by the use of sound.
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Hypothesis 2: Localized Sound Triggers Eye Movements

The failure of the sound selection model to account for the general benefit of sound leads to a 
second hypothesis on the effect of localized sound in this task. Various experimental results show 
that providing localized sound improves reaction time in a visual choice reaction task. In typical 
such studies (e.g. Perrott, Saberi, Brown, & Strybel, 1990; Perrott, Toktam, Saberi, & Strybel, 
1991), the subject is seated in the center of a spherical arrangement of small visual displays on 
which a choice reaction stimulus can be presented. Each display is mounted on a sound transducer, 
which produces a sound located at the same position as the display. The subject begins each trial 
looking at the display at the straight-ahead position. The sound and the visual stimulus are 
presented simultaneously. In the control condition, the sound always comes from the straight-
ahead position, while the visual choice stimulus appears in various positions. In the experimental 
conditions, the sound comes from the same position as the visual stimulus. The results show a 
substantial benefit of the sound coming from the stimulus location, especially when the stimulus 
position is at a large angle from the straight-ahead position. But over ranges similar to the display 
in this study, Perrott et. al. (1990) observed effects of about the size observed in these data. For 
example, they reported benefit of localized sound of about 175 ms for targets within 10 degrees of 
fixation, and 200-500 ms for targets within 10 to 80 degrees.

Given the extreme simplicity of tasks such as Perrott et al., it seems unlikely that the sound cues 
are being used in some subtle way in the task strategy. Rather, it seems more likely that this 
facilitation is due to a basic orienting reflex - perhaps localized sound simply triggers an eye 
movement to the location of the sound source. Without the localized sound cue to the stimulus 
location, the task requires an extensive and slow visual search, involving head movements at large 
angles. With the cue, there is an immediate eye and head movement to the source of the sound, 
which then “automatically” places the eyes on the visual stimulus.

Investigating this hypothesis required an additional architecture change. The EPIC architecture 
already included reflexive eye movements made in response to sudden visual onsets or movements 
of visual objects. Only a minor change was required to have a sound onset trigger a reflexive eye 
movement as well. The same dynamic timing characteristics were used as in the visually-triggered 
reflex, and also similarly, the reflex response can be enabled or disabled by production rule 
actions. For simplicity, the sound-selection model strategy of giving priority to a sounding blip 
was still used; the oculomotor reflex will already have started the eye on its way to the sounding 
blip when the stimulus selection strategy redundantly (but with no significant loss of time) decides 
to move the eye there. Thus the cuing benefit of the sound can be combined with its orienting 
reflex properties, and the same model strategy will perform correctly even in the absence of sound. 
The resulting model is called the sound-reflex model.

Results. Figure 15 shows the observed RT1s in the sound condition compared to the sound-
reflex bracketing models. In marked contrast to the sound-selection and no-sound models, these 
models bracket the data much more tightly; the slow model is facilitated by the sound reflex so 
much as to essentially match the observed mean RTs at several points in the data. Thus, even if 
subjects were following a strategy much like the slowest-reasonable, their performance would be 
similar to that predicted by the corresponding model. 

Figure 16 compares the fast and slow predictions from the sound-reflex model with the no-
sound model. Again the fast models are not affected by the use of sound, but the slow sound-
reflex model not only has a substantially faster Event 1 time, but is also generally faster than the 
no-sound model. This is a remarkable performance facilitation to be produced by such a simple 
architectural mechanism.
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Figure 17 shows the comparison between the sound-selection and sound-reflex models. Again 
the fast models are basically indistinguishable. Because the task resumption delays and PRP-like 
effects render the faster reflex eye movements irrelevant at the beginning, the slow sound-selection 
model performs the first events as quickly as the slow sound-reflex models. But thereafter, the eye 
movement reflex allows the the sound-reflex model to respond generally faster than the sound-
selection model, which must “decide” where to move the eyes. 

Conclusions. The overall implications of these results lies in where subjects’ strategies stand 
in relation to the fastest-possible and slowest-reasonable models. In general, the group of subjects 
is assumed to produce performance somewhere between the fastest-possible and slowest-
reasonable models, either in choosing their own individual trial-by-trial strategy, or their own 
individual whole-experiment strategy. In no case is their aggregate performance as fast as the 
fastest-possible model, meaning that on the whole they are definitely following some slowest-
possible strategy options, such as attempting the tracking task between tactical task events. A 
single-strategy model could be devised that contains a judicious mixture of slowest-reasonable and 
fastest-possible features. Such a model could be easily constructed simply by minor performance 
enhancements to the slowest-reasonable sound-reflex model to minimize the PRP-like effect in the 
early events and anticipate the color-change somewhat for the middle events. 

But for present purposes, the question is how the localized sound produces a benefit of a 
relative small but consistent size. Only the sound-reflex model both gets close to the observed 
performance level and produces a consistent benefit of sound. Thus, the sound-reflex hypothesis 
appears to be the correct explanation for the benefits of sound in these data.
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General Conclusions

Based on the modeling results, localized sound can be of value in a complex task in at least two 
ways: one is by removing ambiguity in which item on a visual display should be selected for 
processing; the other is by triggering a reflexive eye movement to a location of interest in the 
environment. In the modeled task, the reflex function appears to be more important and pervasive 
than the selection function.

The substantive force of these results are limited due to the fundamental problems in this data 
set, as previously discussed. However, the basic conclusion about the role of sound cuing as a 
trigger for eye movements is justified both from related empirical work, the consistency of its 
appearance in these data, and the simplicity of its explanation in terms of the EPIC architecture. 

There are some key methodological lessons to be learned from this work as well. The basic one 
is that attempting to demonstrate effects of low-level processing mechanisms in a complex task is 
fraught with empirical difficulties that are easy to underestimate. Traditional notions of good 
experimental design that increase the sensitivity of the data are hard to apply in complex tasks in 
which we seek to characterize human performance in detail. But in defense of the present work, it 
should be noted that first, multi-modal interfaces have so much intuitive appeal that taking risks on 
exploring them empirically is justified, and second, the present sound-cuing experiment was 
deliberately designed as a “kitchen sink” study that used the sound cuing as fully as it seemed 
possible to do so. If we had predictions that the effects of sound would be so small, they would 
simply have been unbelievable given the intuitive expectations, and the experimental results would 
have had to be collected anyway.

The work makes two positive methodological contributions. The first is a demonstration that 
model construction can help pull interesting and useful results out of data in which the task 
complexity threatens to overwhelm a small effect. The model essentially accounts for much of the 
complex variation produced by the task and its complicated stimuli; the residuals remaining after 
this account indicate the presence of small effects that in turn can be accounted for by carefully 
elaborated additions to the model. This approach of using models to isolate small effects in 
complex tasks might be a valuable strategy in future research.

A second positive methodological result is the value of bracketing models in reasoning about the 
theoretical implications of a set of data. As argued in Kieras & Meyer (2000), constructing a single 
model that closely fits the data is both difficult and relatively under-determined, whereas bracketing 
models can be constructed fairly rapidly and consistently. This work, along with the similar work 
on other data from this task (Kieras, Ballas, & Meyer, 2001) makes a valuable contribution toward 
the successful and efficient use of cognitive modeling by showing how conclusions can be drawn 
about possible mechanisms just by comparing bracketing models with each other as well as with 
the data.
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