
Towards Demystification of Direct Manipulation:
Cognitive Modeling Charts the Gulf of Execution

David Kieras
Electrical Engineering and

Computer Science Department
University of Michigan
Ann Arbor, MI 48109

kieras@eecs.umich.edu

David Meyer
Psychology Department
University of Michigan
Ann Arbor, MI 48109
demeyer@umich.edu

James Ballas
Naval Research Laboratory

Washington, D.C. 20375-5337
ballas@itd.nrl.navy.mil

ABSTRACT
Direct manipulation involves a large number of interacting
psychological mechanisms that make the performance of a
given interface hard to predict on intuitive or informal
grounds. This paper applies cognitive modeling to explain
the subtle effects produced by using a keypad versus a
touchscreen in a performance-critical laboratory task.

Keywords
Direct manipulation, cognitive modeling

INTRODUCTION
Direct manipulation is an interface design concept in which
the user manipulates or selects objects on a screen with a
pointing device rather than types in syntactically structured
commands. Although almost everybody believes that direct
manipulation interfaces are superior, the psychological
theory involved has not been systematically developed (see
[4] for a recent review). Perhaps the most common
presentation is in terms of Norman’s [5] concepts of the
“gulf of evaluation” (the user must interpret the display)
and the “gulf of execution” (the user must determine how
to act on the system). Direct manipulation interfaces are
thought to reduce these two “gulfs”, meaning that the user
can more easily understand the system state revealed on the
display and more easily figure out how to act on the system
to achieve the desired result.

But from the psychological point of view, direct
manipulation interfaces confound several factors. For
example, they usually involve recognition rather than
recall; visual search instead of verbal memory; concrete
rather than abstract metaphors; simpler, more consistent,
procedures (e.g. as revealed by GOMS analysis); and most
interestingly, they stress different perceptual and motor
capabilities, such as mouse movements instead of keyboard
entry. Since we lack a well-articulated psychological theory
of how the different interface paradigms operate at the
detailed cognitive, perceptual, and motor levels, we do not

Copyright 2001 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by a
contractor or affiliate of the U.S. Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.

SIGCHI’01, March 31-April 4, 2001, Seattle, WA, USA.

Copyright 2001 ACM 1-58113-327-8/01/0003…$5.00.

know how these differences will interact in determining the
quality of actual interfaces.

This paper presents an initial theoretical treatment of the
nature of direct manipulation, based on some data
previously collected on this topic [1, 2], that uses a
complex performance-critical task to compare a keyboard-
operated interface with a touchscreen interface. Since the
display is the same, these results address how the “gulf of
execution” is affected by direct manipulation. Due to
limitations on space, this is necessarily only a subset of a
large and complex set of results; more complete treatments
will be presented elsewhere.

THE TASK AND THE INTERFACES
The task was developed by Ballas, Heitmeyer, & Perez [1,
2] to resemble a class of multiple tasks performed in
combat aircraft in which the user must both perform a task
such as tracking a target, and at the same time keep up with
the tactical situation using sensors such as radar, with
partial automation support by an on-board computer. Figure
1 shows a sketch of the display as it appears for the Keypad
interface. The right hand box contains a pursuit tracking
task in which the cross-hairs must be kept on the target
with a joystick operated with the right hand. The left-hand
box is a radar-like display that contains a tactical decision
task in which objects (“tracks”) must be classified as
hostile or neutral based on their behavior, and the results
entered by means of a keypad under the left hand. These
objects appear as icons that represent fighter aircraft, cargo

Fig. 1. Screenshot of the Keypad interface display.

airplanes, and SAM sites. A number identifies each object
on the display. To avoid the overloaded term “object” or
the military jargon of “track”, the term blip will be used to
refer to the objects on the radar display. Similarly, “user”
will refer to the experimental participants.

