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ABSTRACT
Direct manipulation involves a large number of interacting 
psychological mechanisms that make the performance of a 
given interface hard to predict on intuitive or informal 
grounds. This paper applies cognitive modeling to explain 
the subtle effects produced by using a keypad versus a 
touchscreen in a performance-critical laboratory task. 
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INTRODUCTION
Direct manipulation is an interface design concept in which 
the user manipulates or selects objects on a screen with a 
pointing device rather than types in syntactically structured 
commands. Although almost everybody believes that direct 
manipulation interfaces are superior, the psychological 
theory involved has not been systematically developed (see 
[4] for a recent review). Perhaps the most common 
presentation is in terms of Norman’s [ 5] concepts of the 
“gulf of evaluation” (the user must interpret the display) 
and the “gulf of execution” (the user must determine how 
to act on the system). Direct manipulation interfaces are 
thought to reduce these two “gulfs”, meaning that the user 
can more easily understand the system state revealed on the 
display and more easily figure out how to act on the system 
to achieve the desired result. 

But from the psychological point of view, direct 
manipulation interfaces confound several factors. For 
example, they usually involve recognition rather than 
recall; visual search instead of verbal memory; concrete 
rather than abstract metaphors; simpler, more consistent, 
procedures (e.g. as revealed by GOMS analysis); and most 
interestingly, they stress different perceptual and motor 
capabilities, such as mouse movements instead of keyboard 
entry. Since we lack a well-articulated psychological theory 
of how the different interface paradigms operate at the 
detailed cognitive, perceptual, and motor levels, we do not 
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know how these differences will interact in determining the 
quality of actual interfaces. 

This paper presents an initial theoretical treatment of the 
nature of direct manipulation, based on some data 
previously collected on this topic [1, 2], that uses a 
complex performance-critical task to compare a keyboard-
operated interface with a touchscreen interface. Since the 
display is the same, these results address how the “gulf of 
execution” is affected by direct manipulation. Due to 
limitations on space, this is necessarily only a subset of a 
large and complex set of results; more complete treatments 
will be presented elsewhere.

THE TASK AND THE INTERFACES
The task was developed by Ballas, Heitmeyer, & Perez [1, 
2] to resemble a class of multiple tasks performed in 
combat aircraft in which the user must both perform a task 
such as tracking a target, and at the same time keep up with 
the tactical situation using sensors such as radar, with 
partial automation support by an on-board computer. Figure 
1 shows a sketch of the display as it appears for the Keypad 
interface. The right hand box contains a pursuit tracking 
task in which the cross-hairs must be kept on the target 
with a joystick operated with the right hand. The left-hand 
box is a radar-like display that contains a tactical decision 
task in which objects (“tracks”) must be classified as 
hostile or neutral based on their behavior, and the results 
entered by means of a keypad under the left hand. These 
objects appear as icons that represent fighter aircraft, cargo 

Fig. 1. Screenshot of the Keypad interface display.



airplanes, and SAM sites. A number identifies each object 
on the display. To avoid the overloaded term “object” or 
the military jargon of “track”, the term blip will be used to 
refer to the objects on the radar display. Similarly, “user” 
will refer to the experimental participants.

The blips appear near the top of the display, and then move 
down. The fictitious on-board computer attempts to classify 
each blip, indicating the outcome after some time by 
changing the blip color from black to red, blue, or amber. If 
the blip changes to red (hostile) or blue (neutral), the user 
must simply confirm the computer's classification by typing 
a code key for the hostile/neutral designation followed by 
the key for the blip number. If the blip changes to amber, 
the subject must observe the behavior of the blip and 
classify it based on a set of rules, and then type the hostility 
designation and blip number. After the response, the blip 
changes color to white, and then disappears from the 
display some time later. The basic dependent variable is the 
reaction time to the events, measured from when a blip 
changes color to when each of the two keystrokes are made 
in response. 

