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Abstract

Visual search is important in many practical situations such as human-computer interfaces.
The current most popular theory of visual search performance is based on covert visual attention,
with no role for low-level "early" visual processes, eye movements, and task strategies, although
such explanatory entities have been empirically measured and can be easily characterized. This
report presents detailed computational models of simple visual search tasks in which subjects
respond whether a target is present or absent in stimulus displays of relatively small numbers of
objects. These models were constructed using the EPIC computational cognitive architecture.
The model simulation results show that despite having been ignored by covert attention theories,
parsimonious combinations of early visual processes, eye movements, and task strategies
actually suffice to account in quantitative detail for visual search performance. These findings
thus cast serious doubt on covert visual attention as an explanatory concept in this domain, and
are harbingers for the future development of more complete and accurate computational models
of visual search.

1. Introduction

Visual search is a task that most people perform many times a day. Some object is sought,
and the visual surrounding is examined until the object is found. Many real-world computer
tasks, ranging from personal computers to complex military radar systems, require finding
particular objects such as icons on the display. In a laboratory visual search experiment, the
subject is presented with a display of objects and a search task which is a specification of the
target, the sought-for object or objects. The other objects on the display are defined by the search
task specification as distractors. The subject is asked to examine the display and locate the target
(e.g. by clicking a mouse pointer on it), count the number of targets present, or simply to indicate
whether or not it is present. In the review that follows, tasks that require locating the target or
counting the number of targets are termed complex visual search, and those the require only a
present-absent/response are termed simple visual search.

1.1. Complex Visual Search

Complex visual search. Visual search research inspired by real-world tasks has a long history
in experimental psychology and human factors. For example, a National Research Council

! This work was supported by the Office of Naval Research, under N00014-16-1-2560. Thanks are due to David E.
Meyer and Anthony Hornof for many helpful suggestions and comments.



symposium in 1959 (Morris & Horne, 1960) presented a substantial body of experimental and
analytic research relevant to military visual search tasks. This work involved sophisticated
treatment of the non-uniform resolving power of the eye, eye movement measurements, signal
detection analysis, and analysis of strategies for how people should conduct visual search.
Another body of research in human factors compared different coding schemes for effectiveness
in visual search (see Sanders & McCormick, 1987 for a summary). For example, Smith &
Thomas (1964) found that target color was a very efficient cue in tasks that involving counting
the number of target objects in displays containing 20, 60, or 100 objects, while target shape was
a much less effective cue, resulting in much longer response times and more errors. Many studies
of visual search used eye movement tracking, even though it was extremely difficult until
recently. For example, a classic film-based eye-movement study by Williams (1967) used
displays of 100 unique numerically-labelled objects that differed in color, size, and shape.
Subjects were required to find the object with a specified label given different cue combinations
of the target's color, size, or shape. The results showed that some cues were more effective than
others; in particular, color led to much faster searches than size or shape, and the eye movements
showed that subjects fixated much more frequently on objects with matching colors than
matching size or shape. In these classic, and more recent experiments, subjects are required to
actually locate the target object, such as fixating it or pointing to it in some way. Such tasks are
called complex visual search in this paper.

1.2. Simple Visual Search

Simple visual search. Concurrent with the classic and recent work on complex visual search,
another approach to investigating visual search developed separately and had quite different
characteristics. It was inspired by early influential work of Neisser (1963), who introduced visual
search of alphabetic text as an information-processing topic. Unlike in the research surveyed
above, Neisser and his followers (e.g. Treisman & Gelade, 1980; Wolfe, Cave, & Franzel, 1989)
assumed that purely visual factors and eye movements are unimportant for understanding and
explaining the phenomena of visual search. Thus, those factors have played little or no role in
their theories of visual search.

As part of this different approach to investigating visual search, subsequent studies after
Neisser (1963) began using variants of a highly simplified experimental paradigm, termed simple
visual search in this paper. In experiments on simple visual search, the subject views a display of
relatively few objects (or items) and simply responds with a keypress about whether a specified
target is present or absent. At most a single target is present (constituting a positive trial) or not
(constituting a negative trial). The number of objects in the display (set size) and the
specification of the target vs. distractors (search task) are the main independent variables. The
reaction time (RT) for correct responses as a function of set size and trial polarity (positive vs.
negative) is the major dependent variable.

Excellent reviews of results from a wide variety of experiments on simple visual search
appear in Findlay & Gilchrist (2003), Wolfe (2014), and Hulleman & Olivers (2017). Figure 1.1
shows some example displays and tasks from three simple visual search tasks? studied by Wolfe,
Palmer, and Horowitz (2010), whose experimental data is modeled in this report, and will be
described more below. For the left-most panel, the task is to respond with a key press whether a 2

2 The names for the search task conditions in this paper differ from those in Wolfe, Palmer, and Horowitz (2010).



shape (target) is present or absent in a field of 5 shapes (distractors), the Shape task. In the center
panel, the task is to respond with a key press whether a red bar is present or absent in a field of
green bars, the Color task. In the right panel, the task is to respond whether a red vertical bar is
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Figure 1.1. Example displays produced by the model for positive trials in each task condition used in the Wolfe, et
al. experiment for set size of 18. From left to right, tasks are: Shape, Color, Conjunction. Gray circles indicate initial
fixation point position. Outer circle: 10° diameter, Inner circle: 1° diameter.

present or absent in a field containing red horizontal bars and green vertical bars, the
Conjunction task (the target is the conjunction of red and vertical). The number of objects
(shapes or bars) in the display was varied from 3 to 18, and the target was present on half the
trials, and absent on the rest.

The data typically resulting from such experiments show a roughly linear increase in RT with
set size. Different visual properties and search tasks produce positive trial slopes ranging from
essentially zero to roughly 50 ms/item or more for more apparently difficult search tasks. The
negative trial slope is often roughly twice the positive trial slope, which suggests that a serial
self-terminating search process is involved. Error rate (ER) usually increases with set size and
apparent task difficulty, but is usually fairly low. Following the common practice in RT
experiments, as long as the ER is "low enough", the RT for correct trials is believed to be
uninfluenced by errors, and thus only the correct response RT is considered, and the ER can be
ignored. This practice was criticized by Pachella (1974), but still continues.

Work by Treisman (1969; Treisman, Sykes, & Gelade, 1977) on the role of attention in visual
search led to the seminal Triesman & Gelade (1980) paper, followed by Wolfe and his
coworkers, starting with Wolfe, Cave, & Franzel (1989). The simplicity of the methodology and
appeal of the attention-based theories offered by these authors led to a vast number of studies
(see reviews in Wolfe, 2014, Hulleman & Olivers, 2017). Treisman and Gelade (1980) found that
the slopes were zero or very small for tasks like the Color task, but larger and linear for tasks like
Conjunction. However, Wolfe, Cave, and Franzel (1989) found that searches with apparently
difficult discrimination requirements, like Shape, produced much larger slopes than Conjunction-
like tasks, which could in fact be relatively fast. Wolfe (2014) thus discards the Triesman and
Gelade (1980) dichotomy and placed search tasks on an efficiency scale based just on RT slope,
with tasks like Color being efficient and those like Shape being inefficient, and tasks like
Conjunction being intermediate.



1.3. Covert Attention Theory of Visual Search
Search seems to be too fast for eye movements. An obvious explanation for the linear RT

slopes is that subjects move the eyes to each item sequentially to perform the search, which is a
good approximation of the results in the complex visual search work summarized above.
However, unless the objects are extremely difficult to discriminate, the typical RT slopes
observed in simple visual search seem to be much faster than possible if eye movements would
have to fixate each object separately (cf. Neisser, 1963; Triesman & Gelade, 1980; Wolfe, 2007,
p- 106-107; Wolfe et al., 2010).

This discrepancy motivates the basic theoretical claim underlying most of the simple search
theorizing, that the sequential search is done not by overtly moving the eyes, but instead by
covertly moving selective attention from one internal object representation to another. The claim
is that this covert shift of attention can happen much more quickly that overt shifts of the eye
position. Judging from Triesman, Sykes, & Gelade (1977), this covert selective attention theory
of visual search appears to have its roots in Neisser’s (1967) assertion, based on extremely early
computer vision speculation (Minsky, 1961), that "focal attention" is necessary to "bind" together
primitive features into a visual object; this attention-based binding operation was advanced in the
tremendously influential Triesman & Gelade (1980) Feature Integration Theory as an explanation
for the different RT effects in Color and Conjunction-like tasks. In this theory, if no binding has
to be done, as in the Color task, then a parallel process can simply detect the presence or absence
of the target feature quickly and independently of set size, while the Conjunction task requires
serially deploying attention to each object to detect an object that has both target features.

The dominance of the covert selective attention hypothesis has led to a remarkable dismissal of
the role of visual factors like retinal nonhomogeneity and the relevance of eye movements (for
additional discussion, see Findlay & Gilchrist, 2003; Rosenholtz, Huang, & Ehinger, 2012). This
dismissal is all the more puzzling because Neisser (1967), Treisman & Gelade (1980), and Wolfe
(2007, 2014) and the mainstream of visual search work descended from them, all refer to visual
factors like retinal nonhomogeneity and eye movements. Yet these investigators did not consider
them to be important compared to covert attention, even though many simple visual search
experiments have demonstrated their relevance (e.g. Carrasco & Frieder, 1996; Wertheim,
Hooge, Krikke, & Johnson, 2006; Zelinsky & Sheinberg, 1995, 1997).

1.4. Are Eye Movements Involved in Simple Visual Search?

A key and simple point is that if more than one visual object can be processed in a fixation,
the argument that the RT slopes are too small to be consistent with eye movements simply
disappears (cf. Findlay & Gilchrist, 2003; Hulleman & Olivers, 2017). In fact, a general result
(e.g. Williams, 1967; Zelinsky & Sheinberg, 1995, Hulleman & Olivers, 2017) is that search time
(RT) is strongly related to the number of fixations during the trial, which makes the general
dismissal of visual factors and eye movements in the simple visual search literature hard to
justify. This calls for a re-examination of the role of eye movements in simple search tasks,
which reveals important methodological problems.

There is a small literature that directly compares simple search tasks with and without eye
movements. Isolated papers from this literature have sometimes been cited (e.g. by Wolfe, 2007
p. 106-107, Wolfe et al., 2010) as supporting the generalization that the same RT effects are



obtained regardless of whether eye movements are made. However, the following brief survey
shows that this generalization appears unjustified and highly questionable.

There are five experimental procedures that have been used in simple visual search tasks. In
all of them, the subject is asked to fixate a central point before the display appears.

1. The short display time procedure seeks to eliminate the effects of eye movements
by making the search display exposure time so short (e.g. 180 ms) that the eyes cannot be
moved from the central fixation point before the display disappears. This means that
many factors can be studied without the complications of eye movements or the difficulty
and expense of eye tracking. However, clearly subjects respond on the basis of some kind
of evanescent stored representation of the display rather than the actual display.

2. The eyes-free procedure allows the subject to make eye movements as they choose,
while the display remains visible until the subject responds. This is obviously the most
natural procedure as well as the simplest to implement.

3. The eyes free with eye movement tracking is an especially useful procedure because
it provides direct information on the role of eye movements. However, eye tracking
methodology has been more difficult and expensive to implement than simple RT
experiments, and so it is unusual in the simple visual search literature, although there is a
long-established literature on eye movements in complex search tasks.

4. The instructed eyes-fixed procedure asks subjects to maintain fixation on the
central fixation point while performing the visual search task. The display remains visible
until the response. It is often assumed that subjects adhere to these instructions and no
check is made on whether subjects actually comply. This procedure was used in Wolfe, et
al. (2010, p. 1306).

5. The instructed eyes-fixed with monitoring procedure uses eye tracking equipment
to monitor whether the subject succeeds in maintaining fixation. However, because of the
accuracy limitations of eye tracking, a threshold such as 1 degree is set for the maximum
eye movement that is allowed. If the threshold is exceeded, the trial is either replaced or
simply dropped from the analysis. This implies that a better characterization of this
procedure is that rather than eliminating eye movements completely, it eliminates
fixations that are on or close to the search objects.

There is a consensus that the short display time procedure produces results that while well-
behaved, differ substantially from those of the eyes-free or instructed eyes-fixed procedures. For
example, Klein & Farrell (1989, Exp. 1) and McElree & Carrasco (1999), found short display
time produced RT and ER patterns that were both very different than the typical eyes-free or
-fixed results.

There are a few direct comparisons of instructed eyes-fixed and eyes-free procedures, e.g.,
Klein & Farrell (1989), Motter & Simoni (2008), Scialfa & Joffe (1998), Wertheim, Hooge,
Krikke, & Johnson (2006), and Zelinsky & Sheinberg (1997). The results are inconsistent and
problematic. In some studies the effect of procedure on RT differed depending on set size and
whether the search task was efficient or inefficient. Across these studies, instructed eyes-fixed
produced both faster and slower RTs than eyes-free. Some studies do not report ER at all;
however, in most cases, the ER tends to be higher in eyes-fixed than in eyes-free. Clearly, faster



RT and higher ER in eyes-fixed could just be a speed-accuracy tradeoff — guessing a response
with eyes fixed would simply take less time than moving the eyes to determine a more accurate
response. However, because the ERs differed between procedures, the presence (or absence) of
similar RT effects is at best ambiguous (Pachella, 1974).

What accounts for the inconsistencies between these experiments? There are purely
methodological factors, all contributing to the likelihood of Type I and Type II errors, leading to
inconsistent results. Most studies used stimuli that were either highly discriminable or at small
eccentricities, which means that extra-foveal vision might often be adequate to discriminate them
with few or no eye movements, substantially weakening the procedure manipulation. Most
studies had fairly unpracticed subjects, and relatively few trials/condition. Instructions and
incentives for stable speed vs. accuracy performance were not used. Most studies did not control
crowding effects due to display density, which together with small sample sizes could cause high
variability in RT for larger set sizes. The number of subjects was often very small (as few as two)
compared to the normal practice for RT experiments. The procedure factor was usually between-
subjects or even between-experiment, decreasing the statistical power. In most cases, it is
difficult to assess the statistical issues because of unclear method descriptions and incomplete or
inadequate statistical analyses and reporting. Finally, the claim of "no difference" in RTs between
eyes-fixed and eyes-free procedures requires accepting the null hypothesis; since the experiments
were methodologically and statistically weak, such a claim has no force, especially since the
results are inconsistent.

A few of the studies used the eyes-fixed with monitoring procedure. As noted above, small
eye movements were allowed, and apparently made. For example, in Klein & Farrell (1989), the
eccentricity of the display objects from the fixation point was constant at 2.4 degrees, and eye
movements of up to 0.5 degrees either horizontal or vertically were allowed, giving up to 0.71
degrees diagonally, corresponding to 30% of the stimulus eccentricity. In other experiments the
allowed eye movements could be up to 1.27 degrees of eye movement from the fixation point.
Wertheim, et al. (2006, Exp. 2) actually report the number of these small movements and provide
some sample eye movement traces.

Small eye movements in the vicinity of the fixation point could be functional. Recent work
on fixational eye movements (e.g. microsaccades; see review by Martinez-Conde, Macknik, &
Hubel, 2004) suggests that these small eye movements could cause a stimulus object to change
receptive or integrative fields in extra-foveal vision enough to make it discriminable. Thus, even
if subjects succeed in following the eyes-fixed instructions, there is still the possibility that small
fixational eye movements, either voluntary or involuntary, would allow nearby or highly
discriminable extra-foveal objects to be discriminated. Thus as noted above, at best the eyes-
fixed procedure eliminates full fixations on the objects, rather than eliminating any role of eye
movements. Under these circumstances, it is hard to justify attempting to impose an artificial
eyes-fixed constraint on subjects rather than let them use their eyes as they normally would.

The conclusions from this brief survey are that (1) If a manipulated factor causes ERs to
differ, but not RTs, the claim that the factor has no effect is unjustified (cf. Pachella, 1974). (2)
Claiming that some type of eye movements is not involved in simple visual search is not justified
empirically. (3) The visual discriminability of the search objects, and the characteristics and need
for eye movements, are closely related; one can not be studied without reference to the other. (4)



Especially in the instructed but unmonitored eyes-fixed procedure, it should be assumed that
subjects could still be making eye movements.

Thus despite the historical, but unjustifiable, claim to the contrary, assuming that eye
movements can be involved is a better first step in constructing sound explanations of simple
visual search effects.

1.5. Explaining Visual Search

This paper will apply three key explanatory concepts to visual search that differ from the
covert attention account. The first two were described in the excellent review by Findlay and
Gilchrist (2003) under the heading of Active Vision; Newell (1973) stated the third very
emphatically:

« "Early" visual factors. These are sensory and perceptual aspects of the visual stimulus
such as object eccentricity, size, spacing, color, orientation, and shape. These are
termed early in this paper because the major processing of these factors appears at the
level of the retina and the first levels of visual perception. An important example is that
due to retinal non-homogeneity, resolving power is highest in the fovea, but extra-
foveal or peripheral vision nonetheless provides useful information. Moreover, different
visual features, termed properties3? in this paper, differ in how well they can be detected
in central versus peripheral vision. For example, color can be detected quite well in
peripheral vision, but detailed shape, as in normal-sized letters, often requires foveal
vision for recognition.

« Eye movements and visual guidance. The human moves the eyes around the visual
scene as needed to bring visual objects into the high-resolution portion of the retina.
However, the information from extra-foveal or peripheral vision is not ignored; rather it
provides guidance about where the eyes should be moved next, and might actually
suffice to complete the task.

o Task strategy. Subjects will acquire and apply task-specific strategies for moving the
eyes as needed to complete the task and making the appropriate response. The task
strategy coordinates the perceptual and motor systems in a visual search task.

The concept of task strategy needs some elaboration at this point. The presence of a task
strategy of some sort has been implicit in almost all theoretical work, as implied by the obvious
ability of humans to respond to different instructions about what constitutes the task, such as the
type of the target, and do so promptly in an experimental setting. But long ago convincing
arguments were advanced, but largely ignored, that strategies devised and executed by subjects
need to be explicitly represented in a model. Reitman (1970, p. 501) pointed out that strategies
and the underlying memory and processing mechanisms were quite distinct and needed separate
representation in a model. Later, Newell (1973) made a similar point, and in a more pithy way,
using method to refer to the subject's task strategy:

3 The conventional term feature is ambiguous between a stimulus dimension (e.g. color), and a value on that
dimension (e.g. red); the models in the paper use a convention inherited from LISP of properties and values; a
property and value pair names a dimension and a value on that dimension.



The most fundamental fact about behavior is that it is programmable. That is to
say, behavior is under the control of the subject to shape in the service of his own
ends. ....

First Injunction of Psychological Experimentation: Know the method your
subject is using to perform the experimental task.

In short, we are totally engaged, in psychological experimentation, in the
discovery and verification of the specific methods used by the subject in doing the
experimental tasks. (p. 293 - 294)

Similarly, Meyer & Kieras (1997a, 1997b, Kieras & Meyer, 2000; Schumacher, Seymour,
Glass, Fencsik, Lauber, Kieras, & Meyer, 2001) showed by detailed modeling that human
performance effects attributed to structural constraints such as a "response selection bottleneck"
were more correctly, and fruitfully, accounted for in terms of flexible strategies operating with
constrained perceptual and motor mechanisms.

Computational models based on these three explanatory concepts account well for data from
eye-tracking experiments on complex visual search (Kieras & Marshall, 2006; Kieras, 2010,
2016; Kieras & Hornof, 2014, 2017; Kieras, Hornof, & Zhang, 2015; Hornof & Halvorsen, 2003;
Halvorsen & Hornof, 2011; Hornof & Kieras, 1997, 1999). However, the simple visual search
results present a challenge for EPIC: Not only is the task strategy very different, but critically,
the data are claimed to support theories in which the mechanisms that EPIC does not include
(such as covert attention) are central, while mechanisms that EPIC does include (early visual
factors and eye movements) are deemed irrelevant. Thus if an EPIC model can account for the
results in quantitative detail, it follows that hypothetical cognitive mechanisms such as ‘covert
attention shifting’, perceptual object-feature ‘binding’, and so forth, which have pervaded the
theoretical literature on simple visual search, are not needed to explain simple visual search
performance.

1.6. Overview of the Paper

In the next main section, Section 2, this paper provides a reanalysis of a very high-quality
dataset, made available by Wolfe, Palmer, & Horowitz (2010), concerning performance in three
classic simple visual search tasks, which are illustrated in Figure 1.1. Following this presentation
is a brief critique of the key theoretical and methodological assumptions in the current work on
simple visual search.

Section 3 describes the EPIC computational cognitive architecture and then subsequent
sections present an active vision model constructed with EPIC to account for the Wolfe, et al.
(2010) results, both at the level of the aggregated data (Section 4), and at the level of clusters of
individual subjects who performed similarly (Section 5). The basic results are that the EPIC
models account extremely well for the aggregate data, both qualitatively and quantitatively, using
a combination of simple perceptual and motor mechanisms and simple rational strategies that are
well-adapted to the perceptual differences between the tasks. The individual subject cluster data
is similarly well accounted for; in most cases subjects followed the same strategy that fit the
aggregated data, but had different perceptual parameters (e.g. acuity); a few subjects followed a
different strategy in the Conjunction task, the most complex. Section 6 states conclusions and
implications for future work.