The blips appear near the top of the display, and then move
down. The fictitious on-board computer attempts to classify
each blip, indicating the outcome after some time by
changing the blip color from black to red, blue, or amber. If
the blip changes to red (hostile) or blue (neutral), the user
must simply confirm the computer's classification by typing
a code key for the hostile/neutral designation followed by
the key for the blip number. If the blip changes to amber,
the subject must observe the behavior of the blip and
classify it based on a set of rules, and then type the hostility
designation and blip number. After the response, the blip
changes color to white, and then disappears from the
display some time later. The basic dependent variable is the
reaction time to the events, measured from when a blip
changes color to when each of the two keystrokes are made
in response.

Ballas et al. varied the format of the tactical display and the
response. The above description is for the graphical keypad
interface; the other combinations consisted of using a
tabular display instead of the graphical radar-like display,
and a touchscreen response procedure instead of the
keypad. This work concerns only the graphical display with
both the keypad and touchscreen responses. In the
Touchscreen interface, the first response is to identify the
track by touching the blip on the screen, and the second
response is to designate the hostility by touching a wide
color-coded bar at the side of the tactical task display; a
left-hand red bar corresponded to hostile and a right-hand
blue bar to neutral. Notice that the order of the responses in
logical terms was reversed for the Touchscreen interface
compared to the Keypad interface.

Ballas et al. also studied the effects of adaptive automation.
From time to time during the task, the tracking task would
become difficult, and the on-board computer would take
over the tactical task, signaling when it did so. The
computer would then generate the correct responses to each
blip at the appropriate time, with the color changes showing
on the display as in the manual version of the task. Later,
the tracking would become easy again, and the computer
would signal with a loud buzzer tone and then return the
tactical task to the user to perform. How users dealt with
the transition was measured by recording the time required
to respond to the individual events, counting from when
they had to resume the tactical task.

THE PUZZLES IN THE DATA
Figure 2 shows these results in terms of the reaction time
(RT) for the second response, which represents the total
time to respond to an event, for the two interfaces. The

horizontal axis corresponds to each event following
resumption of the manual tactical task; i.e., Event 1 is the
first color-change event, Event 2 is the second, and so
forth. Above the x-axis is shown the time interval between
events in seconds. Events 1, 2, 3, and 4 were set to appear
at closely spaced increasing fixed intervals, as are Events 7
and 8. The other events are widely spaced at randomly
chosen intervals whose mean values are shown. Thus there
is a high workload at the beginning of task resumption, a
low-workload period, followed by another high-workload
peak with the same event types and spacing, and a final
low-workload period. In all of the graphs in this paper, the
Keypad interface is represented with circular plotting
points, the Touchscreen with square points.

The most puzzling result in Figure 2 is that the time to
complete the processing for each event is roughly the same
for the two interfaces despite the apparent “naturalness” or
“directness” of the Touchscreen interface compared the
Keypad. Even more puzzling is the fact that sometimes the
Keypad interface is faster that the Touchscreen. In fact, the
Touchscreen is superior to the Keypad only during first few
events. As noted by Ballas et al. [1, 2], there is an
automation deficit effect, in which for a time after resuming
the tactical task, users produced longer response times in
the tactical task compared to their normal steady-state
manual performance. This effect represents some of the
serious concerns about possible negative effects of
automation in combat situations; if the automation fails, the
operator can lack situation awareness, and it might take a
long time to “catch up.”

The Keypad interface shows a strong automation deficit
effect, where the times for Events 1, 2, and 3 are longer
than the matched Events 7, 8, and 9, producing an overall
descending shape to the RT profile. In contrast, the
Touchscreen interface is fairly flat, showing little or no
automation deficit effect.

0

1000

2000

3000

4000

R
T

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10

Event

1.5 3 6 15 16 19 1.5 3 30

Fig. 2. Observed reaction times for Keypad (circles) and
Touchscreen (squares) as function of event since task
resumption. Inter-event intervals (sec) are shown above the
x-axis. Note the rough equivalence of the two interfaces.