Ballas et al. varied the format of the tactical display and the 
response. The above description is for the graphical keypad 
interface; the other combinations consisted of using a 
tabular display instead of the graphical radar-like display, 
and a touchscreen response procedure instead of the 
keypad. This work concerns only the graphical display with 
both the keypad and touchscreen responses. In the 
Touchscreen interface, the first response is to identify the 
track by touching the blip on the screen, and the second 
response is to designate the hostility by touching a wide 
color-coded bar at the side of the tactical task display; a 
left-hand red bar corresponded to hostile and a right-hand 
blue bar to neutral. Notice that the order of the responses in 
logical terms was reversed for the Touchscreen interface 
compared to the Keypad interface. 

Ballas et al. also studied the effects of adaptive automation. 
From time to time during the task, the tracking task would 
become difficult, and the on-board computer would take 
over the tactical task, signaling when it did so. The 
computer would then generate the correct responses to each 
blip at the appropriate time, with the color changes showing 
on the display as in the manual version of the task. Later, 
the tracking would become easy again, and the computer 
would signal with a loud buzzer tone and then return the 
tactical task to the user to perform. How users dealt with 
the transition was measured by recording the time required 
to respond to the individual events, counting from when 
they had to resume the tactical task.

THE PUZZLES IN THE DATA
Figure 2 shows these results in terms of the reaction time 
(RT) for the second response, which represents the total 
time to respond to an event, for the two interfaces. The 

horizontal axis corresponds to each event following 
resumption of the manual tactical task; i.e., Event 1 is the 
first color-change event, Event 2 is the second, and so 
forth. Above the x-axis is shown the time interval between 
events in seconds. Events 1, 2, 3, and 4 were set to appear 
at closely spaced increasing fixed intervals, as are Events 7 
and 8. The other events are widely spaced at randomly 
chosen intervals whose mean values are shown. Thus there 
is a high workload at the beginning of task resumption, a 
low-workload period, followed by another high-workload 
peak with the same event types and spacing, and a final 
low-workload period. In all of the graphs in this paper, the 
Keypad interface is represented with circular plotting 
points, the Touchscreen  with square points.

The most puzzling result in Figure 2 is that the time to 
complete the processing for each event is roughly the same 
for the two interfaces despite the apparent “naturalness” or 
“directness” of the Touchscreen interface compared the 
Keypad. Even more puzzling is the fact that sometimes the 
Keypad interface is faster that the Touchscreen. In fact, the 
Touchscreen is superior to the Keypad only during first few 
events. As noted by Ballas et al. [1, 2], there is an 
automation deficit effect, in which for a time after resuming 
the tactical task, users produced longer response times in 
the tactical task compared to their normal steady-state 
manual performance. This effect represents some of the 
serious concerns about possible negative effects of 
automation in combat situations; if the automation fails, the 
operator can lack situation awareness, and it might take a 
long time to “catch up.” 

The Keypad interface shows a strong automation deficit 
effect, where the times for Events 1, 2, and 3 are longer 
than the matched Events 7, 8, and 9, producing an overall 
descending shape to the RT profile. In contrast, the 
Touchscreen interface is fairly flat, showing little or no 
automation deficit effect. 

0

1000

2000

3000

4000

R
T

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10

Event

1.5 3 6 15 16 19 1.5 3 30

Fig. 2. Observed reaction times for Keypad (circles) and 
Touchscreen (squares) as function of event since task 
resumption. Inter-event intervals (sec) are shown above the 
x-axis. Note the rough equivalence of the two interfaces.



While lesser automation deficit accords with the assumed 
superiority of direct manipulation, one would surely expect 
the direct-manipulation Touchscreen interface to be 
superior to the clumsy Keypad interface across the board. 
But the the advantage seems to be limited to the relief of 
automation deficit. These results are puzzling for a simple 
view of direct manipulation.