2. The Visual Search Experiment

This section is a reanalysis of a very high-quality dataset, made available by Wolfe, Palmer,
& Horowitz (2010), concerning performance in three classic simple visual search tasks, which
are illustrated in Figure 1.1, and used for the modeling work in this paper. The data were
collected by Wolfe, et al. (2010), and made available for download at http://
search.bwh.harvard.edu/new/data_set files.html. This dataset is exceptional because of the
relatively well-specified stimuli and very large number of trials from very well-practiced
subjects. For completeness, the experimental method is re-stated here in the context of how the
experiment was simulated in the model.

2.1. Method

Tasks. There were three different present/absent search tasks; Figure 1.1 shows a sample
target-present display produced by the model for each task condition.

The three tasks are as follows; the labels differ from Wolfe, et al., but are used here for
greater clarity.

* Shape task: The objects are "digital 5" and "digital 2" shapes made up of vertical and
horizontal line segments similar to these digits on a traditional seven-segment display.
The distractors are always 5s; if present, the single target is always 2.

* Color task: The display contains vertical green or red bars. The distractors are always
green. If present, the single target is always red.

* Conjunction task: The display contains bars that are vertical or horizontal, and red or
green. Half of the distractors are green verticals and half are red horizontals. If present,
the single target is always a red vertical bar.

Stimuli. Wolfe, et al. provide a good level of detail about the stimulus properties, but do not
describe how the individual displays were created, and the download data set does not contain
information about the actual display used in each trial, so for purposes of modeling, the display
had to be generated for each simulated trial using the process described in what follows. The
example displays in Figure 1.1 above were generated by the model.

The search display was an area 22.5° x 22.5°, containing 25 invisible cells of 5° x 5°; Wolfe,
et al. state that each object appeared in a random location within one of the cells, but did not state
whether or how touching or overlapping objects were prevented. Assuming that such displays
were not allowed, the random location within a cell was constrained to keep the horizontal or
vertical edge of an object at least 0.25° away from the cell boundary, ensuring a minimum
separation of 0.5° between edges of adjacent objects. Throughout the modeling, the location of
an object was defined to be the center point of the bar or digit bounding box. Set sizes were 3, 6,
12, and 18. In the model, a display was generated for each trial as follows: the set-size number of
distractors were first placed in randomly chosen display cells. With probability of 0.5, the trial
polarity was then determined; if the trial was positive (target present), a randomly chosen
distractor was replaced with a target object.

In the Shape task, the objects were 1.5° x 2.7° character-like shapes. In the model, the object
size is defined in the models as average of the horizontal and vertical bounding box dimension.



giving 2.1° for the Shape object size. The target was a 2 and the distractors were Js. In the Color
task, the objects were 1° x 3.5° vertical bars (size defined as 2.25°); the target bar was red,
distractor bars were green. In the Conjunction task, the objects were also 1° x 3.5° bars, red or
green, oriented either horizontally or vertically. The target was a red vertical bar, and distractors
were red horizontal and green vertical bars. Half of the distractors were chosen to be of each
type, with set size 3 special-cased so that at least one distractor of each type was present. Since a
positive trial display was produced by replacing a random distractor with a target, over trials,
each type of distractor would appear equally often.

Design. There were 10 subjects in the Conjunction task condition and 9 in the other two. One
subject was in both Conjunction and Shape, but the data set does not identify this subject, so the
task condition was treated as a purely between-subject manipulation.

Procedure. Each trial began with a centered fixation cross. Subjects were instructed to “keep
their eyes focussed on this cross” but because eye movements were not monitored, subjects
could have moved their eyes, and based on the studies reviewed above, it is likely that they did
s0, at least in some conditions. The search display was presented and remained visible until the
subject pressed a key for target present or target absent. Subjects were instructed to respond "as
quickly and accurately as possible," and correct/incorrect feedback was presented for 500 ms
after each trial. But no explicit incentive such as a payoff function (Edwards, 1961; Sternberg,
2016 Appendix B) was provided to make the task instructions more specific or implementable by
the subjects. Unlike many visual search experiments, the subjects were very well practiced, with
about 500 trials per subject for each combination of set size and positive/negative trial polarity, a
total of about 4000 trials. This suggests that generally, subjects maybe have been biased towards
being as fast as they could with whatever they considered acceptable accuracy, but otherwise,
with no incentive to make this tradeoff in any more specific way.

2.2. Results

The downloaded data consisted of the RT and correct/incorrect status for each trial for each
subject at each set size and trial polarity. RT outliers were removed from the data following the
description in Wolfe et al. (2010). Following common practice in RT experiments, the data were
reduced as follows: For each task condition, for each subject, the mean RT for correct trials and
the proportion of errors (error rate, ER) for that subject was calculated for positive and negative
trials at each set size, giving a total of 8 data points for RT and 8 data points for ER for each
subject. These subject means were then averaged to produce the data points plotted in Figure 2.1.
Throughout this report, positive (target present) trials are shown as red points and lines, negative
(target absent) trials in black; the Shape task is plotted with squares, Conjunction with triangles,
and Color with circles. The 95% confidence intervals around each data point in Figure 2.1 were
calculated by determining the standard error of that mean using the 9 or 10 individual subject
means contributing to that point, thus reflecting between-subject variability, but not within-
subject variability.

Wolfe, et al. did not report any overall statistical tests of these results. Therefore, unequal-n
ANOVAs were performed on the reduced data using the R ez package (R Core Team, 2017,
Lawrence, 2016). For RT, the main effects of task condition, trial polarity, set size, and all two-
and three-way interactions were significant (p <.05). For ER, whose overall average was 2.4%,

10



RT at each Set Size as a function of P(Errror) at each Set Size as a function of
3000 Cue Type and Trial Polarity Cue Type and Trial Polarity
0.14
—e—0bs CSF Neg
2500 012
—»—0Obs CSF Pos
2000 o 01 —4—0bs COC Neg
o
& Iri
8 5 0.08 —+—0Obs COC Pos
& 1500 5
e £
8006 —m-Obs SHP Neg
a
1000 —m-Obs SHP Pos
0.04
500
a 0.02
0 0
0 2 4 6 8 10 12 14 16 18 20 0 5 jo ) 15 20
Number of objects on display Number of objects on display

Figure 2.1. Observed RT (left panel, scale 0-3000 ms) and ER (right panel, scale 0-0.15) in each task condition.
Shape: squares, Conjunction: triangles, Color: circles. negative trials are plotted in black, positive trials in red. The
error bars are 95% confidence intervals based on the standard error of the individual subject means underlying
each plotted mean and thus reflect between-subject variability.

the task condition main effect was not significant (p > .1) but the trial polarity and set size main
effects, and all two- and three-way interactions were significant (p <.05).

Examination of specific within-subject effects was done with Fisher Least Significant
Difference (FLSD) values, which to avoid clutter are not shown on the graphs. For within-
subject (within-condition) comparisons of the 24 mean values plotted in the graphs, the FLSD
values are 68 for RT and 0.011 for ER. This shows that for the Color task, of course the RTs are
not different for either trial polarity or set size. For Conjunction and Shape both the FLSD value
and the between-subject confidence intervals indicate that the increasing trends for the RTs, and
the tendency for negative RT to be greater than positive are reliable effects. For ER, these values
indicate that the differences between the negative trial ERs at set size 3 and 18 are significant.
For positive trial ER, for the Color task, the set size 18 point is not quite reliably different from
the smaller set size points; for Conjunction, the set size 18 ER is higher than all smaller set sizes
ERs, but the ER for set size 12 is not reliably higher than for the smaller set sizes. Finally, for
Shape positive trials, set size 18 ER is higher than all smaller set sizes, and ER for set size 12 is
higher than the smaller set sizes ER. Overall, these comparisons can be summarized as: most of
the apparent within-subject/within-condition effects in the graphs are reliably different even if
the between-subject confidence intervals overlap.

Table 3.1 presents some summary statistics; given the great importance in the literature
attached to the linearity and slope of the RT functions, this table provides the intercept, slope,

Table 3.1 Observed Aggregated Data Statistics

negative positive
TaskCondition | Intercept | Slope 2 ER | intercept  Slope . #  ER ERMax Sloperatio
Color Task | | | | | | |
Conjunction
Shape
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and 72 of a linear fit to the mean RT data in each condition, along with the ratio of the negative
trial RT slope to the positive trial RT slope. Since the Color task slopes are essentially zero, the
slope ratio is meaningless in this condition. Note how the Shape slope ratio is roughly 2, the
classic value for a self-terminating serial search, but the slope ratio is definitely larger than 2 in
the Conjunction condition. Also shown is the mean ER and the maximum ER in each condition.

2.3. Discussion

Reaction Times. The RT results follow the classic pattern obtained in most simple visual
search experiments. The RT functions are essentially flat in the Color task (positive trial slope is
about 1 ms/item). In Conjunction and Shape, positive and negative trial RTs have a substantial
slope, with the negative trial slope very roughly twice that of the positive trials, the classic
indicator of a serial self-terminating search. Treisman & Gelade's (1980) Feature Integration
Theory focussed on explaining why conjunctive searches (as in this Conjunction task) have these
sloped linear RTs compared to single-feature searches (like the Color task) with their flat RTs.
But Wolfe, Cave, and Franzel (1989) showed that this central claim did not stand up to further
empirical work: conjunctive searches can be relatively fast (as they are here, at 9 and 26 ms/
item), and single-feature searches can be either very fast or very slow (as in Shape), depending
on the specific visual properties involved. A fine point to note is that there is a hint of negative
acceleration in the steepest RT function; much stronger curvilinear effects are commonly
observed (see Wolfe et al., 1989) but have usually been ignored (but see Buetti et al., 2016).

Error Rates. Some intriguing patterns appear in the ERs, but for the most part, Wolfe et al.
(2010) chose neither to analyze nor to theoretically interpret the observed ER pattern. Instead,
their remarks regarding ERs were limited to mentioning just two facts: (1) the overall mean ER
across search tasks, display sizes, trial polarity, and subjects was only 2.4% ; (2) a small but
reliable downward trend in the frequency of errors on negative trials as a function of display size.

We show subsequently that this lack of greater attention to the observed ERs was
unfortunate. Nor was it at all unusual. Indeed, error-rate (ER) effects typically have been ignored
in the literature on simple visual search when overall ERs were as low as the 2.4% found by
Wolfe et al. (2010), and an overall speed-accuracy tradeoff was not present, as shown by overall
ERs being positively correlated with overall RTs. Thus, under these conditions, both Wolfe et al.
and other past investigators typically proceed as if ignoring the errors and focussing only on the
RTs from correct trials was acceptable (cf. Pachella, 1974).

Such an approach to data analysis and interpretation embodies a long-standing practice in the
study of RT effects as articulated by Sternberg (1969). Namely, RTs may be assumed to manifest
internal stages of processing, so we can construct models and theories about cognitive processing
based on patterns in RT effects. However, unlike for correct responses, there are many possible
ways subjects could make an error. Consequently, the theoretical interpretation of error RTs is
ambiguous, and possible interpretations have little theoretical interest. The standard practice thus
has been to consider RTs from correct trials only, and as long as the ER is "low enough", it has
been assumed that erroneous behavior does not seriously contaminate the correct trial RTs.

However, despite the conventional justification for ignoring the error rates, it is clear that the
ER effects in the Wolfe et al. data are highly systematic. In particular, there are very few errors
on negative trials (False Alarms), and their rate does not appear to depend at all on the task
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condition and very little on set size (apparently declining slightly with set size). The average
across all task conditions and set sizes is only 1.4%. In sharp contrast, the errors on positive trials
(Misses) are more frequent than the False Alarms, and definitely depend on the task, being
lowest in the Color task and highest in Shape. The Miss rate in the Conjunction and Shape tasks
strongly increases with set size. As noted above, the 2- and 3-way interactions are strongly
significant in spite of large individual differences. Because the ER effects are pronounced and
statistically reliable, they deserve to be explained along with the RT effects rather than ignored.
Furthermore, rather than postulate that ER depends on "task difficulty" and represent it by error
rate parameters that increase with "task difficulty," it would be better to explain this effect in
terms of the visual and strategy mechanisms at work in the different tasks. Therefore, in what
follows, ER is considered as a first-class data source alongside RT for developing and evaluating
models of visual search.

3. The EPIC Cognitive Architecture

A cognitive architecture is basically a modern version of the computer metaphor for human
information processing. Computers have a fixed hardware structure, called the computer
architecture, with various specific interconnected processing mechanisms. They can be
programmed with software that is stored and executed by the hardware, in order to perform
various different tasks through using the hardware mechanisms appropriately. The hardware
architecture is fixed in that it doesn't change its structure or characteristics depending on the task
to be performed; rather the software has to deal with the specifics of the task. Without a software
program, the hardware does nothing; but a program has to be written in terms of what the
hardware makes possible. How well the system actually performs the task depends both on the
characteristics of the hardware architecture and how the programming makes use of the
architecture.

3.1. The Concept of a Cognitive Architecture

These concepts can be mapped to human information-processing systems. By analogy,
humans have "hardware" for perception, cognition, and motor activities, with mechanisms whose
characteristics are task-independent and thus fixed. The “software" consists of task-specific
strategies involving procedural knowledge that is acquired and executed by components of the
cognitive architecture. The Atkinson & Shiffrin (1968) model of memory, in which human
memory systems were viewed as configurable to meet the requirements of a particular task, was
an early precursor of contemporary cognitive architectures. Another precursor was the Model
Human Processor presented by Card, Moran, & Newell (1983), which represented a human as a
set of perceptual and motor processors and memory stores with fixed characteristics, and a
cognitive processor that functioned in a task-specific fashion, thereby resulting in models that
could produce practically useful predictions of task execution times.

As pointed out by Newell (1973), a special property of human behavior is that it is
programmable, which means that in addition to the fixed components of the architecture, some
kind of flexible control process is require to represent and apply a task strategy, the procedural
knowledge for performing the task, giving a complete model of ‘end-to-end’ performance from
perception to action. Newell further suggested that production systems were a good candidate for
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representing the control process. This concept gave rise to the specific architectures such as ACT
(Anderson, 1983), Soar (Laird, Newell, & Rosenbaum, 1987), and EPIC (Kieras & Meyer, 1997;
Meyer & Kieras, 1997a, b; Kieras 2016) which represent the control process as production rules,
which are if-then condition-action rules which are acquired as procedural knowledge and
executed by the central cognitive system.

Such cognitive architectures are more comprehensive and explicit than previous attempts to
model human cognition and performance. In particular they are computational, which means
they can be implemented as explicitly defined computer simulation systems, and so can produce
rigorous and quantitative predictions of empirical results.

Constructing a model in such an architecture is a much more disciplined process than prior
modes of theorizing. Especially important is that the architecture provides constraints —
behavior has to be produced using a specified set of mechanisms and components, especially for
the control process. This is a striking contrast to earlier computational models, which often
contained arbitrary code and components (e.g. many of the models in Norman, 1970).

Another area of greater discipline is in specifying the control process. In traditional
information-processing models of human performance, the model consisted of "boxes" such as
memory stores, with some mathematically-defined characteristics, but the movement of
information from one store to another, or from perception, or to motor systems, happened in an
unspecified manner — apparently the boxes were magically "wired up" with patch-cords to
perform the task by some unspecified outside agent, an "executive process" (a homunculus?).
This unspecified control process is still characteristic of many cognitive models; examples for
simple visual search are the Feature Integration Theory (Triesman & Gelade, 1980), and Guided
Search (Wolfe, Cave, & Franzel, 1989; Wolfe, 2007). These theories propose that perceptual
input activates feature representations that are examined and combined by an implicit process
that depends on the search task and which may or may not require a time that depends on the
number of objects on the display. Such models are essentially pre-cognitive-architecture "box
models" (see Kieras, 1980, 2007) because even if some of the components are described
mathematically, their connections are described verbally. Thus, these models do not have a
component that represents a task strategy in any explicit, and therefore, "programmable,"
fashion. So explaining how the internal representations are "wired" to responses differently in the
Shape, Color, and Conjunction tasks is completely implicit.

3.2. General Structure of EPIC
3.2.1. Overview

The current major production-rule architectures differ in terms of emphasis: As originally
proposed, ACT and Soar were mainly concerned with learning or problem-solving, while EPIC,
inspired by the Model Human Processor, focussed on human performance, where learning is less
important, but a more complete representation of perceptual-motor mechanisms is required
compared to other cognitive architectures. This emphasis emerged in the original development of
EPIC with the goal of modeling multitask performance, mental workload, and human-computer
interaction. It became clear early in this work that the perceptual-motor constraints and
requirements are fundamental constraints on task performance that absolutely had to be included
to produce comprehensive and accurate models of human performance in important tasks.
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Thus models built in EPIC are complete models, in Newell's (1973) terminology, that are
"end to end" or "embodied" in the sense that they start with simulated sensory input and produce
simulated physical movements; while these are abstracted and simplified, they constrain the
model to match the requirements of the complete human task, rather than focus only on the
internal purely cognitive processes, as had been the case with almost all previous computational
cognitive modeling work (c.f. Kieras & Meyer, 1997).

Extensive presentations of EPIC are available elsewhere (Meyer & Kieras, 1997a,b; Kieras
& Meyer, 1997; Kieras, 2007; Kieras, 2016), and has been applied already to a large variety of
tasks including verbal working memory (Kieras, Meyer, Mueller, & Seymour, 1999), multiple-
task performance (Meyer & Kieras, 1999), executive control (Kieras, Meyer, Ballas, & Lauber,
2000) and multiple-channel speech processing (Kieras, Wakefield, Thompson, Iyer, & Simpson,
2016), and as mentioned above, complex visual search. In what follows, the EPIC architecture
will be described only in enough detail to support the rest of the paper, but with some detail on
the architectural components and mechanisms to support visual search in general, namely the
active vision concepts of visual factors, eye movements, and task strategy. The example displays
and tasks in Figure 1.1 will be used as examples in this description.

Figure 3.1 shows the overall structure of the EPIC architecture. In overview, EPIC provides a
general framework for simulating a human interacting with an environment to accomplish a task.
The environment is represented as device that provides simulated sensory input to the simulated
human and responds to simulated motor actions from the simulated human. The simulated
human consists of memory systems, perceptual processors, and motor processors, surrounding a
cognitive processor. The device and all of these processors run in parallel with each other. The
EPIC simulation software consists of modules for the device and each of human processors and
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Figure 3.1. The EPIC architecture in simplified form. The simulated
environment, or device, is on the left; the simulated human on the right.

15



memory systems connected in a fixed configuration. This defines the "hardware" of the
architecture. The "software" takes the form of production rules, condition-action if-then rules
that represent the procedural knowledge of how to perform a task, that are executed by the
cognitive processor. To simulate human performance in a task, the modeler specifies production
rules that implement a strategy for performing the task, and also may set parameters for the
perceptual and motor processors. When the simulation is run, the architecture generates the
specific sequence of perceptual, cognitive, and motor activities required to perform the task,
within the constraints determined by the architecture and the task environment. Monte-Carlo
runs of the simulation produce precise quantitative predictions of human performance as actual
behavior sequences, which similarly to human data, are aggregated statistically to produce
predicted mean RT and ER in each experimental condition.

The fixed sensory-perceptual and motor mechanisms are represented with mathematical
models in the perceptual and motor processors; the perceptual mechanisms deliver symbolic
perceptual descriptions to the cognitive processor, which uses a production-rule representation to
perform symbolic operations such as making inferences, selecting relevant information, and
following task procedures. The timing and accuracy of motor movements is similarly represented
by mathematical models. This hybrid combination of mathematical models for low-level
phenomena and symbolic models for high-level cognition works especially well in modeling
how perceptual and motor mechanisms operate in the context of whole tasks. As such, EPIC has
served as an efficient and elegant means to summarize a large body of experimental results in the
perceptual, cognitive and motor domains as they relate to human performance in complex tasks.
An important application area is providing a simulation testbed for optimizing human-computer
interfaces.

More specifically, the cognitive processor consists of a production rule interpreter that uses
the contents of production memory, long-term memory, and the current contents of the
production-system working memory (PSWM) to choose production rules to fire. Auditory,
visual, and tactile processors deposit information about the current perceptual situation into
working memory; the motor processors also deposit information about their current states into
working memory. The cognitive processor runs on a cyclic basis with a 50 ms cycle duration. At
the beginning of each cycle, the conditions of all of the rules are tested in parallel against the
contents of PSWM, and those whose conditions match are fired and their actions executed at the
end of the cycle. The actions can modify the contents of working memory, which may change
which rules will match on the next cycle, or the actions can instruct motor processors to carry out
movements. The total number of production-rule cycles required to produce a response
contributes to the time to complete the task. The motor processors control the hands, speech
mechanisms, and eye movements. In addition to the parallelism across perception, cognition, and
action, there is also parallelism within the cognitive processor because multiple production rules
can "fire" simultaneously, giving cognitive processes that can be "multithreaded" analogous to
modern computer systems. The ability of the rules to apply in parallel is an important feature; it
simplifies the EPIC models for high-performance tasks such as multitasking, in which an
executive process can be implemented in production rules that can control multiple task
processes. This is reflected in the acronym: Executive Processes Interact with and Control the
rest of the system by monitoring their states and activity (Kieras, 2007, 2016, Kieras & Meyer,
1997, Kieras, Meyer, Ballas, & Lauber, 2000; Meyer & Kieras, 1997a,b, 1999).
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A fundamental assumption of EPIC and similar production-rule cognitive architectures is that
subjects in experiments create a set of production rules when first instructed in the task, and then
refine those rules as they gain experience in the task; clearly, feedback or incentives will play a
role in how the strategy is refined. EPIC does not attempt to represent the underlying learning
mechanisms, but can represent a strategy assumed to be in effect after some practice, and can
characterize transfer of training effects in terms of overlap in the production rule sets, and thus
can account for differences in procedure learning time (e.g. Kieras & Bovair, 1986). In the
models described in this paper, it is assumed that the amount of practice is extensive enough that
subjects have developed a stable strategy that can be chosen so as to fit the data within the
constraints of the architectural mechanisms that EPIC provides.