While lesser automation deficit accords with the assumed
superiority of direct manipulation, one would surely expect
the direct-manipulation Touchscreen interface to be
superior to the clumsy Keypad interface across the board.
But the the advantage seems to be limited to the relief of
automation deficit. These results are puzzling for a simple
view of direct manipulation.

Explaining these phenomena requires much more detailed
analysis than the usual generalizations about the virtues of
direct manipulation. We would argue that in fact unaided
intuition or conventional wisdom about fundamental
interface design choices lacks enough precision to be useful
to designers trying to arrive at an efficient interface for a
demanding task. In the remainder of this paper, we will
present computational models that explain these
phenomena using a comprehensive architecture for human
cognition and performance. These models explain in detail
how the Touchscreen interface does indeed “narrow the
gulf of execution” in a sense, but this has more to do with
the different ordering of the two responses, rather than the
“directness” of the interface. The Touchscreen interface
also differs from the Keypad interface over how the eye can
be moved, meaning that changes that affect the “gulf of
execution” can also affect “the gulf of evaluation.”

MODELING THE INTERFACE TASKS
The EPIC Cognitive Architecture
The models for the two interfaces were constructed using
the EPIC architecture for human cognition and
performance, which provides a general framework for
simulating a human interacting with an environment to

accomplish a task. Due to lack of space, EPIC cannot be
described in full detail here. A more thorough description is
presented in [6]. In brief, EPIC resembles the Model
Human Processor [3], but differs in that EPIC is an
implemented computational modeling system and
incorporates more specific constraints synthesized from
human performance literature. Figure 3 provides an
overview of the architecture, showing perceptual and motor
processor peripherals surrounding a cognitive processor; all
of the processors run in parallel with each other. To model
human performance of a task, the cognitive processor is
programmed with production rules that implement a
strategy for performing the task. When the simulation is
run, the architecture generates the specific sequence of
perceptual, cognitive, and motor events required to perform
the task, within the constraints determined by the
architecture and the interface. For example, the current
orientation of the eye determines how visual events are
detected and recognized, and movement times are governed
by relationships such as Fitts’ Law.

A few key features of EPIC can be summarized; additional
ones will be introduced as needed. The perceptual and
cognitive processors are always operating in parallel, but it
is up to the task strategy (the production rule programming)
to take advantage of the parallel capabilities of the motor
processors. Cognitive processing is multi-threaded, in that
multiple sequences of production-rule execution can be
underway simultaneously, which enables sophisticated
models of complex multiple-task situations [9, 11].

Task
Environment

Cognitive
Processor

Working
Memory

Production Rule
Interpreter

Vocal Motor
Processor

Visual
Input

Auditory
Input

Long-Term
Memory

Auditory
Processor

Visual
Processor

Production
Memory

Ocular
Motor

Processor

Tactile
Processor

Manual
Motor

Processor

Simulated
Interaction
Devices

Fig. 3. The overall structure of the EPIC architecture. Perceptual-motor peripherals surround a cognitive processor.

Task Strategy
To model the present task, a set of production rules were
written for each interface, organized in a hierarchy shown
in Figure 4 reflecting the overall structure of the task. Since
EPIC allows fully multithreaded cognitive processing,
many of the tasks shown in the figure execute in parallel.
The top level is a dual-task executive process that controls
execution of the tracking task, the tactical task, and a task
that monitors the tactical display for color changes and
other relevant events. When the tactical task is automated,
the dual-task executive runs only the tracking task,
effectively ignoring the tactical display entirely. When the
auditory signal to resume the tactical task is recognized, the
executive shuts down the tracking task, starts the
monitoring process and initiates the tactical task process to
handle the first event. Notice that the tactical task is
controlled by its own sub-executive process. When the
tactical task no longer has events to process, it terminates,
and the dual-task executive restarts the tracking task. If the
monitoring task then detects events such as a color change
in peripheral vision, the dual-task executive will shut down
the tracking task and restart the tactical task to handle the
event. When the signal is made to return to automated
mode, the executive shuts down everything except the
tracking task, and waits for the next resumption signal.