Explaining these phenomena requires much more detailed 
analysis than the usual generalizations about the virtues of 
direct manipulation. We would argue that in fact unaided 
intuition or conventional wisdom about fundamental 
interface design choices lacks enough precision to be useful 
to designers trying to arrive at an efficient interface for a 
demanding task. In the remainder of this paper, we will 
present computational models that explain these 
phenomena using a comprehensive architecture for human 
cognition and performance. These models explain in detail 
how the Touchscreen interface does indeed “narrow the 
gulf of execution” in a sense, but this has more to do with 
the different ordering of the two responses, rather than the 
“directness” of the interface. The Touchscreen interface 
also differs from the Keypad interface over how the eye can 
be moved, meaning that changes that affect the “gulf of 
execution” can also affect “the gulf of evaluation.” 

MODELING THE INTERFACE TASKS
The EPIC Cognitive Architecture
The models for the two interfaces were constructed using 
the EPIC architecture for human cognition and 
performance, which provides a general framework for 
simulating a human interacting with an environment to 

accomplish a task. Due to lack of space, EPIC cannot be 
described in full detail here. A more thorough description is 
presented in [6]. In brief, EPIC resembles the Model 
Human Processor [3], but differs in that EPIC is an 
implemented computational modeling system and 
incorporates more specific constraints synthesized from 
human performance literature. Figure 3 provides an 
overview of the architecture, showing perceptual and motor 
processor peripherals surrounding a cognitive processor; all 
of the processors run in parallel with each other. To model 
human performance of a task, the cognitive processor is 
programmed with production rules that implement a 
strategy for performing the task. When the simulation is 
run, the architecture generates the specific sequence of 
perceptual, cognitive, and motor events required to perform 
the task, within the constraints determined by the 
architecture and the interface. For example, the current 
orientation of the eye determines how visual events are 
detected and recognized, and movement times are governed 
by relationships such as Fitts’ Law. 

A few key features of EPIC can be summarized; additional 
ones will be introduced as needed. The perceptual and 
cognitive processors are always operating in parallel, but it 
is up to the task strategy (the production rule programming) 
to take advantage of the parallel capabilities of the motor 
processors. Cognitive processing is multi-threaded, in that 
multiple sequences of production-rule execution can be 
underway simultaneously, which enables sophisticated 
models of complex multiple-task situations [9, 11].

Task 
Environment 

Cognitive 
Processor

Working
Memory

Production Rule
Interpreter

Vocal Motor
Processor

Visual
Input

Auditory
Input

Long-Term
Memory

Auditory
Processor

Visual
Processor

Production 
Memory

Ocular 
Motor

Processor

Tactile
Processor

Manual 
Motor

Processor

Simulated 
Interaction 
Devices

Fig. 3. The overall structure of the EPIC architecture. Perceptual-motor peripherals surround a cognitive processor.



Task Strategy
To model the present task, a set of production rules were 
written for each interface, organized in a hierarchy shown 
in Figure 4 reflecting the overall structure of the task. Since 
EPIC allows fully multithreaded cognitive processing, 
many of the tasks shown in the figure execute in parallel. 
The top level is a dual-task executive process that controls 
execution of the tracking task, the tactical task, and a task 
that monitors the tactical display for color changes and 
other relevant events. When the tactical task is automated, 
the dual-task executive runs only the tracking task, 
effectively ignoring the tactical display entirely. When the 
auditory signal to resume the tactical task is recognized, the 
executive shuts down the tracking task, starts the 
monitoring process and initiates the tactical task process to 
handle the first event. Notice that the tactical task is 
controlled by its own sub-executive process. When the 
tactical task no longer has events to process, it terminates, 
and the dual-task executive restarts the tracking task. If the 
monitoring task then detects events such as a color change 
in peripheral vision, the dual-task executive will shut down 
the tracking task and restart the tactical task to handle the 
event. When the signal is made to return to automated 
mode, the executive shuts down everything except the 
tracking task, and waits for the next resumption signal.