3.2.1. The "EPIC Philosophy"

Notice what is not in this architecture, especially not in the cognitive processor: Consistent
with the focus on human performance, there is no learning mechanism in the usual sense. But
relevant to human performance, there is no concept of limited processing or memory capacity, no
processing "bottleneck," no attentional selection mechanism, no reliance on an "activation"
concept. These may well exist, but EPIC follows a minimalist approach: the need for such
concepts must be demonstrated by modeling work rather than being assumed ab initio. Thus
EPIC's assumptions about cognition are as parsimonious as possible; in fact, the only thing the
current EPIC cognitive processor does is execute production-rule task strategies in a pervasively
parallel way. Thus in contrast to the mainstream of cognitive theory, the emphasis is rely as fully
as possible on the known characteristics of perception and motor mechanisms, with cognition
providing only a minimal hypothetical mechanism for explicitly representing and executing a
task-specific strategy that connects perception to action.

To clarify the sense of "attention" here: The concept of attention is clearly associated with
overt behaviors such as eye movements, but the concept of covert attention is generally
associated with some kind of top-down direct internal involvement of cognition in perception
such as selecting, influencing, enhancing, or constructing the perceptual information to be
supplied to cognition. That is, covert attention is some variant of early selection (e.g. the original
Broadbent (1958) "filter" model, and later elaborations by Triesman (1969)). EPIC has no such
mechanism. Rather, in a task like visual search, a// of the available perceptual information is
delivered to cognition, where the strategy decides when a response can be made, or what object
needs to be fixated to collect more information. Note that this does not imply an unlimited
capacity system because the amount of perceptual information is "automatically" limited by the
visual system itself, such as the limits on peripheral vision or visual memory, which is why eye
movements may be required to complete the task. Thus if one insists on using the language of
attention, then EPIC has a very late selection concept of attention, and a more sophisticated
process in which additional actions may be taken before the actual response is made.

This approach is the "EPIC Philosophy" — a unifying principle of EPIC modeling — a
research strategy that leverages architectural commitments in EPIC to arrive at parsimonious,
well-defined, executable, and accurate computational models of human performance. The key is
to set priorities on which architectural mechanisms will be included in the model in order to take
maximum advantage of what is well-established empirically and best-understood theoretically,
such as perceptual and motor mechanisms, before including mechanisms whose status is more
hypothetical and less observable, such as cognitive mechanisms beyond strategy execution. This
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research strategy will be described more completely Section 4 below, in the context of
explanatory sequences.

3.3. Specific EPIC Mechanisms Relevant to Simple Visual Search
3.3.1. Visual Mechanisms

Visual architecture. Figure 3.1 shows the overall structure of the EPIC architecture, but in
simplified form; each of the processors in that diagram is fairly complex. Figure 3.2 shows the
detailed architecture of the visual system. The physical store represents the current visual
environment, €.g. what is on the screen of a display. Changes in the state of the physical visual
environment are sent to the eye processor, which represents the retinal system and how the visual
properties of objects in the physical store are differentially available depending on their physical
properties, such as color and shape, and their eccentricity —the distance in degrees of visual
angle from the center of the fovea (see review in Findlay & Gilchrist, 2003). The resulting
“filtered” information is sent to the sensory store, where it persists for a fairly short time and
comprises the input to the perceptual processor, which performs the processes of recognition and
encoding. The output of the perceptual processor is stored in the perceptual store, which is the
essentially the visual working memory and whose contents make up the visual modality-specific
partition of the production system working memory. Thus, production rule conditions can test
visual information by matching the current contents of the perceptual store. The visual stores are
slaved to the visual environment as filtered by the current eye position. If the eye moves or the
physical objects appear, disappear, change location, color, or size, the visual perceptual store will
be updated to reflect the current visual scene. Because production rules can test the perceptual
store contents, they can respond to this constantly updated representation of the current visual
environment.
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Figure 3.2. The detailed structure of the visual architecture in EPIC.
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The appearance or disappearance of an object, or changes to its properties (such as its color
or location), will be quickly updated in the perceptual store, but if the information is no longer
supported by visual input due to an eye movement away from the object, the information persists
for some time, on the order of seconds (see Henderson & Castelhano, 2005). In this way the
perceptual store integrates over eye movements and maintains a cohesive representation of the
current visual situation—corresponding to our subjective experience of a continuously present
and integral visual surround.

A fundamental property of EPIC's visual system is that there is no built-in limit to the
number of objects or their properties that can be held in the perceptual store. However, the
position of the eye and the properties of the early-vision system determine which objects and
what properties of them are actually present in the visual perceptual store, and thus the total
information present is limited.

This flow of information through visual architecture (Figure 3.2) is the central concept in the
EPIC models for visual search. Figure 3.3 illustrates this process with some sample displays
from an actual EPIC model.

Visual Availability

Retinal availability functions. A common hidden assumption about vision in cognitive
psychology seems to be that only foveal vision needs to be considered (cf. Findlay & Gilchrist,
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Figure 3.3. Sample model displays in a simulated positive trial for the Shape task with set size of 18, after several
fixations using the Basic Search strategy (Section 3.3.3 below). These automatically-generated displays show the
flow of information through the visual architecture (Figure 3.2) and are intended to support debugging and
monitoring the model; they use a coding scheme that does not necessarily correspond to a person's perceptual
experience.

Left panel: the visual physical store contains the actual visual input which is provided to the eye processor. The
concentric circles in the lower left show the current eye location on the target 2' shape.

Center panel: the visual sensory stores briefly the current object properties provided by the eye processor using
the availability functions at the current eye location. Black or blue circles or ellipses are objects whose color is
currently available, but not their shape. Light gray circles are objects whose properties are unavailable but location
is known. Note that shape is available only for the fixated object, and color is available only for objects less than
several degrees away.

Right panel: the visual perceptual store receives the available properties from the sensory store and retains them
for several seconds, thus accumulating object properties over fixations. This contents of the perceptual store are
provided to the cognitive processor production rules, so the strategy rules can test available properties of all of the
objects. The strategy initially fixated several objects in the upper half of the display, whose shape and color are still
retained, and finally fixated the target, whose shape then triggered the target-present response rule. The strategy
will move the eyes only to an object whose shape is not present in the visual perceptual store. Note that several
objects have not yet been viewed closely enough for their shape or color to be known, but the strategy halts
immediately on finding the target.
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2003). However, classic psychophysical measurements make it clear that considerable
information is available outside the fovea, and even into peripheral vision. More specifically,
what can be perceived of an object depends not only on the eccentricity of the object but also on
its size. Anstis (1974) provides some example measurements and comparisons that show that a
single letter can be identified in the periphery if it is large enough. For example, the recognition
threshold size of a single letter is about 0.2° at eccentricity of 5°, and about 1.3° at about 30°
eccentricity. Moreover, different visual properties are differentially available in peripheral vision;
for example, color is very available (e.g. Gordon & Abramov, 1977). A long-proposed neural
mechanism for this relationship between eccentricity and size is cortical magnification: a
constant amount of visual cortex (presumably supporting a certain number of receptive fields) is
required for performing discrimination at a certain level, and since anatomically, the density of
cortical representation declines with distance from the fovea, the size of the stimulus must
increase with eccentricity to involve the same amount of cortex. Such cortical magnification
functions have been measured in psychophysical experiments; a typical result (e.g. Virsu &
Rovamo, 1979) is that to maintain discriminability, the required size increases linearly up to a
moderate eccentricity (e.g. 30° in Anstis, 1974) and then quite sharply in the further periphery,
with a cubic function providing a good fit.Visual search studies such as Carrasco & Frieder
(1996) using short exposure duration show that if object size is constant, then targets at greater
eccentricity are found more slowly and less accurately, but if peripheral objects are magnified in
size according to the empirical magnification functions, search time becomes flat with
eccentricity.

Unfortunately, the available psychophysical literature does not use a standard set of stimulus
properties. For example, orientation is a common property used in both vision and visual search
experiments, but the range of possible orientations is very large, and the stimuli for such
experiments range from very short line segments slightly tilted to left or right, to very large
horizontal and vertical bars, and even circular Gabor patches. It is rare to see experiments from
different laboratories using even similar, much less the same, stimuli so it is impossible to
combine empirical results into a set of parametric functions that describe the detectability of
object properties as a function of size and eccentricity. Thus EPIC's retina processor uses
availability functions of a certain form based on the psychophysical literature, and the parameters
of the functions have to be estimated to fit the data being modeled. However, the psychophysical
results do set some constraints — for example, the color of an object can be expected to be more
available than its orientation, and much more available than its shape.

In the models reported here, the maximum eccentricities are less than 30°, which the results
in Antis (1974) suggest that a simple linear relationship between detection threshold for object
size and eccentricity can used. The availability function is thus a Gaussian detection function that
gives the probability that a specific property will be available (or detected) for an object with size
s at eccentricity e:

P(detection) = P(s > N(u, 6)), u = e, a = 0.5

The value u, the mean of the Gaussian function, can be interpreted as the 50% threshold for
object size. It depends linearly on the eccentricity proportional to @ which is the availability
threshold coefficient. Thus small values of 8 correspond to the property being more available
(lower threshold, more eccentricity possible for a given size), and large values of § mean that the
object is less available (higher threshold, must be closer for a given size). The standard deviation
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o determines the "steepness" of the detection function, and was held constant at 0.5. Thus only
the 6 parameter was adjusted to fit the observed data. For simplicity, the specific values for each
property are assumed to have the same availability; e.g. a Color* property value of Red is
assumed to have the same 6 as a Green value. Finally, the size of the objects used in these
displays is defined as the average of the vertical height and horizontal width (bounding box) in
degrees.

Figure 3.4 shows the availability functions for some representative values for 6 used in
models for the Wolfe et al. (2010) experiment presented below; namely 8¢ = 0.1 for Color, 6o =
0.2 for Orientation, and 6s = 0.4 for Shape. Figure 3.4 also shows a couple of useful eccentricity
metrics relevant to these models. The average initial eccentricity corresponds to the eyes being
on the initial fixation point when the display appears. The average pairwise eccentricity is the
average distance, for all possible fixated objects, between the fixated object and all of the other
objects. Color is very available; its detection probability is high throughout the eccentricity
range. Orientation is significantly less available; at the average pairwise eccentricity, the
probability of detection is only about 0.4. Finally, Shape is not very available at all; even at the
average initial eccentricity, the probability of detection is almost zero. Thus fixations within a
few degrees will be required to reliably detect the Shape. It will be argued below that the Shape
property, with its apparent complex substructure of line segment features, can be treated in the
models as if it were a unitary simple property like Color or Orientation; the fact that it is more
difficult to discriminate is reflected in its larger availability threshold coefficient.

No bottleneck on availability for multiple objects. In this model of visual availability, the
properties of more than one object can be available in the perceptual system for a given eye
location. No "attentional limit" is assumed to operate at this level of the visual system. If the
availability is high enough (a low 6 threshold), then the properties of multiple objects, even at
large eccentricities, will be available. For example, Hornof & Halverson (2003) recorded eye
movements in a menu-search task, and determined that 2-3 of the textual menu items were
examined in each fixation and were able to account well for the eye movement and search time
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Figure 3.4. Example availability functions for the Color, Orientation, and Shape
properties used in the simple visual search task.

4 Names of perceptual properties and their values, such as Color, Red, Orientation, Horizontal, or Shape, that are
explicitly represented in the architecture and models are capitalized.
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data with an EPIC model whose visual availability parameter was set to cover this number of
textual objects in a fixation.

This feature of EPIC's visual system is similar to the long-standing concept of the functional
visual (or viewing) field (FVF, reviewed in Hulleman & Olivers, 2017), in that both concepts
allow more than one object to be processed in a single fixation. However, the FVF concept
assumes that there might be other factors that govern the number of objects covered by a
fixation, including possible attentional limitations, or purely visual factors, such as crowding
effects, to be discussed next. In contrast, the EPIC availability functions determine only whether
object properties are available for further processing given their size and eccentricity,
independent of any other visual factors such as crowding effects.

Availability and eye movements. The availability for each property is independently
resampled for all objects when the display first appears and whenever the eye is moved. As the
eye moves around, the available properties of a particular object can fluctuate, and will not be
reliably available from one fixation to the next. However, the properties, once acquired, will
remain for some time in the visual perceptual store, where production rules can match objects
with the combinations of properties appropriate to the task. Figure 3.3 above provides an
overview of this process.

The availability and eye movement mechanisms are thus relevant to modeling the Wolfe et
al. (2010) data. That the Shape, Orientation, and Color properties have different availabilities is a
good candidate to explain the great difference in search rates between the task conditions,
because less availability means that more eye movements would be required to make the
properties available. As pointed out above, because the eye movements were unmonitored, there
is no reason to assume that subjects followed the instructions to remain fixated on the supplied
fixation point, or that they could have performed the task with any accuracy if they did.

Visual Crowding

Crowding effects. Crowding, also known in older literature as the flanker effect or lateral
interference, refers to the phenomenon in which the perception of an object is impaired if it is
surrounded by closely-spaced objects, but the same object is perceived accurately if the spacing
is larger or the eccentricity is smaller (for reviews, see e.g. Levi, 2008; Pelli & Tillman, 2008a, b;
Rosenholtz, 2016). Crowding was first described for the recognition of characters in reading by
Bouma (1970), and Anstis (1974) provides examples for character recognition. Pelli & Tillman
(2008a,b) provide many demonstrations of the effect. Crowding effects appear if the center-to-
center spacing is less than a critical spacing, which for a wide variety of visual properties turns
out to be approximately half the eccentricity of the object in question, a relationship first reported
by Bouma (1970). Thus if a set of closely spaced objects is viewed at a large eccentricity,
crowding might impair perception of them, but by moving the point of fixation closer, the critical
spacing becomes smaller, and the crowded objects could be perceived correctly. This simple
characterization of crowding will suffice for the work in this paper, but Strasburger (2020)
describes important complicating issues and clarifications for crowding and peripheral vision.

Crowding in simple visual search. Levi (2008), Pelli (2008), and Rosenholtz (2016) argue
that taking crowding into account is essential to understanding extra-foveal vision because it
appears to be more responsible for the limitations on peripheral vision than simple loss of
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resolution. The reason why crowding might be relevant to simple visual search tasks is that these
experiments almost always confound the number of objects on the display with object spacing.
The typical experiment, e.g. Treisman & Gelade (1980), Wolfe, Cave, Franzel (1989), Wolfe et
al. (2010), varies the set size while keeping the display area constant, placing the objects at
random within the display area, and thereby producing higher object density at higher set sizes.
The few studies attempting to separate crowding and set size effects suggest that much of the
reported set size effects in visual search could in fact be due to crowding rather than simply the
number of objects (e.g. Motter & Simoni, 2008; Wertheim, Hooge, Krikke, & Johnson, 2006).

In contrast, Wolfe et al. (2010) simply asserted that the stimuli "can be easily identified
outside of the fovea" in these tasks (p. 1305) but report no measurements about whether this is
true in their higher-density displays; this seems unlikely at least in the Shape condition, and even
the Color task condition produces more Misses than False Alarms, which implies that there is
some source of systematic difficulty in what would otherwise seem to be a trivial task.

To assess whether the Wolfe, et al. displays confound crowding with set size, two measures
of crowding were computed for a large number of displays randomly generated by the model.
The first measure assumes that the eyes were at the initial fixation point, and the eccentricity
from this point was calculated for every object on the display. The second is a pairwise measure:
assume that the eyes were fixated on one of the objects, and then for every other object, the
number of surrounding objects within the critical spacing (defined as half of the eccentricity) was
counted. This number was computed for each object being the assumed point of fixation, and the
results averaged. Figure 3.5 shows the resulting average number of crowding objects for each
measure. When the eye was assumed to be at the initial fixation point, the mean initial
eccentricity from the central initial fixation point was 8.8° and the number of crowding objects
increased from an average of 0.1 at set size 3 up to 1.1 for set size 18. When the eyes were
assumed to be on each object, the average pairwise eccentricity was 12.3°, and the number of
crowding objects increased from 0.15 at set size 3 to 2.5 at set size 18.

Number of Crowding Objects for each object at each Set Size for initial
fixation point and all possible fixation points

3

== Initial NCrowders

All-fixations
NCrowders

S

Number of Crowding Objects

0 5 10 15 20
Number of objects on display

Figure 3.5. Crowding in the Wolfe, et al. (2010) displays. The upper curve shows the average number of objects
that crowd another object assuming a fixation on each possible object. The bottom curve shows the average
number of objects that crowd another object assuming the initial fixation point.
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Thus crowding effects are likely to present in this simple visual search task — at small set
sizes, almost no crowding is present, and at larger set sizes, some crowding is present at the
initial fixation point, and substantial crowding appears at once the eyes are moved away from the
initial fixation point to other objects. Simple visual search experiments have indeed confounded
their basic manipulation with an unacknowledged, but powerful, factor in visual perception,
especially if the eyes are moved from the initial fixation point.

Accordingly, models of simple visual search should incorporate crowding effects. Note that
experiments on complex visual search tend to use a large and constant number of objects, so that
crowding effects would tend to be uniform and probably indistinguishable from availability
effects.

How does crowding work? The mechanism of crowding effects remain unclear despite the
extensive literature, but there seems to be a consensus on a basic idea (e.g., Pelli, et al. 2004;
Pelli & Tillman, 2008a; Levi, 2008; Rosenholtz, 2016; Rosenholtz & Keshvari, 2019) that the
visual system attempts to form visual objects by integrating information over integration fields,
areas whose size increases with eccentricity (c.f. the cortical magnification concept). If more
than one stimulus object occupies a single such integration field, the integration process will be
disrupted in some way. But if the point of fixation is closer, the smaller size of the integration
fields will allow the same visual objects to be correctly formed. The problem is that the empirical
work has not clarified the basic rules for the integration process, the actual results of crowding
disruption, and how it relates to the visual availability of the relevant properties.

More specifically, a basic psychophysical measurement of crowding presents a target object
with at least one crowding object on each side, and measures how well subjects can identify the
target object properties as a function of eccentricity, object spacing, and the visual properties of
the target and crowing objects. These experiments generally ask subjects to report on the target
object, which is specified by its central location in the display — so the measurement depends on
the whether a property is perceived at that location.

Many experiments measure the amplitude of the crowding effects in terms of an elevation of
detection or discrimination threshold of the relevant property of a crowded target object as a
function of crowder spacing. Different properties have differing threshold elevations; the
available literature suggests that color has a low crowding amplitude and is thus relatively
resistant to crowding effects, while the detailed shape of characters has a high crowding
amplitude. In addition, the greater the similarity of flankers and targets, the larger the crowding
amplitude. Other experiments simply ask the subject to identify the property (e.g. color) of a
central target object surrounded by flankers, and vary the eccentricity or spacing, and report
differences in accuracy.

What is unclear is what these experiments are actually measuring; if performance decreases
in the presence of crowding, is it due a simple loss of availability of the target object property
(i.e. an increased 6 in the presence of crowding), or is it that a flanker property tends to be
confused with the target property? This second possibility is a popular hypothesis in the
literature: The existence of the crowded object is still detected, and its basic perceptual features
also are detected, but the disrupted integration process associates those features with the wrong
object, such as a flanking object, and vice-versa — the features are essentially scrambled
between the objects that crowd each other. Such scrambling seems apparent in demonstration
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examples of crowding (e.g. Pelli & Tillman, 2008a, b) , and would account for the detection or
discrimination tasks results. Better evidence is found in studies that examine the nature of the
errors when reporting the target property; misreporting a flanker feature as a target feature
accounts for most of the errors, although there are complications (e.g., Keshvari & Rosenholtz,
2016; Pdder & Wagemans, 2007; Yashar, Xiuyun, Jiageng, & Carrasco, 2019).

In terms of a specific computational mechanism for crowding effects, Rosenholtz and
coworkers (Balas, Nakano, & Rosenholtz, 2009; Rosenholtz, Huang, & Ehinger, 2012;
Rosenholtz, Huang, Raj, Balas, & Ilie, 2012; Rosenholtz, Yu, & Keshvari, 2019) propose that the
"blurring" of peripheral vision can be described as a transformation that preserves the overall
texture, or statistical structure of the image, but can result in images in which object features
have been lost, recombined, fragmented, or displaced in location, similar in some ways to the
scrambling concept. They report that the discriminability of such transformed images predicts the
search time effects in simple visual search tasks. Also, subtle changes to the stimuli that decrease
the disruption produced by the transformation results in faster search times (Chang &
Rosenholtz, 2016). But a texture-based computational cognitive model that predicts RT (and ER)
directly from the visual input still remains to be developed. One obstacle is that the texture-
preserving transformation is very computationally intensive.