Tactical task executive
The tactical task executive controls three subprocesses. For
the Keypad interface, stimulus selection first selects a
“blip” on the screen to be processed, then the hostility
response process selects and executes the hostility-
designating response, and then the identification response
process selects and executes the response that identifies the
track. For the Touchscreen interface, the identification
process executes second, followed by the hostility response
process. Once both responses have been made, the tactical
executive can repeat the overall process starting with

selecting a new stimulus. If there are no more blips to
process, the tactical task terminates.

Stimulus selection process
The basic signal to process an event is that a blip changes
color from black to red, blue, or amber. Stimulus selection
chooses a blip to process, taking into account that if
tracking is underway, the eye will be kept on the tracking
target, so most of the tactical display is in peripheral vision.
While the color change can be noticed in peripheral vision,
the color itself is not available except parafoveally. But
once the eye is on the tactical display, the colors for most
of the blips will be available. Thus stimulus selection may
have to examine more than one blip before finding one
ready to process. A blip is chosen for examination or
processing according to a priority scheme that favors
colored blips first, color-changed blips second, and
unknown blips third. The eye is then moved to the chosen
blip; if the blip is black or white, it cannot be processed, so
another blip is chosen. If it is red, blue, or amber, it is
marked as the selected stimulus and handed on to the
response processes.

In addition, a color-change event can be anticipated: if a
blip is close enough to the bottom of the display, it can be
chosen for watching until it or another blip changes color.

Either way, once stimulus selection places the eye on the
blip, the visual processing necessary to recognize the
behavior of the blip is underway while other processing is
going on. The time required to recognize the behavior is on
the order of a second, and was independently estimated for
each type of blip.

Keypad response processes
The first response is to identify the hostility of the selected
blip. If the blip is red or blue, the proper hostility response
is simply the corresponding keystroke; this is selected and
executed by a sequence of production rules like those in
other EPIC models of choice reaction time [9, 10].
However, if the blip is amber, the process must wait, with
the eye tracking the blip, until the behavior of the blip has
been visually recognized. The identification response
process then moves the eye to the blip number and waits
until it has been recognized. The corresponding keypad
response is then selected with a series of choice reaction
rules and executed.

Touchscreen response processes
The first response is to identify the track; although the track
number is present on the display, it is irrelevant. An aimed
finger movement is made to “poke” the blip on the
touchscreen; note that the eye is already on the blip, and
must remain there to guide the aimed movement.

The second response is to designate the hostility. If the blip
is red or blue, the corresponding response bar target can be
quickly selected. If it is amber, it must wait for the behavior
to be recognized. A poke movement is then made to the

Stimulus
Selection

Tactical Task
Executive

Tracking Monitor Tactical Display

Dual Task
Executive

Hostility
Response

Identification
Response

Fig. 4. The structure of the production-rule task strategy for
both interfaces.

selected response bar on the touchscreen; this movement
also requires visual guidance. The eye is commanded at the
same time to move to the response bar; it will arrive
quickly enough to guide the finger movement.

Overlapping Tactical Task Subprocesses
These three tactical subprocesses can run in parallel, or
overlap, to a considerable extent, as long as the task
constraints are observed. The two adjacent responses must
be made for a single track, and the responses must be made
in the correct order. Thus the second response process must
wait for the first response to be produced, but the duration
of the wait need only be long enough to produce the correct
ordering. Thus some of the second response processing
could be concurrent with the processing and production of
the first response. In addition, the stimulus selection
process for the next stimulus could overlap with the second
response process.

The models were built in such a way that the tactical task
executive could control the amount of overlap in the
tactical task subprocesses. The issues in such overlapping
have a strong family resemblance to how computer
Operating Systems are organized to allow prioritized
concurrent task execution and manage the allocation of
peripheral resources to different tasks so as to maximize
system throughput [8].