Tactical task executive 
The tactical task executive controls three subprocesses. For 
the Keypad interface, stimulus selection first selects a 
“blip” on the screen to be processed, then the hostility 
response process selects and executes the hostility-
designating response, and then the identification response 
process selects and executes the response that identifies the 
track. For the Touchscreen interface, the identification 
process executes second, followed by the hostility response 
process. Once both responses have been made, the tactical 
executive can repeat the overall process starting with 

selecting a new stimulus. If there are no more blips to 
process, the tactical task terminates. 

Stimulus selection process
The basic signal to process an event is that a blip changes 
color from black to red, blue, or amber. Stimulus selection 
chooses a blip to process, taking into account that if 
tracking is underway, the eye will be kept on the tracking 
target, so most of the tactical display is in peripheral vision. 
While the color change can be noticed in peripheral vision, 
the color itself is not available except parafoveally. But 
once the eye is on the tactical display, the colors for most 
of the blips will be available. Thus stimulus selection may 
have to examine more than one blip before finding one 
ready to process. A blip is chosen for examination or 
processing according to a priority scheme that favors 
colored blips first, color-changed blips second, and 
unknown blips third. The eye is then moved to the chosen 
blip; if the blip is black or white, it cannot be processed, so 
another blip is chosen. If it is red, blue, or amber, it is 
marked as the selected stimulus and handed on to the 
response processes. 

In addition, a color-change event can be anticipated: if a 
blip is close enough to the bottom of the display, it can be 
chosen for watching until it or another blip changes color. 

Either way, once stimulus selection places the eye on the 
blip, the visual processing necessary to recognize the 
behavior of the blip is underway while other processing is 
going on. The time required to recognize the behavior is on 
the order of a second, and was independently estimated for 
each type of blip. 

Keypad response processes
The first response is to identify the hostility of the selected 
blip. If the blip is red or blue, the proper hostility response 
is simply the corresponding keystroke; this is selected and 
executed by a sequence of production rules like those in 
other EPIC models of choice reaction time [9, 10]. 
However, if the blip is amber, the process must wait, with 
the eye tracking the blip, until the behavior of the blip has 
been visually recognized. The identification response 
process then moves the eye to the blip number and waits 
until it has been recognized. The corresponding keypad 
response is then selected with a series of choice reaction 
rules and executed. 

Touchscreen response processes
The first response is to identify the track; although the track 
number is present on the display, it is irrelevant. An aimed 
finger movement is made to “poke” the blip on the 
touchscreen; note that the eye is already on the blip, and 
must remain there to guide the aimed movement. 

The second response is to designate the hostility. If the blip 
is red or blue, the corresponding response bar target can be 
quickly selected. If it is amber, it must wait for the behavior 
to be recognized. A poke movement is then made to the 
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Fig. 4. The structure of the production-rule task strategy for 
both interfaces.



selected response bar on the touchscreen; this movement 
also requires visual guidance. The eye is commanded at the 
same time to move to the response bar; it will arrive 
quickly enough to guide the finger movement. 

Overlapping Tactical Task Subprocesses
These three tactical subprocesses can run in parallel, or 
overlap, to a considerable extent, as long as the task 
constraints are observed. The two adjacent responses must 
be made for a single track, and the responses must be made 
in the correct order. Thus the second response process must 
wait for the first response to be produced, but the duration 
of the wait need only be long enough to produce the correct 
ordering. Thus some of the second response processing 
could be concurrent with the processing and production of 
the first response. In addition, the stimulus selection 
process for the next stimulus could overlap with the second 
response process. 

The models were built in such a way that the tactical task 
executive could control the amount of overlap in the 
tactical task subprocesses. The issues in such overlapping 
have a strong family resemblance to how computer 
Operating Systems are organized to allow prioritized 
concurrent task execution and manage the allocation of 
peripheral resources to different tasks so as to maximize 
system throughput [8]. 