In summary, the actual mechanism of crowding appears to be very complex and subtle.
However, any computational cognitive modeling necessarily requires simplifications in return for
the insights that can result. Accordingly, the modeling in this report with the EPIC architecture
took advantage of how the Wolfe et al. (2010) displays consist of simple discrete objects with
simple discrete properties, and used simple strategies for search; all of which enable the
implementation and testing of a very simple form of the feature scrambling concept.

A simple crowding mechanism. In this simplified approach, the properties of the visual
objects are determined in two steps that are applied whenever the visual situation changes,
specifically when the display appears or the eyes are moved. First, the visual architecture applies
the availability functions to determine which properties are currently available for each object
from the current eye position. Second, a crowding mechanism in the perceptual processor
randomly scrambles the values of each property between objects that are within the critical
spacing of each other. To parameterize the magnitude of the crowding effect, the scrambling is
performed with a certain crowding probability ¢ for a property of each object. Note that if ¢ =0,
then no crowding scrambling for that property will occur. The value of ¢ can differ depending on
the property involved, but is the same for all values of that property. As noted above for
availability, and will be argued below, the models can treat Shape as a unitary property like Color
and Orientation, and thus the same scrambling mechanism for crowding applies to Shape as well
as Color and Orientation. Representative estimated values for the models in this report are ¢pc =
0.025 for Color and also ¢po=0.025 for Orientation, both of which have two very distinct values,
and ¢s= 0.1 for Shape.

More specifically, in the actual visual system it is reasonable to suppose the scrambling will
happen simultaneously in some way for all of the objects, but the simple scrambling mechanism
works sequentially as follows: (1) Using the availability functions, the available perceptual
property values for each object are determined for its current eccentricity. If a property is
unavailable for an object, the property is assigned a blank value. (2) Using the current eye
position and object locations, the objects that are within the critical spacing of each object are
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collected into a crowding group for that object. The crowding relationship can be asymmetric:
Suppose object A has a smaller eccentricity than object B; Object A might not have B in its
crowding group, but object B might have A in its crowding group. (3) For each property (e.g.
Color), and each object in order of increasing eccentricity, a "coin flip" is performed for that
object, and with that probability ¢ the property values of all of the objects in that crowding group
are collected (including blank property values), randomly shuffled, and then assigned back to the
objects in the crowding group. Thus the actual numbers of available and unavailable property
values are not changed; rather those values are scrambled for the objects in the crowding group.
(4) If an object has no crowders (i.e. it is closely fixated or relatively far from other objects), and
its properties are available, these properties then become "sticky" in the visual perceptual store,
and will not be lost or replaced by a blank property, but could still be scrambled in the future
with available properties of crowding objects.

Note that the crowding probability ¢ applies at the level of each object. For example, a
crowding group of four objects will have the crowding probability "coin flip" and scrambling
applied a total of four times, once for each of the objects. Thus the probability of at least one
scrambling operation being applied increases with the number of objects in the crowding group.

Hllusory targets, distractors, and blanks in simple visual search

As stated above, the availability mechanism and then the crowding mechanism is applied
when objects first appear, and then again after each eye movement. During the course of a simple
visual search trial, as the eyes are moved around, the sticky perceptual store properties
accumulate, and more objects acquire properties, either from becoming available due to nearby
fixations, or from scrambling from nearby objects. During this process, the property value for an
object might get replaced by some other object’s property value. One case is that a distractor
object might get a target property and thus become an il/lusory target. Another case is that the
target object might get a non-target value, becoming an illusory distractor. A final, more subtle
case is that a target object might get a blank property even though its actual property value would
otherwise be available, and thus becoming an i/lusory blank. lllusory distractors are more likely
than illusory blanks, because if the point of fixation is close enough for the target property to be
available, there is a good chance that a nearby distractor object also has its property available for
swapping.5

3.3.2. Motor Mechanisms
Oculomotor accuracy and movement time

Production rules can send commands to the involuntary and voluntary ocular processors
shown in Figure 3.2 that control the position of the eyes. The involuntary ocular processor
generates “automatic” eye movements, such as reflex saccades to a new or moving object, or

5 Despite the similar terminology, the illusory objects produced by this model of crowding are different from the
illusory conjunctions concept presented by Triesman (Triesman & Schmidt, 2007; see also Wolfe, 2014). In the
present model, features of objects are assigned early in visual integration and can be scrambled due to purely visual
factors that disrupt the integration, all independently of attention. The illusory conjunction concept assumes that
attention is required to perform this integration, and in its absence, free-floating features might be erroneously
attributed to objects. Such illusory conjunctions appear to be more common if the objects are closely spaced, which
suggests the concept is simply an attempt to explain crowding effects as a function of attention rather than visual
processing (cf. Pelli, Palomares, & Majaj, 2004).
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smooth movements to keep the eye foveated on a slowly moving object. The involuntary
processor is not involved in the models presented here and so will not be further described.
Critical to the models in this paper, the voluntary ocular processor is directly controlled by the
cognitive processor. A production rule action can command an eye movement to the location of a
designated object represented in the perceptual store.

The voluntary oculomotor processor includes motor "noise" that affects saccade accuracy. A
variety of studies have shown that saccades tend to fall short of the actual fixation target, and the
standard deviation of the saccade length tends to be proportional to the length (see Abrams,
Meyer, & Kornblum, 1989, and the review in Harris, 1995). Thus, the oculomotor processor
samples the length for a saccade to an object at eccentricity e from a Gaussian distribution:

saccade length = N(u, 6), u = g-e, 6 =s'u

Typical empirical values for g (gain) range from 0.85 - 0.95, and s (spread) is typically
around 10%. Harris (1995) did some modeling work that showed that given the variability in
saccade length, and the resulting need to make multiple saccades to ensure fixation on an object,
optimum total eye movement times to a target were obtained with g = 0.95, s = 10%, which are
consistent with observed values of these parameters. These values are used in EPIC as the default
values for oculomotor noise along the line of flight of the saccade. Angular error might also be
present; a saccade might not only fall short, but it might also miss to one side. Unfortunately,
there are very few studies on angular error; a simplified model inspired by van Opstal and
Gisbergen (1989) samples the saccade polar angle from a Gaussian distribution whose mean is
the actual angle and whose standard deviation is a constant, currently defaulting to simply 1°.

The time duration of a saccade was determined using the classic linear function described by
Carpenter (1988):

saccade duration(ms) = 21 + 2.2-saccade length(degrees)

The fixed intercept in this function was taken to represent the time to initiate the saccade;
therefore the movement initiation time parameter in the original EPIC oculomotor processor was
set to zero.

Manual motor time and accuracy

The time to make a keypress response is represented by an architectural mechanism first
proposed in EPIC for use in models of the psychological refractory period task (Meyer & Kieras,
1997a). In these high-speed tasks, the subject has a finger poised over each response key so only
a rapid finger flexion is required. The manual motor processor uses a motor programming
concept that producing a movement of this type requires selecting motor features that specify the
hand and finger, then initiating the actual movement, which takes a certain amount of time to
close the key switch (see Kieras, 2009, for additional discussion of this concept). Each feature
was estimated as requiring 50 ms to select; the initiation time was also estimated at 50 ms, and
the movement time at 25 ms. The motor features can be reused if identical, making the next
movement faster.

Wolfe et al. (2010) do not provide any details about the response keys actually used, making
it necessary to assume the parameters. Since present and absent responses were approximately
equally probable, it is reasonable to suppose that the motor time on the average for present and
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absent responses would be the same in terms of the average number of feature reused. Thus the
time contributed by the manual motor processor was set at 125 ms for both present and absent
responses in all task conditions and set sizes.

The models presented here account for error rate (ER) as well as RT. As discussed more
below, one component of ER is a low and constant rate of action slips, or "oops" errors, a basic
error mechanism that is often postulated in human performance research. Namely, a person has
the correct intention for a response, but at random, an incorrect motor action will be triggered.
This most basic of error sources can be represented very simply for the manual present/absent
responses; it is as if one of the motor features were "flipped" to a different and frequent value.
Thus, when the strategy calls for a present or absent response, the opposite response is made with
a slip error probability S/ipER. This will be included in the discussion below on how the models
make errors in the simple visual search task.

3.3.3. Cognitive Task Strategy Mechanism

As discussed above, in the EPIC architecture, the only thing the cognitive processor does is
execute a task strategy in order to support task-specific programmable behavior. The strategy is
represented in terms of production rules. In the visual search task, these rules will examine the
contents of the visual perceptual store and make decisions about what actions to take, such as
noting which objects are possible targets, moving the eyes to an object of interest, or making a
keypress response. This component of the architecture is thus a "mechanism" like those already
presented, but with the understanding that rather than setting numerical parameters to modify the
activity as in the case of the perceptual mechanisms, specific strategies are loaded into the
cognitive processor to govern how the task i1s performed. Thus describing how the strategy
mechanism can be applied to visual search tasks requires presenting the possible relevant
strategies for doing simple visual search search.

The strategies for simple visual search presented here are based on previous EPIC models for
visual search (Kieras, 2016; Kieras & Marshall, 2006; Kieras & Hornoff, 2014). These strategies
can be easily summarized in pseudo-code, making it unnecessary to provide the technical details
of the production rule syntax and the specific production rules used in the models (see Kieras,
2016 for detail and some examples). The following sections presents the different strategies used
in the simple visual search models to be described below; this is to enable a compact presentation
of how the models were fit to the data.

The Basic Search strategy

The simple visual search task can be performed with the Basic Search strategy shown as
pseudocode in Box 3.1. Once the display objects appear on the screen, after a delay time VDelay
held constant at 100 ms in all of the models, the available properties of the objects are present in
the visual perceptual store, and the strategy production rules then alternate between two phases:
In the Step 3 nomination phase, nomination rules fire to nominate objects (including those in
peripheral vision) that are either the actual target, or possible targets because at least one
relevant target property is blank (unknown). In the Step 4 choice phase, specific rules fire
depending on the nominations to take one of three actions: (a) If an actual target object has been
nominated, a target-present response is immediately made via a command to the manual motor
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processor. (b) If there are no nominations, meaning that all objects appear (even in peripheral
vision) to be distractors, then a target-absent response is immediately made. (¢) Otherwise, there
are only possible-target nominations, so an oculomotor processor eye movement command is
issued to move the eyes to the closest nominated object. Once the eye movement is complete, the
nomination phase starts again at Step 3. The implementation is such that each numbered step in
Box 3.1 corresponds to a single production rule cycle; thus the strategy is implemented in the
minimum number of production rule cycles possible in the architecture and the production rule
syntax.

1. Start the trial with the eyes on the fixation point and wait for object display to appear.

2. Delay for some time.

3. Nominate target or possible target objects using their available properties.

4. Choose an action:

a. If a nominee matches the target, respond present, trial is done.

b. If there are no nominees, respond absent, trial is done.

c. Otherwise, choose the closest candidate object from the nominees, and move the eyes to it, and go to step 3.

Box 3.1. Pseudocode for the Basic Search strategy.

Basic Search as an optimal strategy. The Basic Search strategy is essentially the "fastest
reasonable" way to perform the task. It is "fastest" because it takes advantage pf extra-foveal
vision: it may not be necessary to fixate each object to know whether it is the target or a
distractor. Thus a target-present response is produced as soon as a target is detected, even if it is
not fixated, and a target-absent response is produced as soon as all objects appear to be
distractors, regardless of whether they have all been fixated. This strategy is "reasonable"
because the response will be accurate, limited only by the accuracy of the perceptual information
and slips in the motor action.

Thus, as fixations are made, information about the objects accumulates in the perceptual
store (as illustrated in Figure. 3.3 above) until either the target object is detected, or the available
properties of all objects show that none of them could be the target. The RT depends on how
many eye movements are made in this process. Unlike many models which do some form of
time-out for making target-absent responses (cf. review in Hulleman & Olivers, 2017), the Basic
Search strategy states simply that if there are no possible-target nominations (i.e., everything
looks like a distractor), then a target-absent response should be made immediately — no time-
out is required.

Strategy variations

In general, the choice of strategy has a large effect on whether a model can fit the data, and a
satisfactory fit can only be obtained by a good choice of both parameter values and strategy. As
argued above, the Basic Search strategy is a "fastest reasonable" strategy that produces fast
responses which will be accurate to the extent that the perceptual and motor systems are
accurate. However, some variations on this strategy will be needed for good fits to the data; these
are presented here to make the later model-fitting descriptions more compact.

Fixed-Eye Strategy. The extremely simple strategy shown in Box 3.2, is a stripped-down
version of the Basic Search strategy. The eyes are left on the central fixation point and the target-
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1. Start the trial with the eyes on the fixation point and wait for object display to appear.
2. Delay for some time.

3. Nominate target and possible target objects using their available properties.

4. Respond present if target nominated, respond absent if not, trial is done.

Box 3.2. Pseudocode for the Fixed-Eye visual search strategy.

present or target-absent response is chosen after a single nomination phase. This strategy
corresponds to the common instructions in visual search experiments, namely to keep the eyes on
the fixation point. Whether subjects can or do follow this instruction and apply the Fixed-Eye
strategy is another question.

Basic Search with Confirm-positive strategy. This 1s a more elaborate version of the Basic
Search strategy that provides protection against erroneous target-present responses when
crowding has produced an illusory target. It is a simple and well-specified form of "double-
checking" that is sometimes proposed in visual search models (cf. Hulleman & Olivers, 2017).
As shown in Box 3.3 in Step 4a, if the apparent target object is already fixated (eccentricity <=
1°), a present response is made; if not, the strategy confirms that an apparent target is the actual
target by moving the eyes to it, which would mitigate any crowding, and responds present if the
apparent target appears to be an actual target, or continues the search if not. This confirmation
takes extra time, both for the eye movement and additional production rule cycles.

1. Start the trial and wait for object display to appear.

2. Delay for some time.

3. Nominate target and possible target objects using their available properties.

4. Choose an action:

a. If a nominee matches the target, and it is already fixated, respond present, trial is done. If not already fixated,
confirm by moving the eyes to the nominee: If the object is the target, respond present, trial is done;
otherwise, go to step 3.

b. If there are no nominees, respond absent, trial is done.

c. Otherwise, choose a candidate object from the nominees, and move the eyes to it, and go to step 3.

Box 3.3. Pseudocode for the Basic Search with Confirm-positive strategy.

Basic Search with Confirm-both strategy. This strategy, shown in Box 3.4, elaborates a bit
more on "double-checking" to handle the possibility that all objects erroneously appear to be
distractors because crowding has made the actual target into an illusory distractor. But unlike the
Confirm-positive case, it is undefined which object is possibly illusory. A simple approach is that
if no fixations have yet been made, the strategy moves the eyes to the most eccentric object,
which is mostly likely to be affected by crowding, and confirms that it is a distractor. The
Confirm-both variation is only useful in a context where Confirm-positive is relevant.

Limited-fixations strategy option. This variation, shown in Box 3.5, provides a way to speed
up the Basic Search strategy or one of the Confirmation variations. Instead of moving the eyes an
unlimited number of times until a response is made, the strategy "times out" and responds absent
if some time has elapsed without finding the target. This approach is often proposed as an error
mechanism in other models (cf. Hulleman & Olivers, 2017). Since Basic Search moves the eyes
at a roughly constant pace, the "time out" was implemented more simply as a limit, NFix, on the
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1. Start the trial and wait for object display to appear.

2. Delay for some time.

3. Nominate target or possible target objects using their available properties.

4. Choose an action:

a. If a nominee matches the target, and it is already fixated, respond present, trial is done. If not already fixated,
confirm by moving the eyes to the nominee: If the object is the target, respond present, trial is done;
otherwise, go to step 3.

c. If there are no nominees, and more than one fixation has already been made, respond absent, trial is done. If no
fixations yet, confirm by moving the eyes to the most eccentric object: If the object is a distractor, respond
absent, trial is done; otherwise, go to step 3.

d. Otherwise, choose a candidate object from the nominees, and move the eyes to it, and go to step 3.

Box 3.4. Pseudocode for the Basic Search with Confirm-both strategy.

number of eye movements. This option can be applied to any variant of Basic Search strategies at
each step prior to initiating an eye movement.6 Note that the initial fixation on the fixation point
at the beginning of the trial is not counted.

Before making an eye movement, check:
a. If the number of fixations made thus far is greater than NFix, respond absent, trial is done.
b. Otherwise, proceed.

Box 3.5. Pseudocode for the Limited-fixations strategy option.

Visual properties and the Basic Search strategy

Nomination rules. The above presentation of availability functions and the crowding
algorithm implied a choice of the relevant visual properties for the Wolfe et al. (2010) tasks. It
seems obvious that for the Color and Conjunction tasks, the relevant properties are the traditional
Color and Orientation features, that if available, have one of two values. The nomination and
choice rules are thus very simple for the Color task because only a single object property is
involved: An object is nominated as the target if it has a Red Color, or as a possible target to be
fixated if it has an unknown Color. If all objects have a Green Color, then no objects can be a
target, so there are no nominations, leading to an immediate absent response.

In contrast, for Conjunction there are four possible nominations: a target nomination for a
Red Vertical bar, and three cases for nominations for possible-target objects: Red Color & blank
(unknown) Orientation, blank Color & Vertical Orientation, and blank Color & blank
Orientation. If a target has been nominated, a present response is made; if one or more possible-
target nominations are present, the strategy should choose one to fixate in the descending priority
order as just listed. Finally if there are no nominations because all objects appear to be either
Horizontal Red or Vertical Green, an immediate absent response is made.

Shape can be treated as a unitary property. The description of the availability functions in
Section 3.3.1 above imply that Shape is treated as a unitary property just like Color and
Orientation, only less available, and the presentation of the crowding mechanism states that it

6 This option can be "turned off" for the Basic Search strategy variants simply by setting NFix to an extremely large
value (e.g. 99) that is never exceeded in the model runs. While the Fixed-Eye strategy corresponds to NFix = 0, it is
simpler to implement it without reference to the number of fixations.
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applies identically for Shape as it does for Color and Orientation, only with a higher probability.
This seems counterintuitive, given that the shapes used have a detailed substructure of line
segments. However, when the Basic Search strategy is in effect, Shape functions as if it were a
single and unitary property.

This can be demonstrated as follows: Start with the assumption that an object's Shape
property consists of subfeatures. For example, a common idea is that characters are made up of
line segment sub-features, each of which must be detected and then subject to crowding
scrambling. So perhaps the partially available Shape for the "digital 2" and "digital 5" should
consist of a subset of the seven possible line segments where each, if available, is either
horizontal or vertical and in a particular location within the object, producing many possible
partial shapes. Alternatively, perhaps the subfeatures are a leftward- or rightward-facing "digital
c" each with a top or bottom location. Availability and crowding scrambling would produce
different partial shapes such as a ¢, reversed c, a 3, or E. Unfortunately the vision and crowding
literature does not provide much guidance on the relevant properties of characters — defining the
hypothetical features of visual objects has always been fairly speculative (c.f. Wolfe, 2014); any
assumptions along these lines will be arbitrary and lead to complexity in the model.

However, the Basic Search strategy justifies a great simplification: Since these partial and
jumbled shapes match neither a target nor a distractor, the strategy arguably should treat them as
possible targets to be fixated to determine what they actually are, just as if they had a blank
shape. This means that the Shape property can functionally be treated as a unitary property such
that each perceived object has a Shape property with a value that is either 2, 5, or blank. The
Shape task can thus be modeled as a single-feature task with nomination and choice rules for the
Basic Search strategy that are as simple as those for the Color task: If a 2 is visible, a target is
nominated and a target-present response is made; if a blank is visible, it is a possible-target
nomination and a possible candidate for fixation. If all objects appear to have a 5 shape, then no
nominations are made, and the response is target-absent. The availability of Shape can thus be
represented with a detection function whose threshold 6s is higher than that putatively involved
with detecting the hypothetical individual subfeatures. Crowding will scramble these unitary
Shape property values according to the same algorithm as for Color and Orientation.

How the visual search models make errors

As pointed out in the discussion of the Wolfe et al. results, there are clearly systematic effects
in the ER data as well as the RT data that should be accounted for. A model that attempts to
account for both RT and ER is not common in human performance research. Since this effort
attempts to use both RT and ER as equal-status indicators of visual search processes, it is
important to be clear on how the models make errors. As mentioned above, the Basic Search
strategy will not itself make an error, so errors can happen only from the following three sources
in the models to be presented:

Action slips. The presented strategies will not "deliberately" attempt to respond present on a
negative trial, so False Alarm errors must be due to some factor different from the visual and
strategy mechanisms already described which corresponds to the low and very stable rate of
False Alarm errors across set size and search task. These errors can be attributed to the action
slips or "oops" errors described in Section 3.3.2. In these models, if the strategy calls for a
present or absent response, the opposite response is made with probability SlipER. This will
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produce both False Alarms and Misses, but with a constant probability across search tasks, trial
polarity, and set size. Note that slip errors do not affect the correct trial RT distributions since
they are independent of the actual correctness of the response.