These models have both constraints and opportunities for
overlapping. The Keypad model assumes that the user gets
enough practice so that it is not necessary to look at the
keys, opening the way for considerable overlapping since
the eye can be moved while responses are being selected
and executed. But the Touchscreen interface involves
aimed finger movements which require that the eye be on
the target of the movement, effectively locking the eye to
the hand until responding is complete. On the other hand,
visual recognition of the blip behavior will be proceeding
during identification responding, whereas the Keypad
interface forces a separation of hostility recognition and
identification responding.

The Bracketing Heuristic
The amount of overlapping enforced by the executive
strategy has a major impact on task performance [11];
“daring” strategies that maximize overlapping can produce
substantially faster performance than more “conservative”
strategies. This aspect of task strategy is not strongly
determined by either the task requirements or the
architecture, but rather is a result of factors such as the
amount of practice, level of motivation, or long-term
fatigue avoidance, or even the user’s possibly haphazard
efforts to formulate a task strategy [7]. Such optional
aspects of task strategy can be identified only by careful
iterative construction of models that match the observed
data in fine enough detail.

Here we present a simpler, more robust, analysis based on
the bracketing heuristic [7]. The concept is to start with a
basic strategy for the task, such as the one just outlined, and
permute it into two versions: a fastest-possible strategy that
drives the architecture at the highest speed possible that
still meets the basic task requirements, and a slowest-
reasonable model that conforms to the task instructions and
requirements with no “bells and whistles” to increase
speed. Observed performance should fall somewhere
between these two models, which thus bracket the actual
performance.

Bracketing is a way to construct truly predictive models in
complex task domains where the optional strategy
optimizations users would device cannot be forecast. In
addition, bracketing could guide the construction of models
that match the data. However, bracketing can also be used
to explain phenomena independently of the optional aspects
of task strategies. Thus, bracketing models for the Keypad
and Touchscreen interfaces may be able to account for the
important differences between the interfaces in a simple
and straightforward way without the elaborate detail of
models that match the data.

The Bracketing Models
The fastest-possible model for this task assumes that the
tactical task has highest priority, so it anticipates all color-
change events; in fact, it ignores the tracking task as long as
there is any unprocessed blip on the display. It uses the
maximum overlapping possible, and allows the eye to be
used by the next task process as soon as the architecture
permits. In the Touchscreen interface, the fast model also
anticipates the first response by prepositioning the finger at
a candidate blip during stimulus selection.

The slowest-reasonable model adheres to the nominal
experimental instructions for the task and stolidly performs
the tracking task until a color-change event is detected. It
returns to tracking when there are no colored blips to
process. It never anticipates events. Overall, each process
in the slowest model must wait until an ongoing motor
movement is complete; no advantage is taken of the ability
of the EPIC architecture to overlap motor movements. Thus
the only overlapping is that provided by perceptual
processing, which always runs in parallel with other
processing.

Bracketing the Keypad Interface Performance
Figure 5 shows the predicted RTs from the fast and slow
models for the Keypad interface along with the observed
times. Throughout this paper, observed times are shown as
solid plotting points and lines, and predicted times with
open points and dotted lines. Note first that the predicted
times indeed bracket the observed times. Both fast and slow
models show an automation deficit effect in which the first
few events take longer than the matching events during the
second high-workload period.

The slow model has an exaggerated form of the effect in
which the second of a pair of closely spaced events has an
elevated RT. The mechanisms in the model that produce
this result are similar to those that produce the
psychological refractory period (PRP) effect, a laboratory
phenomenon obtained when two simple choice reaction
tasks are overlapped in time. Basically, because the two
events are closely spaced in time, the second event
processing must wait for some part of the processing of the
first event to be complete. If enough time intervenes
between the events, the second response is not delayed
because the first response processing will be complete.
Extensive previous modeling work with EPIC [9, 10]
shows that the PRP effect is due either to conservative
unnecessarily sequential task strategies, or to peripheral
processing bottlenecks, such as the need to move the eye
from the first to the second stimulus, or to responses having
to queue up for control of the same motor processor. The
fast model has less of this PRP-like effect because it
overlaps processing very heavily. But milder forms of this
effect is why the relatively closely spaced Events 1-4 and 7
and 8 have longer fast model RTs than events 5, 6, and 10.