These models have both constraints and opportunities for 
overlapping. The Keypad model assumes that the user gets 
enough practice so that it is not necessary to look at the 
keys, opening the way for considerable overlapping since 
the eye can be moved while responses are being selected 
and executed. But the Touchscreen interface involves 
aimed finger movements which require that the eye be on 
the target of the movement, effectively locking the eye to 
the hand until responding is complete. On the other hand, 
visual recognition of the blip behavior will be proceeding 
during identification responding, whereas the Keypad 
interface forces a separation of hostility recognition and 
identification responding. 

The Bracketing Heuristic
The amount of overlapping enforced by the executive 
strategy has a major impact on task performance [11]; 
“daring” strategies that maximize overlapping can produce 
substantially faster performance than more “conservative” 
strategies. This aspect of task strategy is not strongly 
determined by either the task requirements or the 
architecture, but rather is a result of factors such as the 
amount of practice, level of motivation, or long-term 
fatigue avoidance, or even the user’s possibly haphazard 
efforts to formulate a task strategy [7]. Such optional 
aspects of task strategy can be identified only by careful 
iterative construction of models that match the observed 
data in fine enough detail. 

Here we present a simpler, more robust, analysis based on 
the bracketing heuristic [7]. The concept is to start with a 
basic strategy for the task, such as the one just outlined, and 
permute it into two versions: a fastest-possible strategy that 
drives the architecture at the highest speed possible that 
still meets the basic task requirements, and a slowest-
reasonable model that conforms to the task instructions and 
requirements with no “bells and whistles” to increase 
speed. Observed performance should fall somewhere 
between these two models, which thus bracket the actual 
performance. 

Bracketing is a way to construct truly predictive models in 
complex task domains where the optional strategy 
optimizations users would device cannot be forecast. In 
addition, bracketing could guide the construction of models 
that match the data. However, bracketing can also be used 
to explain phenomena independently of the optional aspects 
of task strategies. Thus, bracketing models for the Keypad 
and Touchscreen interfaces may be able to account for the 
important differences between the interfaces in a simple 
and straightforward way without the elaborate detail of 
models that match the data.

The Bracketing Models
The fastest-possible model for this task assumes that the 
tactical task has highest priority, so it anticipates all color-
change events; in fact, it ignores the tracking task as long as 
there is any unprocessed blip on the display. It uses the 
maximum overlapping possible, and allows the eye to be 
used by the next task process as soon as the architecture 
permits. In the Touchscreen interface, the fast model also 
anticipates the first response by prepositioning the finger at 
a candidate blip during stimulus selection.

The slowest-reasonable model adheres to the nominal 
experimental instructions for the task and stolidly performs 
the tracking task until a color-change event is detected. It 
returns to tracking when there are no colored blips to 
process. It never anticipates events. Overall, each process 
in the slowest model must wait until an ongoing motor 
movement is complete; no advantage is taken of the ability 
of the EPIC architecture to overlap motor movements. Thus 
the only overlapping is that provided by perceptual 
processing, which always runs in parallel with other 
processing. 

Bracketing the Keypad Interface Performance
Figure 5 shows the predicted RTs from the fast and slow 
models for the Keypad interface along with the observed 
times. Throughout this paper, observed times are shown as 
solid plotting points and lines, and predicted times with 
open points and dotted lines. Note first that the predicted 
times indeed bracket the observed times. Both fast and slow 
models show an automation deficit effect in which the first 
few events take longer than the matching events during the 
second high-workload period. 



The slow model has an exaggerated form of the effect in 
which the second of a pair of closely spaced events has an 
elevated RT. The mechanisms in the model that produce 
this result are similar to those that produce the 
psychological refractory period (PRP) effect, a laboratory 
phenomenon obtained when two simple choice reaction 
tasks are overlapped in time. Basically, because the two 
events are closely spaced in time, the second event 
processing must wait for some part of the processing of the 
first event to be complete. If enough time intervenes 
between the events, the second response is not delayed 
because the first response processing will be complete. 
Extensive previous modeling work with EPIC [9, 10] 
shows that the PRP effect is due either to conservative 
unnecessarily sequential task strategies, or to peripheral 
processing bottlenecks, such as the need to move the eye 
from the first to the second stimulus, or to responses having 
to queue up for control of the same motor processor. The 
fast model has less of this PRP-like effect because it 
overlaps processing very heavily. But milder forms of this 
effect is why the relatively closely spaced Events 1-4 and 7 
and 8 have longer fast model RTs than events 5, 6, and 10.