Premature termination of search. Misses could also be produced by one of the Basic Search
strategy variations that limits the number of fixations and terminates the search with an absent
response after some number of eye movements. Thus a Miss error results if the strategy
terminates a positive trial with an absent response before the target has become visible. This is
more likely if there are more objects on the display, and fewer visible properties. This means that
Miss ER would increase with set size and apparent task difficulty. The Fixed-Eye strategy can be
considered an extreme version of such a strategy in that zero eye movements are allowed before
responding.

Illusory distractors from crowding. An important source of Misses is when the strategy rule
that detects the absence of nominations fires when the target is in fact present on the display. This
would happen if all of the objects appear to be distractors. This will be exactly the situation if
crowding scrambling turned the target into an illusory distractor and at the same time, all of the
other objects appear to be distractors. Thus Misses would increase with set size due to more
crowding, and possibly with less available properties.

Thus the basic logic of the strategies together with some combination of action slips, limited
fixations, and crowding effects could account for the basic features of the ER results, namely the
stability of False Alarm rates, the increase of Misses with set size, and the increase of Misses
with apparent task difficulty.

4. Models for the Aggregate Data

All of the theoretical concepts have been presented, so the remaining sections of this paper
present how the models built using the cognitive architecture can account for the data. However,
some important methodology issues must be discussed before commencing with the modeling
results.

4.1. Model Development Methodology

Three methodological topics are presented in this section. The first concerns the conceptual
approach to developing models that fit the data following the EPIC Philosophy. The second and
third concern technical details on deriving and evaluating predictions from the models

4.1.1. Fitting Models using Explanatory Sequences

It is common in modeling work to simply show the final good-fitting model with the
predicted and observed data, the corresponding parameter values, and the goodness-of-fit
metrics, and declare victory. However, modeling work is very much more informative if the good
fit can be shown systematically to be due to a particular combination of the architectural
mechanisms in the model, the parameter values, and the strategy.
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To demonstrate the basis of a good fit requires presenting models that fail to fit the data
because they don't have the necessary mechanisms, parameter values, or strategy’. These make it
clear that the final model fits the data not because it has so many "degrees of freedom", but rather
because it has the minimum number of mechanisms and fewest adjustable parameters necessary.
This can be shown with an explanatory sequence of models that shows the effects of adding
mechanisms, parameter adjustments, and strategy variations, one at a time, to demonstrate how
each contributes to an increasingly better fit. While the presentation of a model with an
explanatory sequence is lengthy, the sequence makes it clear that the resulting model is neither
arbitrary nor haphazard, but is really the best explanation of the data in terms of the architectural
assumptions.

In cognitive architecture models, we start with a set of "hardware" mechanisms and their
parameters and use them in conjunction with the "software" of task strategies. In EPIC, the
"hardware" mechanisms are the given "black-boxed" and parameterized sensory-perceptual and
motor systems, and the well-defined and limited production-system engine of the cognitive
processor, while the "software" is the cognitive task strategy represented as the specific
production rules applied by the cognitive processor to choose what motor actions to perform
based on the perceptual data in order to meet the task requirements. In this approach, the
"hardware" is assumed to be fixed, but the parameters have to be estimated, and the strategy,
although it is constrained by the task requirements, is free to vary due to both procedural details
of the experiment and the preferences of the subjects. So an explanatory sequence of EPIC
models will show the effects of changing both the parameters that govern the given architecture
components, and the strategy used in the task. Parameter estimates and strategy choice can
interact; it is often very informative to hold one constant while varying the other. But a key idea
from the EPIC Philosophy is to give first priority to including the known effects of the fixed
perceptual and motor mechanisms with their estimated parameters, followed by varying the
strategy as needed to match the data.

Constructing an Explanatory Sequence

In more detail, an explanatory sequence is constructed in steps as follows:

Setup: Create an initial model for performance in the task. This model contains the
minimum and simplest architectural mechanisms necessary for the task. These include a strategy
executed by the cognitive processor that uses specified outputs of the perceptual processors to
decide how to command the motor processors in order to perform the task. The perceptual-motor
processor parameters can be initially estimated from the literature or previous models of similar
tasks, and the strategy can be chosen on the basis of performing the task to meet the requirements
nominally or optimally.

Refinement: Iterate over choice of parameter values, strategies, and additional
mechanisms. 1t is unlikely that the initial model performance matches the observed data. In order
to fit the data, make systematic and step-by-step modifications to the model in the following
explanatory priority order:

1. First priority: Include known perceptual and motor mechanisms and modify their
parameter values over plausible ranges. That is, as much as possible, attribute

7 Thanks are due to Susan Chipman for pointing this out: "Show me a model that doesnt fit the data."
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characteristics of human performance to perceptual and motor abilities and
limitations, especially if they have been studied in tasks independent of the one
being modeled. This takes advantage of the relatively large corpus of empirical
results and well-developed theory on perception and motor movements.

2. Second priority: Try alternative strategies to fully account for the observed
effects, adjusting perceptual-motor parameter values if necessary. In general, the
effects of different strategies on task performance can be profound and so a good
choice is required of both parameters and strategy.

3. Third priority: Try changes or additions to the perceptual or motor mechanisms
that are well supported by empirical data independent of the task being modeled.
These may entail changes to both the strategy and the parameter values.

4. Fourth priority: The last choice would be making changes or additions to
cognitive processor mechanisms beyond simple strategy execution. This is the last
choice because such changes are the most hypothetical and most difficult to
support by independent empirical data. For example, adding a selective attention
mechanism to EPIC's cognitive processor would be justified only if none of the
higher priority modifications could account for the data.

The results of applying this approach step-by-step is an explanatory sequence of models that
increasingly match the data, and provide an explanation of the effects that are present. In terms
of philosophy of science, this approach is a way of performing the logical process of abduction,
which in this sense is inference to the best explanation (Douven, 2017), where the best
explanation in this context must be in terms of the architecture mechanisms, and should rely as
much as possible on empirically well-supported mechanisms, and as little as possible on more
hypothetical mechanisms

In summary, to explain a specific observed empirical effect with EPIC, first priority is given
to independently known properties of human perceptual and motor systems, and second priority
is given to examining whether a different task strategy can account for the effect. Then if
necessary, the adequacy or accuracy of the perceptual or motor mechanisms can be reassessed in
the light of the empirical effects and justified changes made. Only as a last resort will the
cognitive processor mechanism be extended beyond its basic strategy-execution role. A capsule
summary of this approach is that perceptual-motor mechanisms come first, task strategies come
second, and additional cognitive mechanisms as little as possible.

Two early applications of this approach was the original EPIC modeling of the psychological
refractory period, a fundamental dual-task paradigm (Meyer & Kieras 1997a, b), and EPIC
modeling of computer menu selection (Hornof & Kieras, 1997). Examples of architectural
modifications that follow these principles are the implementation of covert speech used in verbal
working memory (Kieras, Meyer, Mueller, & Seymour, 1999), the efficiency of visually-aimed
eye or hand movements (Kieras, 2009; cf. Wright, Marino, Chubb, & Mann, 2019), and visual
crowding effects in the early stages of this work on modeling simple visual search. Thus, EPIC
models constructed on these principles do a good job of accounting for phenomena that formerly
were explained by hypothetical cognitive mechanisms such as a response-selection bottleneck,
short-term memory capacity limitations, or attentional capacity limitations.
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Applying the approach to simple visual search

In what follows, the initial model for a task requires a strategy that connects some relevant
perceptual output to some appropriate motor commands that performs the task in a plausible
way. In simple visual search, this means responding present or absent to a presented display with
speed and accuracy that is at least roughly in the vicinity of the data to be modeled. The
explanatory sequences below each present such an initial model, using availability, eye
movements, manual movements, and the Basic Search strategy. Then the sequences first adjust
parameters, and then add additional mechanisms or adjust parameters chosen from action slips,
crowding, and strategy variations, until a satisfactory fit is obtained. In Section 3 above we
outlined the available components for use in a visual search model. Table 4.1.1 summarizes these
mechanisms and the parameters whose values were adjusted during the model fitting. These will
be used in the explanatory sequences to follow. All other parameters are fixed at their "standard"
literature-based or assumed values, as described in Section 3.

If a model based on these mechanisms suffices to account for the effects, there is no need to
propose additional architectural components, such as cognitive mechanisms with relatively ill-
defined properties such as covert attention. In fact, it is the claim of this work that despite its
traditional popularity, the cognitive mechanism of covert attention is not required to explain
these visual search effects once known visual mechanisms, eye movements, motor errors, and the
task strategy are represented in the model.

Throughout all of the model fits presented, preference was given to minimizing the number
of different strategies invoked to fit the data, and trying to hold as many parameters at the same
and simple values as possible. Since accounting for ER was a novel undertaking in visual search

Table 4.1.1

Architecture Mechanism Adjusted parameters

Visual Perception Availability 0s, Oc, 6o

Crowding ¢s, e, po

Perceptual store

Motor Movement Saccade time, accuracy

Manual time, accuracy  SlipER

Cognitive Task Strategy | Fixed-Eye

Basic Search
Unlimited-fixations
Limited-fixations Nfix
Confirm-positive

Confirm-both
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models, in the fits to be reported, some preference was given to a close fit for ER at the expense
of the RT fit.

4.1.2. Generating model predictions

Implementation Details

The scrambling model of crowding requires that each visual object be processed in the
context of the other objects on the display. However, the current code base for the EPIC visual
processors are based on the concept of processing each object independently, so implementing
the scrambling model would require restructuring the visual architecture code. It is a better tactic
to evaluate the prospects of the crowding model before undertaking a careful reprogramming of
the EPIC code base. Accordingly, the specific processes used in implementing the simple visual
search model in EPIC were reproduced in a stripped-down body of native C++ code. By setting
the crowding probability to zero, it was possible to check that the C++ model produced identical
RT predictions to the full EPIC version. This was interestingly non-trivial; because the EPIC
software directly supports fully parallel processing between and within architectural components,
programming an EPIC production-rule strategy is much easier than coding the corresponding
behavior in plain C++ code.

Obtaining Reliable Predicted Values

The best-fitting strategy and parameter values were determined by informal iteration. It was
necessary to run a very large number of simulated trials to get stable model predictions for the
small ERs present in he data. This was achieved by using the C++ "clone" of the actual full EPIC
production rule model described above. Because of the very high speed of the clone compared to
the full EPIC system (which is coded in C++ as well), it was convenient to obtain one million
simulated trials for each combination of task condition, set size and trial polarity; all of the
reported simulation results use this sample size. The random numbers in the simulation were
obtained using the Mersenne Twister generator in the C++ Standard Library.

4.1.3. Metrics for Evaluating Goodness-of-fit

The goodness-of-fit of a model for RT and ER will be reported in terms of three metrics that
usefully describe the relationship between the predicted and observed values. This is better than
relying on a single metric, because each conveys a different type of useful information, and a
different type of misleading information. Thus reporting all three gives a balanced picture of how
well or poorly a model fits the data.

Proportion of variance accounted for: r?

The first metric is the common correlational measure used in modeling work, 72, the
proportion of variance in the observed values accounted for by the predicted values; this
basically measures the extent to which predicted and observed values parallel each other.
However, it is misleading if the predicted and observed points show parallel trends but differ in
magnitude. It is also misleading when there is no observed trend, e.g., flat RTs, because there is
no variance to account for even if the predicted and observed values are identical.
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Average absolute relative error: aare

Thus it is useful to have a second metric that provides a good measure of how well the values
actually match: this is the average absolute relative error, aare, the absolute difference between
the predicted and observed values relative to the observed values, expressed as a percentage:

aare = (3|oi - pi| / 0i))/n

Note how in this measure, under-predictions do not cancel out over-predictions. This gives an
easily understood measure of how close in actual values the predictions are to the data,
interpretable in terms of rules of thumb customary in engineering practice. However, in this data,
some of the ER observed values are extremely small; their presence in the denominator of the
relative error tends to "inflate" the aare metric, sometimes dramatically, which can be misleading
in certain cases.

Average absolute error: aae

A third metric avoids the small-denominator problem; this is the simple average absolute
error, aae, between the predicted and observed values

aae = (3iloi - pi|)/n

This measure is in the same units (ms or error proportion) as the data; this can be misleading
because it relies on a judgement of how much error is acceptable in terms of those units. For
example, an aae of 0.1 could be either very good or very bad depending on the units.

Relative reliability of RT and ER data

One additional goodness-of-fit issue stems from the difference in the reliability of the
observed RT and ER data. There were about 500 trials per subject per task, set size, and polarity
condition. For RT measurements, this sample size can produce very tight estimates for individual
subject RTs. However, the variability of proportions, such as ER, is intrinsically higher for the
same sample size, and even 500 trials per subject does not constrain the estimate of the
individual subject proportion very much. This difference might be why the confidence intervals
on the ER data in Figure 2.1 look relatively large when computed in the same way as for the RT
data. Thus while the extent to which the predicted values fall within the confidence intervals
around the observed data points is an attractive indicator of goodness of fit, the large size of
some of the confidence intervals can make it overly generous.

4.2. Explanatory Sequence for the Shape Task

The first explanatory sequence in this report starts with accounting for the Shape task. The
reasons for this choice are that of the three tasks in the Wolfe, et al. dataset, this task is the most
prototypical visual search task — the task definitely requires visual search; detecting the
presence or location of an object is non-trivial, requiring some kind of examination of the display
for a few seconds, and there is a large increase in the time required as the number of objects
increases. So the key features of this data to be explained are: RTs that steeply increase with set
size, almost linearly, with negative trial RT having a greater slope and slightly more curvilinear,
than for positive trial RT. The ER for negative trials (False Alarms) is small and almost constant
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(as it is in all task conditions), while the ER for positive trials (Misses) increases significantly
with set size. The following presents the explanatory sequence to account for these features as a
series of numbered steps. The label for each step names the mechanism, parameter, or strategy
variation added or modified in that step, and which aspect of the data is addressed in that step.

Step 1. Basic Search strategy and availability for RT slopes. The initial model includes the
mechanisms of visual availability, eye and hand movements, and the Basic Search strategy, and
attempts to fit the RT effects. ER will be addressed in next step.

Given these mechanisms and the Basic Search strategy, as set size increases, object density
increases, and more objects will be covered by each fixation. Thus availability will determine
how many eye movements are required before the strategy chooses a response, which then
determines the RT. Accordingly, Figure 4.2.1 shows the effects of increasing the threshold
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coefficient parameter fs from 0.1 on the top row left, where the Shape of almost all objects on
the display are available from the initial fixation point, increasing in increments of 0.1 to 0.6 on
the bottom row right where very few will be available for any given fixation point. By bracketing
the observed RTs, these fits show the effects of availability with the Basic Search strategy. Note
that this model predicts no errors, which will be addressed in the next step.

If the Shape property is very widely available (top leftmost panel), the RTs are almost flat
and very fast, about 500 ms, because almost no eye movements need to be made. As Shape
becomes less available, the Basic Search strategy will make more eye movements, leading to
increased RTs with set size. In the bottom rightmost panel where Shape is narrowly available, the
RTs are very linear and very steep, especially for negative trial RTs, and the ratio of the negative
RT slope to positive RT slope is 2.1. In this case, a fixation usually covers only a single object.

The predicted slopes increase from left to right due to an increase in the number of eye
movements generated by the model. Note that in all of the models in this paper, the trial starts
with an initial fixation on the fixation point before the display appears. This initial fixation is not
counted as one of the eye movements during the trial; only the movements after the display
appears are counted. Accordingly, in the bottom rightmost panel, over the range of set size, the
mean number of eye movements made by the model goes from 1.9 to 7.6 for positive trials, and
2.9 to 15.0 for negative trials. At intermediate availabilities, the RTs are somewhat negatively
accelerated, reflecting how Shape becomes available for more objects in a single fixation
because the objects are closer together with greater set size. A fairly good fit to the RTs (2 =
0.98) appears in the bottom leftmost panel where 6s = 0.4, but the predicted RTs are slightly
more negatively accelerated than the observed. Here the range of eye movements is 1.5 - 4.0 for
positive trials, and 2.4 - 9.1 for negative trials.

In the visual search literature, much is made of the linearity of the RTs with set size and how
the ratio between negative and positive RT slopes is often in the vicinity of 2:1, which is
consistent with a serial self-terminating search (which is what the Basic Search strategy
implements here). However, over the availability parameter range shown in Figure 4.2.1, the
predicted linear slope ratios are {594, 9.8, 3.6, 2.7, 2.3, 2.1}. Thus, the RTs are linear and slope
ratio is close to 2:1 only to the extent that fixations cover single objects. As pointed out by earlier
work with the FVF concept, (see Hulleman & Olivers, 2017, for a review), if the property is
available over a wide enough area that more than one object can be recognized at time, the
search will be faster because fewer eye movements are needed, and the slope ratio will be larger,
mostly because the slope for positive RT becomes flatter.

This set of fits makes it clear that a very simple model of visual search, involving availability,
eye movement times, and the Basic Search strategy can account for this family of RT effects:
Depending on availability, RTs can range from flat to fairly linear steeply sloping RTs, and
negative RTs are generally larger than positive RTs by a ratio that converges on 2:1 as
availability decreases. That is, serial processing, as indicated by the 2:1 linear slope ratio,
appears when objects have to be separately fixated; when more than one object can be covered in
a fixation, negatively accelerated RTs with linear slope ratios greater than 2:1 appear. This range
of effects stems simply from how the availability of the relevant object properties governs the
need for eye movements.
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Figure 4.2.2. Effect of adding slip errors. s = 0.4, SlipER = .014.
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Step 2. Action slips for False Alarms. The predicted results in Figure 4.2.1 show zero
predicted errors, which is obviously a serious misfit. This model never makes an error because in
no case does the visual system produce an incorrect representation — the Shape is either
veridically available for an object, or it is missing (a blank property value), and the search
continues until all objects have a known Shape, whereupon the choice rules always apply
reliably, and so no errors are made. As pointed out previously, a remarkable feature of these data
is that errors on negative trials (False Alarms) are produced at a very low and almost constant
rate: the average over all three task conditions is 0.014. In contrast, Misses (errors on positive
trials) tend to increase with set size, especially for the Shape condition.

The model was modified to include the action slip mechanism with the SlipER parameter set
simply to the overall ER for False Alarms of 0.014. After the strategy determines the response,
with probability SlipER, the opposite response is made. Figure 4.2.2 shows the fit of this model
with the above good estimate of 6s = 0.4, and the goodness-of-fit metrics described in Section
4.1.3. While this step improves the ER fit substantially (aare goes from 100% to 32%), there is
no predicted trend of increasing Miss ER, and so the 72 for ER remains at 0.0. Note that the
average correct trial RT is unaffected by slip errors because they occur independently of the
visual processing and strategy execution, and incorrect trial results are not averaged into the
correct trial RTs .

Step 3. Crowding for Misses increasing with set size. As described above in Section 3.3.3,
under the Basic Search strategy and its variants, the object Shape can be treated as a unitary
property. The crowding mechanism scrambles the Shape property of objects that crowd each
other, with a blank or unknown property value participating in the scrambling. The strength of
the crowding effect is specified by the crowding probability parameter ¢.

The effect of crowding on RT and ER is somewhat subtle and requires careful explanation.
First, note that the crowding scrambling will not produce an illusory target on a negative trial,
because there is no unitary target Shape property on the display, so crowding will not result in a
False Alarm. But, the scrambling can result in the distractor Shape property being moved to an
object whose Shape was not actually available — a form of illusory distractor that will not itself
produce a False Alarm on a negative trial.
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Figure 4.2.3. The effect of varying availability and crowding probability on RT (upper panels in each row,

scale 0-2500 ms) and ER (lower panels in each row, scale 0-0.15).
Rows: Top to bottom 6s ={0.2, 0.4, 0.6}. Columns: Left to right: ¢s = {0.025, 0.075, 0.1, 0.2}.
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However, on positive trials the situation is more complex. The target Shape property is
visible on the display, but scrambling might move it to a distractor object, producing an illusory
target. But because the task requires simply making a present response rather than fixating or
identifying the correct target object, the fact that the illusory target object is not the actual target
object has little or no effect on RT. But as more fixations are made, it is possible that a// objects
receive a scrambled distractor Shape, including the target object (which then becomes an illusory
distractor), before all of the objects have been covered by a fixation close enough to make their
actual Shape property available. In this case, all objects appear to be a distractor, and accordingly
the Basic Search strategy will immediately halt the trial with an absent response, which is a Miss
error on a positive trial. The likelihood that an object's property will be overwritten by a
distractor property value depends on both the prevalence of the distractor properties, which
depends on the availability and the crowding probability parameters, 8 and ¢. These two
parameters can be varied to bracket the effects on RT and ER.

Accordingly, Figure 4.2.3 expands upon Step 1 and Step 2 to show the effects on RTs and
ERs of varying both the availability and crowding probability parameters, with SlipER remaining
at 0.014 and with Unlimited-fixations in the Basic Search strategy. The three rows of RT and ER
graphs from top to bottom correspond to decreasing availability, with 8s going from 0.2 (very
available) to 0.4, then to 0.6 (very unavailable). The columns of graphs from left to right
correspond to increasing crowding probability, with ¢ps = {0.025, 0.075. 0.1, 0.2}.