Bracketing the Touchscreen Interface Performance
Figure 6 shows the predicted and observed RTs for the
Touchscreen interface. A point to notice first is that the
slow model fails to bracket the observed data on a couple
of the events, even though it was constructed using the
same guidelines defining slowest-reasonable as the slow
Keypad model. Obviously a model can be made arbitrarily
slow, but any attempt to make the slow model even slower
just to completely bracket the data contradicts the a-priori
stance of the bracketing logic. Rather, these isolated
failures of bracketing appear on two events that come after
long periods of tactical task inactivity, which suggests that
subjects may have altered their strategy in some way during
these inactive times.

Except for these two unusually slow event RTs, the fast and
slow models basically parallel the observed times, but the
slow model has more exaggerated peaks and valleys for the
PRP-like effect. The observed values are quite close to the
slow model during the low-workload periods, and
somewhat closer to the fast model during the high-
workload periods. In both models the automation deficit
effect is small.

COMPARING THE INTERFACES VIA THE MODELS
In this section, we compare the two interfaces by
comparing the performance of the fast models for the two
interfaces, and the slow models for the two interfaces. This
comparison will clarify what role the architecture plays
versus the task strategy in determining the effects of the
interface. The key idea is that the fastest-possible models
mainly depend on the how the interface relates to the
architecture, while the slowest-reasonable models magnify
how the basic structure of the task depends on the interface.

Figure 7 shows the predicted RTs from the fast and slow
models for the two interfaces. For clarity, the observed
values are not shown.

Why the Two Interfaces are Almost Equally Fast
The fastest-possible models predict essentially identical
times for the two interfaces, so from the viewpoint of
architectural constraints, in fact, neither interface is
superior overall to the other. The fastest model times
depend mostly on just the perceptual-motor delays inherent
in the architecture and the requirements of the interface.
Generally, poking movements would be slower than
keystrokes, but the basic reason for the identical fast model
times can be seen by comparing the times for the first
response and the time between the two responses (inter-
response interval); the graphs are not shown because of
space limitations. Compared to the Keypad first response,
the Touchscreen first response is faster across the board,
because it consists of an immediate poke at the looked-at
blip rather than waiting for recognition of hostility and

0

1000

2000

3000

4000

5000

R
T

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10
Event

1.5 3 6 15 16 19 1.5 3 30

Fig. 5. Bracketing models for the Keypad Interface.
Predicted RTs are shown as open points; observed as solid.
Fastest-possible model predictions are the lower curve;
slowest-reasonable is the upper curve.

0

1000

2000

3000

4000

5000

R
T

 (
m

s)

0 1 2 3 4 5 6 7 8 9 10
Event

1.5 3 6 15 16 19 1.5 3 30

Fig. 6. Bracketing models for the Touchscreen Interface.
Predicted RTs are shown as open points; observed as solid.
Fastest-possible model predictions are the lower curve;
slowest-reasonable is the upper curve.

response selection. But the situation is reversed with the
inter-response interval: the Touchscreen interface always
takes about 500 ms longer to make the second response
than the Keypad interface. The Keypad interface requires
recognizing and responding to the blip number with a fast
keystroke, rather than waiting on the lengthy hostility
recognition and then making a relatively slow poking
movement. As it happens, the sum of the first response
times and oppositely-different inter-response intervals are
almost identical for the two models, leading to very similar
fast model total times. This pattern appears in both the
models and the observed data.