Bracketing the Touchscreen Interface Performance
Figure 6 shows the predicted and observed RTs for the 
Touchscreen interface. A point to notice first is that the 
slow model fails to bracket the observed data on a couple 
of the events, even though it was constructed using the 
same guidelines defining slowest-reasonable as the slow 
Keypad model. Obviously a model can be made arbitrarily 
slow, but any attempt to make the slow model even slower 
just to completely bracket the data contradicts the a-priori 
stance of the bracketing logic. Rather, these isolated 
failures of bracketing appear on two events that come after 
long periods of tactical task inactivity, which suggests that 
subjects may have altered their strategy in some way during 
these inactive times.

Except for these two unusually slow event RTs, the fast and 
slow models basically parallel the observed times, but the 
slow model has more exaggerated peaks and valleys for the 
PRP-like effect. The observed values are quite close to the 
slow model during the low-workload periods, and 
somewhat closer to the fast model during the high-
workload periods. In both models the automation deficit 
effect is small. 

COMPARING THE INTERFACES VIA THE MODELS
In this section, we compare the two interfaces by 
comparing the performance of the fast models for the two 
interfaces, and the slow models for the two interfaces. This 
comparison will clarify what role the architecture plays 
versus the task strategy in determining the effects of the 
interface. The key idea is that the fastest-possible models 
mainly depend on the how the interface relates to the 
architecture, while the slowest-reasonable models magnify 
how the basic structure of the task depends on the interface. 

Figure 7 shows the predicted RTs from the fast and slow 
models for the two interfaces. For clarity, the observed 
values are not shown. 

Why the Two Interfaces are Almost Equally Fast
The fastest-possible models predict essentially identical 
times for the two interfaces, so from the viewpoint of 
architectural constraints, in fact, neither interface is 
superior overall to the other. The fastest model times 
depend mostly on just the perceptual-motor delays inherent 
in the architecture and the requirements of the interface.  
Generally, poking movements would be slower than 
keystrokes, but the basic reason for the identical fast model 
times can be seen by comparing the times for the first 
response and the time between the two responses (inter-
response interval); the graphs are not shown because of 
space limitations. Compared to the Keypad first response, 
the Touchscreen first response is faster across the board, 
because it consists of an immediate poke at the looked-at 
blip rather than waiting for recognition of hostility and 
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Fig. 5. Bracketing models for the Keypad Interface. 
Predicted RTs are shown as open points; observed as solid. 
Fastest-possible model predictions are the lower curve; 
slowest-reasonable is the upper curve.
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response selection. But the situation is reversed with the 
inter-response interval: the Touchscreen interface always 
takes about 500 ms longer to make the second response 
than the Keypad interface. The Keypad interface requires 
recognizing and responding to the blip number with a fast 
keystroke, rather than waiting on the lengthy hostility 
recognition and then making a relatively slow poking 
movement. As it happens, the sum of the first response 
times and oppositely-different inter-response intervals are 
almost identical for the two models, leading to very similar 
fast model total times. This pattern appears in both the 
models and the observed data.

In contrast, as shown in Figure 7, the slowest-reasonable 
models give a consistent advantage to the Touchscreen 
interface. If the user waits for each subtask to complete 
before going on the next subtask, then certain processes 
appear on the critical path in the Keypad interface that are 
not present in the Touchscreen interface. In the Keypad 
interface, the hostility perceptual processing is fully on the 
critical path (nothing else can be done until it is 
recognized), and the identification process cannot be 
overlapped with it. But as already outlined, in the 
Touchscreen interface the perceptual processing for the 
hostility response can done at the same time as the 
identification response processing. Thus, even if the two 
response processes are serialized, the first response can be 
overlapped with the visual processing required for the 
second. The result is a net advantage for the Touchscreen 
interface, even though touchscreen poking movements can 
be quite slow compared to keystrokes. Clearly if the 
response ordering in the Touchscreen interface was 
reversed, to be the same as the Keypad interface, the results 
would be quite different. 