As before, increasing the availability threshold s increases the RT slope, but the extent to
which the RTs become more linear also depends on the crowding probability parameter ¢s. But
the major effect is how Miss ER systematically increases with set size as the ¢s increases, but the
magnitude of this effect also depends on 6s. In addition, because Misses result from an early
termination of the search when all objects have the distractor property, a higher Miss ER
corresponds to more negative acceleration in the RT functions. Thus the availability and
crowding mechanisms jointly govern both the RT and ER. A fairly good fit for both RT and ER is
obtained with 8s = 0.4 (middle row) and ¢s = 0.075 (center left).

Figure 4.2.4 is refined from the above, with 6s = 0.425 and ¢s = 0.075, which exemplifies the
preference in this work to emphasize a good fit to ER, since this is a fairly novel goal. As shown
in the Figure, the fit to both RT and ER is an extremely good result from only two adjusted
parameters, the availability threshold and the crowding probability. Because the crowding can
cause the strategy to terminate early, more frequently with increasing set size/density, the RTs are
also somewhat more curvilinear.

A step not taken. The above crowding account of Miss ER differs substantially from the
common explanation in terms of some kind of time-out process (cf Hulleman & Olivers, 2017),
in which if the target has not been detected after some time, or number of fixations (which in the
model occur at a roughly constant rate), the subject simply responds absent — this strategy
possibility is the Limited-fixations option (Box 3.5 above). However, according to the
explanatory priority order, if an effect can be explained with known perceptual mechanisms, i.e.,
availability and crowding, a strategy variation explanation should not be entertained. Moreover,
to acceptably fit the Miss ER data, a different limit is needed for at least three of the set size
levels, which requires more parameters than the crowding mechanism, and requires possible
additional visual mechanisms and strategy variations to adjust the stopping criterion depending
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Figure 4.2.4. Good fit with Basic Search strategy, Unlimited-fixations, S_av = 0.425, S_cp = 0.075
Source: SHPAIl_VMZ2elLS9c_425_075_014_99_200304

on the set size. Thus relying on crowding not only conforms to the priority order, but produces a
simpler model than a strategy change.

Final model for Shape task. The explanatory sequence started with the basic search strategy,
eye movements and manual responses, and found a value for the availability parameter that
resulted in an approximate RT fit, and then added slip errors and crowding and suitable
parameter values to arrive at a very good fit to both the RT and ER data. The effects in the data
reflect only a "fastest reasonable" strategy working with relevant independently documented
perceptual-motor limitations; no concept of a perceptual or central "bottleneck" such as covert
attention is required to account for this prototypical visual search task.

4.3. Explanatory Sequence for the Color Task

The next explanatory sequence is for the Color task aggregate data. This task is a good next
choice for explanation because like Shape, it involves a single property of the objects, but the
color property is at the opposite extreme of availability from Shape; there are many results that
suggest that object color is very widely available in the visual field (e.g. Williams, 1967) so
widely that it is often described as "popping out" in a visual search task. The explanatory
sequence here shows that the "pop out" phenomenon is not a special mechanism, but rather is
due simply to the single target property being very available over the visual field. As in the
Shape sequence, the RT effects in the Color task sequence will be accounted for first, and then
the ER effects. However, for brevity, the slip error account of False Alarms developed for Shape
will be included in the first step.

Step 1. Basic Search strategy, slip errors, availability for flat RTs. The starting point in the
sequence is the same as the initial model for the Shape sequence: Basic Search strategy with
Unlimited-fixations, availability, eye and hand movements, with slip errors added. Figure 4.3.1
shows the effects of changing the availability threshold ranging from all objects having available
color to only some, with c - (0.0, 0.1, 0.15, 0.2}, an SlipER of 0.014, and no crowding effect (¢c
=0.0).
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Figure 4.3.1. Effect of availability and Basic Search strategy in the Color task.
RT (upper panels, scale 0-2500 ms), ER (lower panels, scale 0-0.15).
SlipER = .014. Left-to-right: Oc = {0.0, 0.1, 0.15, 0.2}. ¢c = 0.0.

For the leftmost two fits, which have especially high availability 6c = {0.0, 0.1}, the
predicted RTs are very fast and flat and very close to the observed RTs. Increasing RT slopes
appear at larger values of Oc. Contributing to these RTs is the number of fixations/trial produced
by the model after the initial fixation. As before, the model counts only eye movements after the
initial one that is always made to the fixation point before the trial is started. Thus, any slope in
the RT must be produced by subsequent fixations. As expected, for 8c = 0.0 the model makes
zero eye movements — the Color is fully available for all of the objects, so the strategy
terminates immediately. For Oc = 0.1, a few objects initially lack the Color property, but at set
size 18, the model makes only 0.022 fixations/trial for positive trials, and 0.128 for negative
trials, which produces RTs that are almost flat and almost identical for positive and negative
trials, so as to be indistinguishable when plotted on the same scales. This happens because the
Color is still almost always available. However for 6c = 0.15 there is visible slope in the
predicted negative RTs resulting from 1.068 fixations/trial at set size 18. This slope is clearly
different from the observed flat negative RTs. But the predicted positive RTs are still almost flat
due to a tiny .094 fixations/trial at set size 18, and very close to the observed positive RT. In this
case, the predicted slope ratio is 48:1! Finally, at even less Color availability, Oc = 0.2, the
predicted positive RTs are now somewhat greater than the observed positive RTs but still fairly
flat due to there being only 0.483 fixations/trial at set size 18, while the negative RTs are much
more steeply increasing with 2.852 fixations/trial at set size 18. As a result the slope ratio is
reduced to only 13 due to the increased positive RT slope.

From these results it is very clear that even as little as an average of one fixation per trial at
the largest set size will produce a significantly sloped RT. In turn this means that 8¢ needs to be
around 0.1 or less to obtain a plausible fit to the fast and flat RTs.

What about the ER effects? This initial Color task model includes SlipER = 0.014, the value
of the overall observed False Alarm ER. But the observed Miss ER clearly tends to be higher
than the False Alarm ER — how is this explained? One possibility is an ad-hoc explanation that
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the SlipER is simply larger for present responses than for absent responses. But rather than use
another degree of freedom for an additional and arbitrary mechanism with a parameter value, it
would be better to find an explanation compatible with the priority order for the combination of
flat RTs but more Misses than False Alarms.

Step 2. Crowding for Misses. In the Shape task sequence above, crowding produces Misses
that increase with set size, and there are values for s and ¢s that result in a fit to both RT and
ER. Could the same hold for the Color task? Figure 4.3.2 shows the results for fc over the same
range of values as shown in Figure 4.3.1, and ¢c set at 1.0, which is the largest possible
crowding effect.

These results are very striking. Higher values of 6c produce both RTs that increase with set
size, and also Miss ERs that increase with set size, similar to the effects for Shape. However, the
small values of c that produce extremely few eye movements and flat RTs also produce no
apparent increase at all in Miss ER with set size, even when ¢c is at its maximum value. Those
Oc values that produce an increase in Miss ER also produce substantial RT slopes. The same
pattern emerges for smaller values of ¢c.

These predictions result from the following: If the target Color is available, crowding might
swap which object has the target Color by producing a pair where the actual target becomes an
illusory distractor and an actual distractor becomes an illusory target, but the strategy will still
produce a correct present response. It is also possible that scrambling involving multiple objects
could result in the target object Color property being lost from overwriting with a blank property,
turning the target object into an illusory blank as discussed above in Section 3.3.1. The result
would be a Miss, even if the target Color was originally available.

So crowding will only produce a Miss error if it scrambles the target object into an illusory
blank and produces no illusory target in the process. This scenario is highly unlikely when Color
is highly available for the following reasons: (1) The eyes almost always remain on the fixation
point whereupon only the initial scrambling would be performed. (2) The probability is low that

Correct RT at each Set Size as a function of Correct RT at each Set Size as a function of Correct RT at each Set Size as a function of Correct RT at each Set Size as a function of
Cue Type and Trial Polarity and Tri Cue Type and Trial Polarity and Tri

.....................................................................................

Figure 4.3.2. No effect of crowding. RT (upper panels, scale 0-2500 ms), ER (lower panels, scale 0-0.15).
Basic Search strategy, SIipER =.014. Left-to-right: O¢ ={0.0, 0.1, 0.15, 0.2}. ¢c = 1.0.
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a blank Color will be present, so the chance that crowding will overwrite an available target
Color with a blank is low. (3) Since the initial average eccentricity is only 8.8 (Figure 3.4), and
the mean number of crowding flankers at this eye position is only 1.0 at set size 18 (Figure 3.5),
the likelihood of the single initial scrambling operation having any effect on the target object is
low. Thus the correctness of the response depends almost completely on whether the target
property is available during the initial fixation, which essentially depends only on 6c.

Thus, although crowding is at work in the Color task displays, a small Oc results in a
negligible effect of crowding on Miss ER. In contrast, and similar to Shape, if 6c is large, eye
movements produce enough scrambling to produce both RTs and Misses that increase with set
size, which contradicts the flat RTs and fairly flat observed Miss ERs in the data.8

The conclusion is that if the Basic Search strategy is used, there are no values of Oc and ¢c
that will simultaneously produce both the flat and fast RTs and a flat Miss rate higher than the
False Alarm rate. According to the priority order, a strategy change would be the next
modification to try.

Step 3. Fixed-Eye strategy and availability for flat RTs and Misses. Another way to get a
flat RT is the Fixed-Eye strategy (Box 3.2), which after the initial fixation, allows no subsequent
eye movements at all, with the response to be made based only on what is available during this
initial fixation: On a positive trial, if the target Color is available from the fixation point, the
response will be present; if the target Color is not available, the response will be absent,
producing some Misses; on a negative trial, all responses will be absent; these responses will be
inverted at the constant SlipER. Thus, if the Color property is not always available, Miss
responses are more frequent than False Alarms, and the RTs are constant, determined only by the
fixed time required for perception, decision, and action, while the ERs are determined only by
SlipER and Oc.

Figure 4.3.3 shows the Fixed-Eye strategy model predictions for the same set of values for 6c
and SlipER as Figure 4.3.1 with ¢pc = 0.0. Note that the rightmost ER graph for c = 0.2 has a
different scale since the predicted Miss ER is very high (0.276). A fairly good fit is obtained for
Oc = 0.1. Figure 4.3.4 shows a refined fit obtained with 6c = 0.11. Since the RTs and ERs are flat
with set size, the 72 s are only zero and 0.68 respectively, but the other goodness-of-fit measures
are very good.

The Fixed-Eye strategy produces a negligible effect of crowding. This follows from the Step
2 discussion above, where the effect of crowding depended on eye movements. This was verified
with a series of Fixed-Eye model fits, not shown, with a very wide range of values of fc and ¢c.
An effect of ¢pc on predicted Miss ER was detected, but negligible; in the most extreme test
cases, crowding added at most 0.001 to the Miss ER.

Final model for the Color task. The Color task is at the opposite extreme from the Shape
task, and the models capture the difference. The Color task effects can be accounted for by the
extremely simple Fixed-Eye strategy and the availability mechanism. No special "pop-out”
mechanism is required; Color is simply visible enough that eye movements would be rarely

8 As pointed out in Section 2.2 above, and confirmed by a within-subject ¢-test, the apparent slight increase in Miss
ER at set size 12 to set size 18 is not statistically significant. This argues against any attempt to account for it in
these data.
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Figure 4.3.3. Effects of availability with Fixed-Eye strategy. RT (upper panels, scale 0-2500 ms), ER (lower panels,
scale 0-0.15 except for rightmost which is 0-0.3). SlipER = 0.014.
Left-to-right: O¢c = {0.0, 0.1, 0.15, 0.2}. ¢c = 0.0.

Correct RT at each Set Size as a function of Error Rate at each Set Size as a function of
2500 Cue Type and Trial Polarity Cue Type and Trial Polarity
0.14
r aare aae
0.01 4% 18 rz aare  aae ~o--Prd OSF Neg
2000 . ° 0.12 o,
0.68 25% 0.004
0.4 - o0--Prd CSF Pos
4
1500 g
.
H g 0.8 —e—Obs CSF Neg
£ H
1000 &o0.06
[

—&—Obs CSF Pos

@
8
L 3
o
s o
8 R

iia 2
? D —
5 10 15 20 5 10 15 20
Number of objects on display Number of objects on display

o
o

o

Figure 4.3.4. Good fit with Fixed-Eye strategy, 6c = 0.11, SlipER = 0.014.

Source:CSFAIl_VMZ2eS9c_11_0_014_0_200225
required, and can simply be eliminated by the Fixed-Eye strategy if some Misses are acceptable.
Interestingly, the effect of crowding, while detectable in the model, was not needed to adequately
fit the data in this situation of no eye movements and high availability. But a crowding
probability parameter value could be assigned to the Color property (e.g. for use in the
Conjunction task) without affecting the accuracy of the Color task Model. In fact, the next
explanatory sequence shows how crowding plays a powerful role in the Conjunction task, even
though both Color and Orientation are highly available.

4.4. Explanatory Sequence for the Conjunction Task

The next explanatory sequence is for the Conjunction task aggregate data, which has a
pattern of effects that are different from both the Shape and Color tasks, which represent two
extremes of the search task. Unlike the Color task with its flat and fast RTs because no eye
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movements were needed, the Conjunction RTs have definite slopes, but much less than for Shape
that required many eye movements. Also, unlike the Color task, where availability determined
Miss ER and crowding effects played a negligible role due to the lack of eye movements, the
Conjunction Miss ER increases substantially with set size, but to a lesser extent than for Shape,
where crowding produced increasing Misses. These differences between single-feature and
conjunctive search tasks was the key phenomenon motivating the covert attention theories of
visual search. So the challenge is satisfactorily explaining these effects with the available EPIC
mechanisms. The following explanatory sequence shows how this can be done.

Step 1. Basic Search strategy, slip errors, and availability for RT slopes. The initial model
for this task assumes the Basic Search strategy even though Color is a target property in the
Conjunction task and the Fixed-Eye strategy produced a good fit for the Color task. However, the
Fixed-Eye strategy can be immediately ruled out because the Conjunction RTs are clearly and
reliably sloped rather than flat. As pointed out above in Section 3.3.3, the Conjunction task
implementation of Basic Search requires more complicated nomination rules for targets and
possible targets, because there are different possible combinations of the two properties of Color
and Orientation, which are assumed to be independently available.

A reasonable simplifying assumption is that the availability parameter Oc for Color has the
same value in Conjunction as in the best fit for the Color task, namely 8c = 0.11, and it will be
held constant at that value in what follows. A rough conclusion from the available literature is
that Orientation is less available than Color, but this data set did not include an Orientation single
feature task that could be used to separately estimate 6o for stimuli of the same size and shape.

Accordingly, Figure 4.4.1 shows a set of bracketing fits with the Basic Search strategy, using
the previous best-fit value for Color availability 6c = 0.11, and with a range of Orientation
availability fo values from 0.11 (same as Color) to 0.25. Again for brevity, this first model step
includes slip error with SlipER = 0.014, as in the Shape and Color task models. As shown in
Figure 4.4.1, the RTs become definitely sloped for values of 6o greater than 0.11, and are fit
fairly well with 8o = .225 or .25, consistent with Orientation being less available than Color
(middle and middle right panels).

These results make an important point, present but not emphasized, in Step 1 of the Shape
and Color explanatory sequences: Eye movements can in fact produce shallow RT slopes; this
undermines the basic justification of the covert attention model (c.f. Section 1.3 above). If
availability is high, multiple objects can be perceived and judged simultaneously during a single
fixation, and so very few eye movements might be required. In the Figure 4.4.1 model results, at
set size 18 and 6o = 0.25, the number of eye movements average only 1.0 for positive trials, and
3.0 for negative trials.

However, because the Basic Search strategy continues until the target is found, as in the
corresponding Shape case, there are no Misses except for slip errors. Since crowding could
explain the Misses in Shape, adding crowding effects is a good next step to account for Misses in
Conjunction.

Step 2. Crowding for Misses. Can crowding account for the Miss ER effects in Conjunction
like it did in Shape? Figure 4.4.2 shows a single fit for Basic Search and availability parameters
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based on the best fit from the Step 1 results (6c= .11, o = .25) with crowding probability
assumed to be equal for Color and Orientation with values ¢c = ¢po = 0.025.9

Only a single fit needs to be shown for this step, because there is a huge problem that makes
additional fits irrelevant. Figure 4.4.2 shows that while the RTs are fit fairly well, there is a

massive predicted False Alarm ER that increases steeply with set size, and shoots completely off
the plotted range at set size 12. Any non-zero value for the crowding probabilities ¢c and ¢o

produces this seriously misfitting pattern.
Treating ER as a first-class dependent variable along with RT means that this surprisingly

gross misfit cannot be ignored. It results from crowding combining with the Basic Search

strategy as follows: The Conjunction task has an almost equal number of Red and Green property
values on the display, and also an almost equal number of Horizontal and Vertical property

Figure 4.4.1. RT (upper panels, scale 0-2500 ms), ER (lower panels, scale 0-0.15). No Crowding, Unlimited-
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9 The small value is intuitively reasonable because Color is reported to be relatively insensitive to crowding, and the

very distinct values of Orientation might also be similarly resistant to crowding.
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values on the display. The target object is the only object that is both Red and Vertical. Since
Color is very available, and Orientation fairly available, there are many instances of these values
available at a time. As described above in Section 3.3.1, crowding can cause illusory targets and
illusory distractors when the Color and Orientation property values get scrambled between the
objects. If a Vertical replaces a Horizontal on a Red distractor, or a Red replaces a Green on a
Vertical distractor, the result is an illusory target. The Basic Search strategy will terminate as
soon as an object appears to be a target regardless of whether it has been fixated. So even at these
low crowding probabilities, on negative trials illusory targets are common enough to cause the
strategy to frequently terminate early with a False Alarm, and at a rate that increases steeply with
set size, as more objects crowd each other on the display.

But if the objects happen to be widely spaced enough on a negative trial that crowding
doesn't create an illusory target, a correct absent response will be made, possibly after a few
fixations to make the properties all available, resulting in a sloping negative RT. But on positive
trials, if the actual target is not visible at first, the frequent illusory targets will cause the strategy
to terminate quickly with a present response, which is still the correct response. The result is an
almost flat positive RT. Even if illusory targets happen not to be present, the unlimited search
will eventually find the actual target, so the only Misses are slip errors, flat with set size.

Thus this model is remarkably incorrect even though it incorporates all of the previously
considered visual and motor mechanisms, including crowding. The implication is that
performance in the Conjunction task involves something additional and a change to the strategy
is the next step to try in the explanatory sequence.

Step 3. Basic Search with Confirm-positive, crowding for RT and ER. The False Alarms
can be prevented with the Confirm-positive version of the Basic Search strategy, shown above in
Box 3.3, which fixates an apparent target to confirm that it is an actual target before responding
present, and continues the search if not.

Figure 4.4.3 shows the results for Basic Search with Confirm-positive strategy using the
same availability values as previous, with ¢pc = 0.025, and with three different values of the
Orientation crowding probability ¢o, increasing from left to right from 0.025, then 0.1, to 0.2.
Starting at the left panel and going to the right, the positive RTs have a slope similar to the
observed slope, but are larger than the observed values, while the negative RTs start much
steeper than the observed values, and become extremely steep with increasing ¢o. Also going
from left to right, the effect of set size on Misses also increases. The problem is that the value of
¢o that produces RTs most like the observed (left-most panel, ¢po = 0.025) produces very few
Misses, but increasing ¢o to a high enough value to produce enough Misses results in huge
negative RTs, as well as positive RTs that are substantially larger than the observed.

What is happening on negative trials is that the combination of crowding, Confirm-positive,
and Unlimited-fixations means the search continues until all of the objects appear to be
distractors, whereupon an absent response is immediately made; but many fixations to resolve
illusory targets may be needed before the absent response is triggered. In contrast, no non-slip
False Alarms are produced, thanks to the Confirm-positive step. Furthermore, on a positive trial,
the only way to make a non-slip Miss error is if the actual target object appears to be an illusory
distractor at the same time that all the other objects appear to be distractors. This will not happen
very often unless the crowding probability is high, whereupon the RTs are too long.
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Figure 4.4.3. RT (upper panels, scale 0-2500 ms), ER (lower panels, scale 0-0.15). Basic Search with Confirm-
positive and Unlimited-fixations. 6c = 0.11, 6o = 0.25, ¢c = 0.025, ¢o = {0.025, 0.100, 0.200}, SlipER = 0.014.

Thus, even though crowding is incorporated into the model, the problem is that an Unlimited-
fixations strategy produces either extremely over-predicted negative RTs or under-predicted Miss
ERs. It seems like subjects should be able to produce much faster RTs with an acceptable Miss
ER. Perhaps a strategy change can speed up the RTs by limiting the number of fixations.

Step 4. Basic Search Confirm-positive with the Limited-fixations option for RT and
Misses. The strategy was modified to include the option (Box 3.5) of responding absent after a
fixed number of fixations NFix. Figure 4.4.4 shows a fairly good fit with a pair of the previous
availability and crowding parameter values and NFix = 3. This strategy still eliminates the excess
False Alarms, but also produces fast sloping RTs, and an acceptably low Miss ER that increases
with set size. Some preference was given to fitting the ER closely at the higher set size, but the
RTs are still fit fairly well.