In contrast, as shown in Figure 7, the slowest-reasonable
models give a consistent advantage to the Touchscreen
interface. If the user waits for each subtask to complete
before going on the next subtask, then certain processes
appear on the critical path in the Keypad interface that are
not present in the Touchscreen interface. In the Keypad
interface, the hostility perceptual processing is fully on the
critical path (nothing else can be done until it is
recognized), and the identification process cannot be
overlapped with it. But as already outlined, in the
Touchscreen interface the perceptual processing for the
hostility response can done at the same time as the
identification response processing. Thus, even if the two
response processes are serialized, the first response can be
overlapped with the visual processing required for the
second. The result is a net advantage for the Touchscreen
interface, even though touchscreen poking movements can
be quite slow compared to keystrokes. Clearly if the
response ordering in the Touchscreen interface was
reversed, to be the same as the Keypad interface, the results
would be quite different.

Thus the rough equivalence of the two interfaces is a result
of subjects working somewhere between the fastest and
slowest strategies, and because they might vary this setting
during the task, which interface is superior in the data may

appear inconsistent. The fact that the observed times tend to
be closer to the fastest model during high workload, and to
the slowest model during low workload, suggests that
subjects do indeed modulate their task strategy as a
function of workload during the task.

Why the Touchscreen has Less Automation Deficit
As was shown in Figure 2, the Touchscreen interface
enjoys less of an automation deficit effect than the Keypad
interface. In fact, the main situation in which the
Touchscreen interface is faster than the Keypad is in the
automation-deficit period of the first few events. These
models explain the automation deficit in terms of the PRP-
like delay effects summarized earlier. When the overall
task goes from automated to manual mode, and the tactical
task is started at a peak in workload, the first few events
suffer additional delays that the later, steady-state events do
not. The selection and processing of the first event is
delayed, leading to a delay in processing the second event,
and on through the others, until the increasing inter-event
interval allows the models to catch up.

In contrast, in the steady state, as soon as a color-change
happens, it is noted by the monitoring process and the
tactical task is started immediately, resulting in a shorter
response time. Even when the events are closely spaced as
in the second workload peak, the delays in processing the
first selected blip are not as large, and so the second blip
does not suffer as much from PRP-like effects.

Why does the Touchscreen interface produce a smaller
automation deficit than the Keypad interface? The answer
is deceptively simple. If the user works somewhere
between the fastest and slowest model strategies, the time
to complete processing in the Keypad interface is longer
than in the Touchscreen interface (for reasons already
explained), so the start-up delays that both interfaces have
in common will have larger PRP-like effects in the Keypad
interface than in the Touchscreen interface. If the inter-
event intervals were reduced somewhat, the Touchscreen
interface would show a higher level of automation deficit,
but of course, the Keypad interface would suffer even
more. The exact extent of the difference in automation
deficit depends on the extent to which the users follow
strategies more like the fastest-possible rather than the
slowest-reasonable, and of course they could change their
strategies dynamically during task execution.

Thus the reduced automation deficit for the Touchscreen
interface is simply a result of how this particular interface
capability was applied to this task domain. A
rearrangement of either interface task might make a
substantial difference in the relative performance.

0

1000

2000

3000

4000

5000
R

T
 (

m
s)

0 1 2 3 4 5 6 7 8 9 10

Event

1.5 3 6 15 16 19 1.5 3 30

Fig. 7. Predicted RTs for fastest-possible (small points)
and slowest-reasonable (large points) models for the
Keypad (circles) and Touchscreen (squares) interfaces.

CONCLUSION
The Touchscreen interface does indeed have a narrower
“gulf of execution” in that it is generally better than the
Keypad interface in several important ways, but rather than
a vague and mysterious effect, this advantage is a
straightforward result of simpler response selection
processing and more opportunities to overlap perceptual
and motor processing. But the greater constraints on eye
movements in the Touchscreen interface shows that the
“gulf of evaluation” can depend on factors normally
associated with the “gulf of execution.”