Thus the rough equivalence of the two interfaces is a result 
of subjects working somewhere between the fastest and 
slowest strategies, and because they might vary this setting 
during the task, which interface is superior in the data may 

appear inconsistent. The fact that the observed times tend to 
be closer to the fastest model during high workload, and to 
the slowest model during low workload, suggests that 
subjects do indeed modulate their task strategy as a 
function of workload during the task. 

Why the Touchscreen has Less Automation Deficit
As was shown in Figure 2, the Touchscreen interface 
enjoys less of an automation deficit effect than the Keypad 
interface. In fact, the main situation in which the 
Touchscreen interface is faster than the Keypad is in the 
automation-deficit period of the first few events. These 
models explain the automation deficit in terms of the PRP-
like delay effects summarized earlier. When the overall 
task goes from automated to manual mode, and the tactical 
task is started at a peak in workload, the first few events 
suffer additional delays that the later, steady-state events do 
not. The selection and processing of the first event is 
delayed, leading to a delay in processing the second event, 
and on through the others, until the increasing inter-event 
interval allows the models to catch up. 

In contrast, in the steady state, as soon as a color-change 
happens, it is noted by the monitoring process and the 
tactical task is started immediately, resulting in a shorter 
response time. Even when the events are closely spaced as 
in the second workload peak, the delays in processing the 
first selected blip are not as large, and so the second blip 
does not suffer as much from PRP-like effects. 

Why does the Touchscreen interface produce a smaller 
automation deficit than the Keypad interface? The answer 
is deceptively simple. If the user works somewhere 
between the fastest and slowest model strategies, the time 
to complete processing in the Keypad interface is longer 
than in the Touchscreen interface (for reasons already 
explained), so the start-up delays that both interfaces have 
in common will have larger PRP-like effects in the Keypad 
interface than in the Touchscreen interface. If the inter-
event intervals were reduced somewhat, the Touchscreen 
interface would show a higher level of automation deficit, 
but of course, the Keypad interface would suffer even 
more. The exact extent of the difference in automation 
deficit depends on the extent to which the users follow 
strategies more like the fastest-possible rather than the 
slowest-reasonable, and of course they could change their 
strategies dynamically during task execution. 

Thus the reduced automation deficit for the Touchscreen 
interface is simply a result of how this particular interface 
capability was applied to this task domain. A 
rearrangement of either interface task might make a 
substantial difference in the relative performance.
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Fig. 7. Predicted RTs for fastest-possible (small points) 
and slowest-reasonable (large points) models for the 
Keypad (circles) and Touchscreen (squares) interfaces.



CONCLUSION
The Touchscreen interface does indeed have a narrower 
“gulf of execution” in that it is generally better than the 
Keypad interface in several important ways, but rather than 
a vague and mysterious effect, this advantage is a 
straightforward result of simpler response selection 
processing and more opportunities to overlap perceptual 
and motor processing. But the greater constraints on eye 
movements in the Touchscreen interface shows that the 
“gulf of evaluation” can depend on factors normally 
associated with the “gulf of execution.” 

The models show also that the Touchscreen  had certain 
disadvantages that a different interface design might 
mitigate, such as the need to reserve the eye to guide the 
second response, and the fact that both responses were 
bottlenecked through relatively slow hand movements. For 
example, if the hostility response could be delivered via a 
speech-driven interface, the bottleneck produced by the 
need to make a second visually-guided hand motion would 
be eliminated, and both the eye and hand would be free 
sooner to seek the next blip to process. 