However, close inspection of the predicted RTs in Figure 4.4.4 reveals that the predicted RT
for negative trials is systematically somewhat too fast, especially at the smallest set size where it
is predicted to be slightly faster than the positive trial RT, a qualitative misfit. This happens
because the Confirm-positive version of Basic Search often requires an extra eye movement
before making a present response, but this is not true for an absent response. One more step in
the explanatory sequence is required to deal with this small, but systematic, misfit.

Step 5. Confirm-both strategy for positive RTs. The Confirm-positive step is a form of
double checking, which is required because there may be many illusory targets in the
Conjunction display. But it is also very likely that the same scrambling of Color and Orientation
could turn a target into an illusory distractor, which suggests that an additional double-check
might be needed to deal with this possibility. But there is no information on which apparent
distractor could be the actual target, making this double-check less well-defined than the
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Figure 4.4.4. Confirm-positive with Limited-fixations. 6c = 0.11, ¢c = 0.025, 8o = 0.2, ¢po = 0.025,
SlipER = 0.014, NFix = 3.
Source: COCAIl_VM2eCS9c_110_025_200_025_014_3_CP_200208

Confirm-positive check. Accordingly, the Confirm-both version of Basic Search (Box 3.4) adds
an extremely simple version of an Confirm-negative double-check: if all objects appear to be
distractors, and no fixations have yet been made (i.e. the eyes are still on the fixation point), the
current most eccentric object is fixated and then checked for being a distractor. If it is a
distractor, an absent response is made, if not, the search continues.

As shown in Figure 4.4.5, the fit to the ER is unaffected, but the under-prediction of negative
trial RTs has been alleviated, and the 72, aare, and especially the aae, are all noticeably better,
due to an additional eye movement and property check being made on a subset of the negative
trials.

Final model for the Conjunction task. The final model shows that the Conjunction task is
very different from the Shape and Color task tasks. The problem is that even with a very low
probability of crowding, the scrambling of the highly available Color and Orientation properties
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Figure 4.4.5. Confirm-both with Limited-fixations. O¢c = 0.11, ¢c = 0.025, 0o = 0.2, ¢po = 0.025,
SlipER = 0.014, NFix = 3.
Source: COCAIl_VM2eCS9c_110_025_200_025_014_3 CPN_200501
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between objects produces a plethora of illusory targets, which would produce massive False
Alarms unless the strategy includes some form of double-checking to confirm the presence of the
actual target.

This was not at all an issue in the other tasks, where a single and unitary target property
means that crowding scrambling could not cause an illusory target to appear on a negative
display, and at most would change the apparent, but irrelevant, location of the target in a positive
display. However, so prevalent are the illusory targets in Conjunction that the confirm-positive
double-checking takes a long time on negative trials, so limiting the fixations is required to
shorten the RTs without incurring more than an acceptable number of Misses. The same
crowding produces illusory distractors that seem to require an occasional double-check before
making an absent response as well.

As discussed above, the contrast between the Conjunction and Color task was a key
motivator of the concept of feature binding performed by serial deployment covert attention.
This explanatory sequence makes it clear that the Conjunction task is indeed very different from
the Color task, but rather than additional cognitive mechanisms of feature binding performed by
covert selective attention, the pattern of effects in the conjunction task can be explained much
more simply in terms of availability and crowding producing ambiguity in the Conjunction task
stimuli, which is not at all present in the Color and Shape task, and a more complex strategy is
required to handle this ambiguity to produce reasonably fast and acceptably accurate responses.

4.5. Model Results for All Three Tasks

Using the final models in each explanatory sequence, Figure 4.5.1 shows the predicted RT
and ER compared to the data, and Table 4.5.1 shows the strategy and parameter values for the
model in each task condition, and the goodness-of-fit metrics for RT and ER in each task
condition, and as computed for the whole set of 24 RT and 24 ER data points. The graphs show a
very close correspondence between predicted and observed values, indicated quantitatively by
the high 72 values, low aare, and low aae (in ms and error proportion units). As pointed out
above, because in the Color task, well-fitting predicted RTs are flat, the »? values for Color task
RT have to be essentially zero, and thus are not included in the average of the »? values; but when
the 72 is computed for the fit to all 24 RTs from all three tasks, it is quite high because the models
correctly predict both flat and sloped RTs.

However, notice that the confidence intervals around the means are quite large for some of
the RT data, and also especially for the Miss ER data. The mean RT and ER data for individual
subjects were inspected; there were substantial individual differences. For example, in Shape
some subjects achieved almost error-free performance, while one subject produced 23% errors in
the most difficult condition! Further inspection also showed different patterns in the RT effects
for individual subjects in the same condition. The next section applies the models to account for
these individual differences.
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Figure 4.5.1. Predicted (open points, doted lines) and observed (solid points and lines) correct trial RT (left panel)
and ER (right panel) for the aggregated data in each task condition. Shape: squares, Color: circles, Conjunction:
triangles. positive trials: red, negative trials: black. The 95% confidence intervals are based on the standard error of
the mean of the subjects' mean values underlying each data point and thus reflect between-subject variability.
Source: AllSubs_VM2eLS9c_110_0_025_200_025_425_075_0_3_99_CPN_200506.

Table 4.5.1 Model Fits for Aggregated Data

NFix Color/Shape  Orientation  SIipER  GoF: | GoF:
RT ER
Task Strategy 0 0 ¢ r? aare aae§ r? aare aae
Shape Basic 0.425 0.075 0014 097 7% 79 099 11% 0.002
Unlimited
Color Eyes Fixed o1l 00 0014 001 4% 18 0.68 25% 0.004

Conjunction Basic Limited | 3 = 0.11 0.025 020 0.025 0.014 095 5% 35 0.88 19% 0.004
Confirm-both i i i i i i i i i i i

Average* of fit metrics from each task 0.96 5% 44 0.85 18%3 0.003

Fit metrics for all 48 data points 098 5% 44 095 19% 0.003

* Averages of 12 for RT do not include zero value for Color Task.
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5. Modeling Search Performance for Individual Subjects

As is the case for many topics in human cognition and performance, there has been very little
consideration of individual differences in visual search. But in fact, Wolfe, Cave, & Franzel
(1989) present some results on individual differences in simple visual search. They provide
tables of individual subject positive and negative trial RT slopes, and these slopes differ
substantially between subjects in both magnitude and slope ratio. Also, Wolfe, et al. (2010),
present individual subject RTs graphically superimposed on the average RTs. Again substantial
differences between subjects are visible. Rather than examine why these differences could
appear, the individual slopes were averaged together in Wolfe et al (1989), and in Wolfe et al.
(2010) individual RT distributions were assumed to be sampled from the same underlying type of
distribution. Thus theoretical work on visual search has addressed only the aggregate effects, as
is the case in almost all cognitive psychology work, including the above modeling of the
aggregate data. However, as noted above, there appear to be substantial individual differences
underlying the aggregate data — is modeling the aggregate data misleading the theoretical work?

5.1. Representing Individual Differences in EPIC Models

The EPIC architecture provides a straightforward theoretical framework for characterizing
individual differences in terms of two sources: (1) Individual subjects might have different
parameters for architectural mechanisms — e.g. people clearly differ in visual acuity.
Unfortunately, the Wolfe, et al. (2010) experiment was a between-subjects design, so there is no
direct way to isolate this source of individual differences, but it is likely that models for
individual subjects might require individual parameter values. (2) Individual subjects might
devise different strategies for performing the same task. Earlier EPIC-inspired experimental
work showed that individual strategy differences could produce powerful and misleading effects
in the aggregate data (e.g. Schumacher, Seymour, Glass, Fencsik, Lauber, Kieras, & Meyer,
2001; Thompson, lyer, Simpson, Wakefield, & Kieras, 2015).

It is possible that the EPIC aggregate-data models in fact do not account for how any
individual subjects performed the search tasks, because averaging over subjects who have
different architectural parameters and different task strategies could produce average data that
actually represents none of the subjects. While this is a long-standing insight in cognitive
modeling, as noted long ago by Reitman (1970) and Newell (1973), it is unusual for modelers to
collect and model data reflecting this insight, and published data rarely allows the modeler to act
on it. Fortunately, the Wolfe, et al. dataset includes all of the individual trials for each subject in
each task condition, allowing a subject-by-subject analysis of the underlying individual
differences.

More specifically, the seriously misleading effects of assuming individual subjects follow the
same strategy was discussed by Reitman (1970) in the context of models of memory and other
tasks: the strategies and the underlying memory and processing mechanisms were quite distinct,
and effects due to strategy differences were customarily ignored and treated as if they were just
"noise" or "error variance" in the data. Later, Newell (1973) followed up his First Injunction (see
above) to know the subject's strategy with another:
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Second Injunction of Psychological Experimentation: Never average over
methods.

To do so conceals, rather than reveals. You get garbage or, even worse, spurious
regularity. The classic example of the failure to heed this injunction is the
averaging of single-shot learning curves to yield continuous learning curves....
much of the ability of the field continually and forever to dispute and question
interpretations arises from the possibility of the subject's having done the task by
a not-til-then-thought-of method or by the set of subjects having adopted a
mixture of methods so the regularities produced were not what they seemed. (p.
294-296)

The main reason why individual differences in subjects’ strategies may have arisen in the
Wolfe et al.(2010) data is that like many experimental psychologists, Wolfe, et al. provided
ambiguous instructions on speed vs. accuracy — respond "as quickly and accurately as
possible". As Pachella (1974) noted, such conjoint instructions are, in essence, logically
contradictory; i.e. responses "as accurate as possible" must necessarily lead to extremely long
RTs, whereas responses "as quick as possible" must necessarily lead to extremely low accuracy.
Faced with this conundrum, subjects necessarily have to choose some intermediate, individually
variable, mixture of emphases on response accuracy versus speed. Further complicating the
choices, Wolfe et al. (2010) paid subjects an apparently flat rate per hour. No systematic
quantitative payoff or incentive scheme was used to influence the interpretation of the
instructions in any particular way (cf. Edwards, 1961; Sternberg, 2016). However, Wolfe et al.
did provide trial-by-trial accuracy feedback and extensive practice, both of which might induce
subjects to adopt stable strategies, but which could still be very different due to how they
individually interpreted the ambiguous instructions. For example, personality differences may
have played a significant role here (Dickman & Meyer, 1988): because about 4000 trials were
required for each subject, relatively impulsive subjects may have chosen to favor speed "to get it
over with" and they were free to choose whatever level of errors was personally comfortable. In
contrast, relatively reflective subjects may have been more conscientious and favored accuracy
even if it took a long time.

It would be better not to leave such choices completely up to the subject's preferences. As
discussed by Pachella (1974) and Sternberg (2016), RTs are most interpretable if ERs are
reasonably low, so the experimenter should encourage subjects to respond as quickly as they can
while making fairly few errors. This can be accomplished with an incentive scheme that heavily
penalizes errors, which discourages trying to be too fast, but also penalizes unnecessarily long
response times. For example, a good scheme gives the subject on each trial a starting number of
points (ideally convertible to money), and deducts a certain amount for each millisecond of
response time, but deducts the full starting amount for an error. In conjunction with running
feedback on total "winnings," such a scheme can produce much cleaner data because individual
subjects will converge to their best possible performance defined in terms of the payoff scheme
(c.f. Schumacher, Lauber, Glass, Zurbriggen, Gmeindl, Kieras, & Meyer, 1999; Sternberg, 2016;
Thompson, lyer, Simpson, Wakefield, & Kieras, 2015).

However, at this time the Wolfe, et al. (2010) data are the best dataset available, and the
success of the aggregate-data model presented below shows that it is quite systematic. It is worth
examining whether systematic individual differences are present in the Wolfe et al. data, and
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whether EPIC models can account for individual performance as well as the aggregate data. The
above work on modeling aggregate data was not wasted, because at least it provides a repertory
of mechanisms and strategies that might be useful in fitting individual data, even if the specific
parameters and strategies differ between individuals.

5.2. Levels of Analysis for Modeling Individual Differences

One approach would be to construct a model for each individual subject, each with their own
individual parameter values and strategies, yielding in this case 28 separate models. Not only
with this be a very labor-intensive effort, but to be intelligible and scientifically useful, some
kind of characterization would be needed about how these 28 models were similar and different.
That is, the first question about so many models would be whether there were some
commonalities, such as similar strategies between individual subjects in each task. Answering
such questions would require organizing the models into groups of some sort.

Instead, we followed a more economical approach to arriving at the generalizations: We
identified commonalities in the individual subject data by finding subgroups, or clusters, of
subjects in each task condition whose mean RTs and ERs were similar in magnitude and pattern
of effects, and thus likely to have similar parameter values and strategies. We then averaged over
the subjects in each cluster; this mean data then represented a particular combination of
parameter values and strategy. We then constructed a model for each cluster's mean data. Note
this approach conforms to Newell's (1973) injunction to not average over strategies — we
averaged over subjects who appear to be following the same strategies, and also appear to have
similar parameter values. In what follows, we demonstrate that the parameters and strategies
needed for the Wolfe, et al. aggregate data do indeed generalize to subgroups of individual
subjects who performed similarly to each other. This satisfying outcome was accomplished as
described in what follows.

Cluster analysis of Wolfe, et al. subjects. To evaluate whether there were meaningful
systematic individual differences underlying the effects in the aggregate data, mean RT and ER
graphs were plotted for each individual subject. On informal inspection, these graphs seemed to
fall into a small set of patterns for each task condition. This impression was confirmed more
formally by doing cluster analysis of the subjects' data in each task condition, using the intercept,
slope, and best-fit quadratic coefficient for positive and negative RT, and mean ER, Miss ER and
Maximum Miss ER at set size 18, as variables to identify the clusters. Of course, cluster analysis
is usually done on very large data sets, so its application here is just a way to formalize what
would otherwise be a purely intuitive hand-clustering process. However, there were about 500
trials per data point per subject, so the individual subject data were reliable enough to somewhat
mitigate the fact that only 9 or 10 subjects were present in each task condition.

The analysis was done with the R cluster package (R Core Team, 2017; Maechler,
Rousseeuw, Struyf, Hubert, & Hornik, 2017) the clustering method was k-medoid, and the
clusters for k=1 through 5 were determined. The analysis was separate for each task condition,
and the variables used in the clustering were made as few as possible consistent with a clear
clustering result for A=3. For example, the quadratic coefficient for RT was used as a clustering
variable only in the Shape condition, where some of the subjects had strongly negatively
accelerated RT functions. In addition, the final clusters were chosen so that averaging the RT and
ER data within a cluster preserved the basic qualitative and quantitative trend patterns present for
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the individual subjects in the cluster. This required moving a total of two subjects out of the
computed clusters into a cluster of one subject each, as will be described below. These single-
subject clusters were not included in the model fitting.

The following sections will present, for each task condition, graphs of RT and ER for
individual subjects in their clusters, followed by the mean data for each cluster, and finally the
results of fitting a model to each cluster.

To anticipate an important conclusion from what follows, the models for the clusters of
subjects in each task use the same repertory of visual mechanisms and strategies that accounted
for the aggregated data summarized above in Figure 4.5.1 and Table 4.5.1. In fact, in most cases,
the only difference between the aggregate and the cluster models are the parameter values. This
means that the modeling of the aggregate data was helpful in laying out the possible mechanisms
and strategies, even if the cluster-level data has important differences from the aggregate.

The results will be presented for each condition in the same order as the explanatory
sequences, starting with the Shape task, next Color, and finally Conjunction. The models were
constructed following the principles in the above explanatory sequences, but in the interest of
brevity, only the best-fitting final model for each cluster is presented.

5.3. Shape Clusters

For each task, starting here with the Shape task, the following will be presented: (1) the mean
data for each subject in each cluster will be graphed together to demonstrate that they actually
resemble each other; (2) the individual data in each cluster are averaged together, and shown as a
graph, and summary statistics in a table; (3) a model is fit to the mean data for each cluster; (4) a
table of parameters and goodness-of-fits statistics for the cluster models is presented along with a
summary assessment.

Individual data in each cluster. Figure 5.3.1 shows the four groups of subjects resulting
from the cluster analysis of the Shape subjects; each column is a cluster with RT on the top and
ER on the bottom; as before, red curves are positive trials, black curves are negative trials. The
curves for different subjects are shown by different plotting points (circles, triangles, squares,
diamonds). Throughout these presentations, since ER differences tend to easier to describe than
RT differences, clusters are shown in order of increasing ER from left to right. Each cluster is
labeled in terms of a short description that summarizes its ER and RT characteristics. In Figure
5.3.1, there is a single-subject cluster at the far right that was not included in the modeling. Note
that the plotting scales cover the very large RTs and ERs produced in these clusters.

The leftmost cluster Slow/LowER, has three subjects with fairly linear RTs with large slopes,
but low ER with a small increase for positive ER with set size. The next cluster VerySlow/
MedER, has two subjects with much more steeply sloped RTs and a much greater increase in
Miss ER along with an extremely low False Alarm ER. The next cluster NegAcc/HighER, has
relatively fast but negatively accelerated RTs with very much larger ERs, and Misses that greatly
increase with set size. The subject in the right-most single-subject cluster was originally grouped
with the leftmost cluster, but because the RT slopes for this subject were clearly much lower than
the other three subjects and the ER higher, this subject was moved into a single-subject cluster
which was not modeled in this report.
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Figure 5.3.1. Individual subject RT and ER in each cluster of the Shape subjects. Scales: 0-3500 ms, 0-0.25. The
95% confidence intervals are calculated for each individual subject, based on the standard error of the subject's
mean for RT, and as the binomial confidence interval for ER. There are approximately 500 trials underlying each
plotted data point for each individual subject.

Mean RTs and ERs for the clusters. Figure 5.3.2 shows the average RT and ER for the three
modeled clusters, and Table 5.3.1 provides their statistics. Note how the basic pattern of the
effects for the individual subjects in the cluster is reflected in the means for that cluster, and how
the confidence intervals for the data points in a cluster are fairly tight compared to what appeared
previously in the overall aggregate data for the Shape task (Figure 2.1). Thus even though there
are only a few subjects being averaged together, the subjects in a cluster are similar enough to
each other that their average data tends less noisy than in the aggregated data.
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Figure 5.3.2. Mean RT and ER in each cluster of the Shape subjects. Scales: 0-3500 ms, 0-0.25. The
95% confidence intervals on each plotted point are based on the mean RT and ER for that data point
for each of the 2-3 subjects included in the cluster.
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Table 5.3.1 Observed Shape Cluster Statistics

Negative Positive Slope ratio

Shape Cluster Intercept Intercept ER ERMax .

Slow/LowER 446 ‘ 521 0019 0033 2.70
VerySlow/MedER | 718 133 098 0005 651 61 100 0041 0083 219
NegAcc/HighER 707 | £ 0.96 0 0.023 628 | £ 098 0.078 0.165 1.87

Model fits for the mean data in each cluster. An EPIC model was fit to each cluster
following the same approach described for the aggregate data in Section 4.2 above. In each
clusters, SlipER was set to the mean False Alarm ER for that cluster. The obtained model fits for
the Shape cluster are shown in Figure 5.3.3, and their parameters and goodness-of-fit statistics
are listed in Table 3.6. These fits demonstrate strong differences in the visual parameters but the
same Basic Search strategy across the clusters of similar subjects. Each cluster is discussed in the
following paragraphs.

Cluster Slow/LowER: Basic Search strategy, moderate availability and crowding, low
SlipER. The subjects in the leftmost cluster Slow/LowER have steeply sloped RTs and low ER
with slightly increasing positive ER. This fit was obtained with the Basic Search strategy with
unlimited fixations and somewhat poor availability of the Shape property, but cautiously low
SlipER. These subjects could be described as needing many fixations because they could not see
the object shapes very well in the periphery, but they took their time and achieved fairly high
accuracy. Since the fixations are unlimited, the increased Miss ER at greater set sizes is due to
crowding effects changing the target into an illusory distractor. As in the overall average data, the
model predicts somewhat negatively accelerated RTs on negative trials because more than one
object can be perceived in a single fixation as the object density increases with set size. This is a
systematic misfit of the model, but as shown in Table 5.3.2, the 2 for RT is very high
nonetheless.

Cluster VerySlow/MedER: Basic Search strategy, very poor availability, moderate crowding,
very low SlipER. The subjects in the middle panel of Figure 5.3.3 have very steeply sloped RTs
and the Miss ER is medium-high and increases substantially with set size compared to the first
cluster. This fit was also obtained with the Basic Search strategy with unlimited fixations, but as
shown in Table 5.3.2, with larger availability and crowding parameters than the first cluster.
Since the Shape property is quite a bit less available than in the first cluster, the predicted RTs are
more linear and match the observed RTs quite well. The larger crowding parameter also produces
the higher Miss ER. The goodness of fit metrics are extremely good. These subjects apparently
had a great deal of trouble detecting the Shape property and so had to make more fixations than
in the first cluster, but also were more subject to Misses from crowding effects. The large value
for ER aare is a good example of the difficulty posed by very low values in the observed data;
since these values appear in the denominator of the relative error calculation, even a small
absolute deviation of the predicted from the observed value will produce a large relative error. In
contrast, the 72 and aae show a fairly close fit.