The models show also that the Touchscreen had certain
disadvantages that a different interface design might
mitigate, such as the need to reserve the eye to guide the
second response, and the fact that both responses were
bottlenecked through relatively slow hand movements. For
example, if the hostility response could be delivered via a
speech-driven interface, the bottleneck produced by the
need to make a second visually-guided hand motion would
be eliminated, and both the eye and hand would be free
sooner to seek the next blip to process.

The complex mix of effects appearing in this interface
comparison is a result of the subtle interplay between
interface design, task strategies, and the fundamentals of
human perceptual and motor capabilities and limitations.
The fact that the details of the interaction are critical is
reminiscent of the point made some years ago by Whiteside
et al. [12] in their seminal comparison of different interface
styles: The style of the interface is not in itself critical;
rather the key is getting all the details right with a well-
crafted interface. Thus the specific ways in which the
details of user processing play out in this interface
comparison suggests that broad-brush generalizations of
interface principles can not be relied upon to give designers
reliable guidance that will help them to arrive at superior
interfaces more quickly than brute-force user testing
iterations. Rather, continued work with detailed
computational model of human-computer interaction
should help us develop a full scientific understanding of
interfaces, which can then be delivered in modeling tools
that are accessible to designers.

ACKNOWLEDGMENT
This work was supported by the Office of Naval Research.

REFERENCES
1. Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992).
Direct manipulation and intermittent automation in
advanced cockpits. Technical Report NRL/FR/5534--92-
9375. Naval Research Laboratory, Washington, D. C.

2. Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992).
Evaluating two aspects of direct manipulation in advanced

cockpits. In Bauersfeld, P., Bennett, J., and Lynch, G.,
CHI'92 Conference Proceedings: ACM Conference on
Human Factors in Computing Systems, Monterey, May 3-7,
1992.

3. Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

4. Frohlich, D. M. Direct manipulation and other lessons. In
M. Helander, T.K. Landauer, & P. Prabhu (Eds.).
Handbook of Human-Computer Interaction (2nd ed.),
Elsevier, 1997.

5. Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986).
Direct manipulation interfaces. In D.A. Norman, &
Draper, S. W. (Eds.), User centered system design.
Hillsdale, NJ: Lawrence Erlbaum Associates.

6. Kieras, D. & Meyer, D.E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction., 12, 391-438.

7. Kieras, D. E., & Meyer, D. E. (2000). The role of
cognitive task analysis in the application of predictive
models of human performance. In J. M. C. Schraagen, S. E.
Chipman, & V. L. Shalin (Eds.), Cognitive task analysis.
Mahwah, NJ: Lawrence Erlbaum, 2000.

8. Kieras, D.E., Meyer, D.E., Ballas, J.A., Lauber, E.J. (in
press) Modern computational perspectives on executive
mental processes and cognitive control. Where to from
here? In S. Monsell and J. Driver (Eds.), Control of
cognitive processes: Attention and Performance XVIII.
Cambridge, MA: MIT Press.

9. Meyer, D. E., & Kieras, D. E. (1997). A computational
theory of executive cognitive processes and multiple-task
performance: Part 1. Basic mechanisms. Psychological
Review, 104, 3-65.

10. Meyer, D. E., & Kieras, D. E. (1997). A computational
theory of executive control processes and human multiple-
task performance: Part 2. Accounts of Psychological
Refractory-Period Phenomena. Psychological Review. 104,
749-791.

11. Meyer, D. E., & Kieras, D. E. (1999). Precis to a
practical unified theory of cognition and action: Some
lessons from computational modeling of human multiple-
task performance. In D. Gopher & A. Koriat (Eds.),
Attention and Performance XVII.(pp. 15-88) Cambridge,
MA: M.I.T. Press.

12. Whiteside, J., Jones, S., Levy, P. S., & Wixon, D.
(1985). User performance with command, menu, and
iconic interfaces. In Proceedings of CHI '85. New York:
ACM.