The complex mix of effects appearing in this interface 
comparison is a result of the subtle interplay between 
interface design, task strategies, and the fundamentals of 
human perceptual and motor capabilities and limitations. 
The fact that the details of the interaction are critical is 
reminiscent of the point made some years ago by Whiteside 
et al. [12] in their seminal comparison of different interface 
styles: The style of the interface is not in itself critical; 
rather the key is getting all the details right with a well-
crafted interface. Thus the specific ways in which the 
details of user processing play out in this interface 
comparison suggests that broad-brush generalizations of 
interface principles can not be relied upon to give designers 
reliable guidance that will help them to arrive at superior 
interfaces more quickly than brute-force user testing 
iterations. Rather, continued work with detailed 
computational model of human-computer interaction 
should help us develop a full scientific understanding of 
interfaces, which can then be delivered in modeling tools 
that are accessible to designers.

ACKNOWLEDGMENT
This work was supported by the Office of Naval Research.

REFERENCES
1. Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992). 
Direct manipulation and intermittent automation in 
advanced cockpits. Technical Report NRL/FR/5534--92-
9375. Naval Research Laboratory, Washington, D. C.

2. Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992). 
Evaluating two aspects of direct manipulation in advanced 

cockpits. In Bauersfeld, P., Bennett, J., and Lynch, G., 
CHI'92 Conference Proceedings: ACM Conference on 
Human Factors in Computing Systems, Monterey, May 3-7, 
1992.

3. Card, S. K., Moran, T. P., & Newell, A. (1983). The 
psychology of human-computer interaction. Hillsdale, NJ: 
Lawrence Erlbaum Associates.

4. Frohlich, D. M. Direct manipulation and other lessons. In 
M. Helander, T.K. Landauer, & P. Prabhu (Eds.). 
Handbook of Human-Computer Interaction (2nd ed.), 
Elsevier, 1997. 

5. Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986).  
Direct manipulation interfaces.  In D.A. Norman, & 
Draper, S. W. (Eds.), User centered system design.  
Hillsdale, NJ: Lawrence Erlbaum Associates. 

6. Kieras, D. & Meyer, D.E. (1997). An overview of the 
EPIC architecture for cognition and performance with 
application to human-computer interaction. Human-
Computer Interaction., 12, 391-438.

7. Kieras, D. E., & Meyer, D. E. (2000). The role of 
cognitive task analysis in the application of predictive 
models of human performance. In J. M. C. Schraagen, S. E. 
Chipman, & V. L. Shalin (Eds.), Cognitive task analysis. 
Mahwah, NJ: Lawrence Erlbaum, 2000.

8. Kieras, D.E., Meyer, D.E., Ballas, J.A., Lauber, E.J. (in 
press) Modern computational perspectives on executive 
mental processes and cognitive control. Where to from 
here?  In S. Monsell and  J. Driver (Eds.), Control of 
cognitive processes: Attention and Performance XVIII. 
Cambridge, MA:  MIT Press.

9. Meyer, D. E., & Kieras, D. E. (1997). A computational 
theory of executive cognitive processes and multiple-task 
performance: Part 1. Basic mechanisms. Psychological 
Review, 104, 3-65.

10. Meyer, D. E., & Kieras, D. E. (1997). A computational 
theory of executive control processes and human multiple-
task performance: Part 2. Accounts of Psychological 
Refractory-Period Phenomena. Psychological Review. 104, 
749-791.

11. Meyer, D. E., & Kieras, D. E.  (1999). Precis to a 
practical unified theory of cognition and action: Some 
lessons from computational modeling of human multiple-
task performance.  In D. Gopher & A. Koriat (Eds.), 
Attention and Performance XVII.(pp. 15-88) Cambridge, 
MA: M.I.T. Press.

12. Whiteside, J., Jones, S., Levy, P. S., & Wixon, D. 
(1985).  User performance with command, menu, and 
iconic interfaces.  In Proceedings of CHI '85. New York: 
ACM.