Cluster NegAcc/HighER: Basic Search strategy, moderate availability, high crowding,
moderate SlipER. As shown in the rightmost panel of Figure 5.3.3, these subjects produced RTs
that are fairly fast, but strongly negatively accelerated, and the ERs are higher than in the first
two Shape clusters and especially, the Miss ER is much higher and increases with set size more
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Figure 5.3.3. Observed (solid lines and points) and Predicted (dotted lines, open points) for the Shape Cluster
Means. Upper panels: RT, scale: 0-3500 ms. Lower panels: ER, scale 0-0.25. Left panel: Slow/LowER. Middle
panel: VerySlow/MedER. Right panel: NegAcc/HighER.

Sources: SHP129_VM2eLS9¢c_375_025_01_99_NC_200309, SHP37_VM2el9c_6_05_005_99_NC_200309,

SHP458_VM2elLS9c_435_15_023_99_NC_200604.

than any other cluster in any other condition. The fit captures these effects with substantial
crowding effects with some help from a somewhat elevated S/ipER. As shown in Table 3.6, this
fit was obtained with moderate poor availability, a large crowding probability, and high S/ipER.
This combination produces the powerful trend in Miss ER, as well as the negatively accelerated
RTs; the crowding produces many illusory distractors which truncate the search and produce
many Misses.

A possible alternative model for this cluster is one similar to the path not taken model in the
Shape explanatory sequence, namely a strategy with fixations limited to 8 and smaller s and ¢s,
which produces very similar predictions and goodness of fit; thus there is more than one way to
get negatively accelerated RTs. But as noted above, introducing a strategy change when visual
parameters produce a good fit violates the priority order in the explanatory sequence. In fact,

Table 5.3.2

Shape SlipER | GoF: RT ER
Shape Cluster 0 b r2 aare aae  r? aare  aae
Basic Search strategy : :

Slow/LowER

VerySlow/MedER

NegAcc/HighER

Average fit metrics

62



Figure 4.2.3 above shows that parameter values in this range produce such RT and ER patterns,
which did not appear in the aggregate data.

Summary assessment of models for the Shape clusters. As shown by the average fit metrics
in Table 5.3.2, on the whole, the model goodness-of-fit metrics are extremely good for the Shape
clusters. The model accounts for the clusters in a straightforward way: All three clusters differ in
terms of visual parameters and S/ipER but use the same Basic Search strategy as in the aggregate
data. Thus the individual differences in task performance were due to parameter differences only.
Despite this similarity of the models, it is clear that the aggregate data obscured the rather large
differences in the individual parameter values that cause the individual cluster RT and ER
functions to have very different characteristics.

5.4. Color Task Clusters

Individual data in each cluster. Figure 5.4.1 shows the three groups of subjects resulting
from the cluster analysis of the Color task subjects. As before, each column is a cluster with RT
on the top and ER on the bottom; red curves are positive trials, black curves are negative trials.
The curves for different subjects are shown by different plotting points (circles, triangles,
squares, diamonds). The clusters are shown in order of increasing ER from left to right. In what
follows, each cluster is labeled in terms of a short description. The plotting scales cover the range
for RT and ER used for most graphs in this report.

All of the clusters have fast RTs (about 500 ms) that are quite flat with set size and very
similar for positive and negative trials. Reading from the left, the first cluster FlatSlow/LowER
contains two subjects who have the slowest RT and very low ER that is essentially unaffected by
set size. The second cluster FlatFast/MedER of three subjects has fast RTs and low and flat
negative ER, and positive ER that tends somewhat to increase with set size. The rightmost
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Figure 5.4.1. Individual subject RT and ER in each cluster of the Color task subjects. Upper panels: RT, scale:
0-2500 ms. Lower panels: ER, scale: 0-0.15. The 95% confidence intervals are calculated as described for Figure
5.3.1.
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cluster FlatFast/HighER of four subjects shows much higher and varied ERs but show little
overall effect of set size.

Mean RTs and ERs for the clusters. Figure 5.4.2 shows the average RT and ER for each of
these three clusters; and Table 5.4.1 shows the statistics for each cluster based on those means.
The slope ratios are not meaningful because the positive and negative RT slopes are very small
and noisy. As before, note how the basic pattern of the effects for the individual subjects in the
cluster is reflected in the means for that cluster, and how the confidence intervals for the data
points in a cluster are fairly tight.

Model fits: All Color task clusters fit with Fixed-eye strategy, different but high
availabilities, different SipERs. As shown in Figure 5.4.3, for all three clusters, the Fixed-eye
strategy provided a good fit, with only the Color availability parameter and the SlipER adjusted
to fit each cluster. Table 5.4.2 provides the parameter values. As discussed above for the overall
average data, the Color crowding probability parameter ¢pc makes a negligible effect; it was set
to a place-holder value of 0.025 to be consistent with the Conjunction models.

As in the overall Color task model, once SlipER was set to the False Alarm ER, the Miss ERs
were accounted for by adjusting the availability parameter. Note that because the predicted and
observed RTs are flat and similar for positive and negative trials, the 72 for RT fits is constrained
to be very small — when there is no variability in the observed data, then there is no variance for
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Figure 5.4.2. Mean RT and ER in each cluster of the Color task subjects. The 95% confidence intervals on each
plotted point are based on the mean RT and ER for that data point for each of the 2-4 subjects included in the
cluster.

Table 5.4.1 Observed Color Cluster Statistics

Negative Positive Slope ratio
Color Task Cluster lntercept  Slope  °  ER Intercept  Slope @ ER  ERMax
FlatSlow/LowER 520 -1.30 0.58 0.01 456 1.49 070 0.01 0.01 -0.87
FlatFast/MedER 3750024 -032 001 341 108 089 002 003 023
FlatFasyHighER 40 078 086 001 341 108 089 002 0043 100
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Figure 5.4.3. Observed (solid lines and points) and Predicted (dotted lines, open points) for the Color task Cluster
Means. Upper panels: RT, Scale: 0-2500 ms. Lower panels: ER. Scale: 0-0.15. Left panel: FlatSlow/LowER. Middle
panel: FlatFast/MedER. Right panel: FlatFast/HighER.

Sources: CSF_48 Vm2elS9¢c_09_025_004_0_NC_200409, CSF_356_VM2eLS9c_1_025_01_0_NC_200416,
CSF_1279_VM2eLS9c_115_025_02_0_NC_200416

the prediction to account for! The RT fit for the first cluster FlatSlow/LowER could be improved
by setting the VDelay parameter to a higher value instead of the assumed value of 100 ms in all
tasks and clusters. The slight upward trend in Misses at set size 18 for the second and third
clusters is similar to the aggregate data, and there is no straightforward way for the models to
account for this small discrepancy.

Summary assessment of models for the Color task clusters. As shown in Table 5.4.2, the fits
for the Color task clusters are overall very good. The account for the Color task clusters is very
simple: As in the aggregate data, all subjects followed the Fixed-Eye strategy, which made the
RTs flat and fast, but differences in S/ipER and Color availability produced distinct levels of
Miss ER. As with the aggregate data model, ¢c had a negligible effect. But 6c varied over a
small range, implying that Color availability was very high for individual subjects.

Table 5.4.2
Color | SlipER GoF: RT ER
Golor task Cluster 0 s P aae ase P aae aze
Fixed-eye Strategy : : : : : : : : : :
FlatSlow/LowER 48%% 0.002
FlaFastMedER | 010 0025 0010 008 1% 38 06 25% 0,003
FlaFasvHightR | o115 0025 0020 010 5% 22 069 2% 0005
Average fitmeries | - - 008 1% 50 047 31% 0003
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5.5. Conjunction Task Clusters

Individual data in each cluster. Figure 5.5.1 shows the groups of subjects resulting from the
cluster analysis of the Conjunction subjects; again, each cluster is shown in a column with RT
above and ER below, and are shown in order of increasing ER from left to right, with the
exception of the single-subject cluster at the far right.

The first cluster Sloped/LowER contains two subjects with very low ERs and RTs that have
substantially greater slope than the aggregate data. The second cluster, AlmostFlat/MedER,
contains four subjects with almost flat RTs and Miss ER increasing with set size. The third
cluster AlmostFlat/HighER has three subjects who also have almost flat RTs but with very high
ERs, both False Alarms and Misses, with a tendency for Miss ER to increase with set size. This
cluster is clearly more heterogenous than the first two in both RTs and ERs. The right-most
single-subject cluster has RTs very similar to the first cluster and was grouped in that cluster by
the analysis; however, the ERs are much higher and trended more with set size than the first
cluster. To meet the criterion of not producing misleading mean values for a cluster, this subject
was moved out of the first cluster to become a single-subject cluster which was not modeled for
this report.

Mean RTs and ERs for the clusters. Figure 5.5.2 shows the average RT and ER for the first
three clusters, and Table 5.5.1 shows the statistics for these average data. The first cluster,
Sloped/LowER is very different from the second and third in that it has steeply sloped RTs,
especially for negative trials, and extremely low ER. The second and third clusters have very
similar and almost flat RT slopes, but very different ERs. Note that because the third cluster
AlmostFlat/HighER is more heterogenous than the other clusters in this data set, the confidence
intervals around this average data are relatively large. Clearly the aggregate data misrepresented
the individual subjects in the Conjunction condition; the RT slopes and ER are very different for
the first cluster compared to the other two, which have similar RTs but very different ERs.
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Figure 5.5.1. Individual subject RT (upper panels), scale 0-2500 ms, and ER (lower panels), scale 0-0.15, in each
cluster of the Conjunction subjects. The 95% confidence intervals are calculated as described for Figure 5.3.1.

66



RT at each Set Size as a function of AT at each Set Size as a function of RT at each Set Size as a function of
2500 Cue Type and Trial Polarity 2500 ‘Cue Type and Trial Polarity 2500 Cue Type and Trial Polarity

—-05e 310 Neg -a-0bs 1278 Neg —a-0bs 458 Neg
00

00 310 Pos a0s 1279 Pos =005 458 Pos
1500
g ] H
1000 1000 1000
50 0 —t— ? 50
o o o

10
Number of objects on display

T 0
Number of objects on display Number of objects on display

P(Errror) at each Set Size as a function of P(Errror) at each Set Size as a function of P(Errror) at each Set Size as a function of
‘Cue Type and Tril Polarity Cue Type an oleri Cue Type and Trial Polarity

4056 310 Neg -a0bs 129 Neg —a-0s 458 Neg
o

onrerm e P
fo
H 3
- Lo
o o S
1 .
k | $

0 5 3 )
Number of objects on display Number of objects on display Number of objects on display

Proportion of Errors

Figure 5.5.2. Mean RT and ER in each modeled cluster of the Conjunction subjects. RT (upper panels), scale
0-2500 ms, and ER (lower panels), scale 0-0.15. Left panel: Sloped/LowER. Middle panel: AlmostFlat/MedER.
Right panel: AlmostFlat/HighER. The 95% confidence intervals on each plotted point are based on the mean RT
and ER for that data point for each of the 2-4 subjects included in the cluster.

Table 5.5.1 Observed Conjunction Cluster Statistics

negative positive Slope ratio
Conjunction Cluster Intercept Slope r2 ER intercept Slope r2 ER ER Max
Sloped/LowER 40 531 13099 0005  0.009 421
AlmostFlat/MedER 524 499 7 ¢ 1.00 0.018 0.037 1.78
AlmostFlat/HighER 505 446 7 097 0.063 0.086 2.31

Model fits for the mean data in each cluster. The model fits for the Conjunction clusters are
shown in Figure 5.5.3, and the parameters and goodness-of-fit statistics are listed in Table 5.5.2.
The plotting scales are the same as those used for the Color task clusters and most of the other
graphs.

Cluster Sloped/LowER: Basic Search with Confirm-both and unlimited fixations, poor
availability, low crowding, very low SlipER. The leftmost panel in Figure 5.5.3 shows the
predicted and observed RTs and ERs for the Sloped/LowER cluster. The model for this cluster
fits extremely well. As noted above, a very low observed ER can lead to a very large aare value,
in this case, infinitely large since a couple of the observed ERs are actually zero; accordingly,
this cell in Table 5.5.2 includes only the cases where the observed ER is greater than zero. The
aae provides a good indication that the predicted ERs are very close to the observed.

The data and the strategy choice for this cluster are very different from the aggregate
Conjunction data and model. Apparently these subjects had some difficulty seeing the Color and
Orientation combinations, as shown by the parameter values, and chose to minimize errors with a
very methodical search and great care to prevent slip errors.
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Figure 5.5.3. Observed (solid lines and points) and Predicted (dotted lines, open points) for the Conjunction Cluster
Means. RT (upper panels), scale 0-2500 ms, and ER (lower panels), scale 0-0.15. Left panel: Sloped/LowER.
Middle panel: AimostFlat/MedER. Right panel: AlmostFlat/HighER.

Sources: COC_310_VM2elLS9c_15_025_25_05_0015_99_CPN_200309, COC_1279_VM2eLS9c_1_075_15_075_0045_3 1_1_99 CPN_200512,

COC_458_VM2elLS9c_11_025_18_025_03_2_1_1_99_CPN_200512.

AlmostFlat/MedER: Basic Search with Confirm-both with limit of three fixations, high
availability, moderate crowding, low SlipER. The middle panel shows the fit to cluster
AlmostFlat/MedER. This cluster used the same strategy as the model for the aggregate data in
which the fixations were limited to three to produce both fast and fairly flat RTs and Miss rates
that increase with set size. These subjects had very good Color and Orientation availability,
leading to fairly fast reaction times overall, and moderate crowding probabilities. Apparently
these subjects could resolve the stimuli better than the first Conjunction cluster, and so opted to
maximize speed by limiting the number of fixations, and because they were careful to avoid slip
errors, they were able to perform quickly with fairly few Misses.

AlmostFlat/HighER: Basic Search with Confirm-both with limit of only two fixations,
moderate availability, low crowding, high SlipER. The rightmost panel shows cluster AlmostFlat/
HighER. In this model, the number of fixations limit is two, which together with somewhat
lower availabilities and the high S/ipER, produces a higher Miss ER compared to the second
cluster fit. These subjects also apparently sought speed at the expense of accuracy, more so than
the second cluster, and allowed even fewer fixations and took much less care in avoiding slip
errors.

Summary assessment of models for the Conjunction clusters. All of the cluster models use
the Basic Search with Confirm-both strategy presented in the explanatory sequence for the
aggregate Conjunction data; without the Confirm option, models for these clusters suffer from
the same massive False Alarm rates as discussed in the explanatory sequence. But the cluster
models differ in the availability, crowding, and S/ipER parameters, but especially on the extent to
which the number of fixations is limited. In particular, the model for the first cluster, Sloped/
LowER, has unlimited fixations, very different from the aggregate data model. But like the
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Table 5.5.2

Color Orientation NFix SlipER GoF:RT GoF:ER
Conjunction Cluster and 0 ¢ 0 ® r2 aare age r? aare aae
Strategy
Sloped/LowER 015 0025 025 005 100015 099 3% 21 051 53% 0.002
Basic Confirm-both ? i i i i i i
Unlimited-fixations ‘ ‘
AlmostFlatMedER | 0.10 0075 015 0075 3 00045 090 6% 40 090 76% 0.003
Basic Confirm-both i i i i i i i 3 3 i
Limited-fixations
AlmostFlat/HighER 0.11  0.025 0.18 0.025 2003 091 6% 32 091 11% 0.005
Basic Confirm-both
Limited-fixations : : : : :
Average fit metrics 093 5% 31 077 47% 0.003

model for the aggregate Conjunction data, the models for the second and third clusters,
AlmostFlat/MedER, and AlmostFlat/HighER, limit fixations, and thus have almost flat RTs and
ERs that increase with set size. The huge difference between the first cluster and the other other
two is a strong argument that the aggregate data was hiding a substantial difference between
subject strategies. The average goodness-of-fit metrics in Table 5.5.2 for these three clusters on
the whole are fairly good, taking into account that a couple of the ER aare values are high due to
very small observed ERs.

As discussed above with the aggregate Conjunction modeling, the Conjunction task is
inherently more complicated in its strategy requirements which are dictated by how crowding
effects render the two-feature stimuli ambiguous compared to the single-feature tasks. Subjects
responded to this complexity in different ways. While one cluster was very slow and highly
accurate, the other two tried to be very fast, as shown by the small number of allowed fixations,
but with poor accuracy.

The Conjunction clusters provide a good demonstration of the perils of aggregating data and
attempting to model it in the aggregate, especially when the lack of clear instructions and
incentives encourages subjects to choose their strategy rather freely. Apparently, the AlmostFlat
subjects, faced with 4000 trials of this fairly uninspiring task, opted to "get it done" even at the
expense of more errors, while the Sloped/LowER subjects rose to the challenge of minimizing
errors, even if it took much longer. Although the Conjunction aggregate model resembles the
model for the second and third Conjunction cluster data, it completely misrepresents the data for
the first cluster.

5.6. Summary of model fits for aggregated and clustered data

Table 5.6.1 shows a summary of the goodness of fit metrics for all of the presented models.
The first two rows corresponded to the last two row in Table 4.5.1 above, showing the goodness
of fit metrics averaged over the three final models of the aggregated subject data in the three task
conditions, and the fit to all 48 points of the aggregated data. The third row shows the metrics
averaged over the presented models for the three clusters of subjects in each task condition,
corresponding to the averages of the last rows in Table 5.2.2, Table 5.4.2, and Table 5.5.2. As
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Table 5.6.1 Summary of Goodness-of-Fit for Aggregated and Cluster Data

GoF: RT ER
Source of model fit metrics r2  aare aae r2  aare aae
Average* of separate fits of each task with aggregated data 0.96 5% 44 0.85 18% 0.003
Overall fit of all aggregated data (all 48 mean data points) | 098 777777 5% 77777777 44 7777777 09519% 777777 0003
Average* of separate cluster fits for all three tasks | 095 VVVVVV 7% 77777777 50 VVVVVVV 07334% VVVVVV 0004
*A]:erages of r2 for RT do not include zero value for Color task | | | | |
tasks.

mentioned above, not included in these averages are the zero 2 values for the flat RT curves in
the Color Task. The average fit is extremely good for RT, with very high 72 values of 0.95 and
above, aare under 10%, and aae on the order of only 50 ms. ER, being intrinsically less stable in
these data, was not fit as well, especially when the different clusters differed in their SlipER. For
ER, the 72 values are reasonably high at 0.73 and above, but the ER aare values are inflated by
some very small observed ERs; more encouragingly, for the average absolute error aae, the
average predicted values were off by rather less than half a percentage point.

According to the EPIC architecture, individual subjects could differ in architectural
parameters and task strategy. In the presented fits, there were two perceptual parameters for each
property: the availability threshold coefficient € and the crowding probability ¢, and a single
adjusted motor parameter, the SlipER, always estimated directly from the False Alarm ER. There
were three fundamentally different task strategies, the Basic Search strategy for Shape, the
Fixed-eye strategy, required for the Color task condition, and Basic Search with a double-check
confirmation step, and usually a limit on the number of fixations, for Conjunction.

Thus the same set of strategy variations and perceptual/motor mechanisms that could account
for the aggregate data also could account for the subject clusters in all three tasks. With the single
exception of one of the Conjunction clusters, the strategy variation that fit the aggregate data also
fit the clustered data. Thus parameter differences accounted for most of the differences between
the clusters and the aggregate data for that task, but also for most of the differences between
clusters within a task, showing that parameter differences can produce very different RT and ER
effects in the data. The choice of strategies and parameters produced a good set of fits for the
overall average data in the three task conditions, and the three clusters of subjects that appeared
in each of those three conditions.
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6. Conclusions and Implications

The present research has yielded conceptual insights, theoretical implications, and valuable
lessons regarding the essential nature of simple visual search and how to model it. This work
strongly reinforces previous claims that in order to understand, explain, and predict basic high-
speed human performance, the framework provided by a principled, parsimonious, realistic,
empirically-based cognitive architecture like EPIC can be extremely useful and instructive. In
the case of simple visual search, such an architecture also leads to important implications for
experimental methodology, not only for empirical investigations of simple visual search, but also
more broadly to experimental studies regarding other types of human performance.

6.1. Overall results

The EPIC model fits are extremely good, both qualitatively and quantitatively — the models
predict actual quantitative values, not just trends. They match the observed data very closely, and
do so using remarkably simple empirically-supported perceptual/motor mechanisms that interact
in a straight-forward manner with plausible, rationally-justified task strategies.

The major difference between the modeled search task conditions is the strategy required to
perform the task given the perceptual properties of the task displays: A slow and systematic
search with lots of fixations for the Shape task, where the relevant property is not very available;
a fast no-fixation strategy for the Color task, where the relevant property is extremely available;
a double-checked and time-out strategy for the Conjunction task to deal with how crowding
produces many illusory combinations of properties.

It should be noted that the model strategies are all rational and simple ways for subjects to
achieve performance at a desired speed or accuracy given the task and displays confronting
them; there are no "fiddly" or arbitrary "kludges" in these strategies to force them to fit the data.
Because architectures like EPIC enable explicit and programmable task strategies, different
strategies are easy to explore, implement, evaluate, explain, and justify.

Future work with cognitive modeling should take these lessons to heart, and step up to a
higher level of rigor, simplicity, and accuracy in theory and modeling.

6.2. Commonality of mechanisms, parameters, and strategies in the models

The aggregate average data and subject-cluster data in all three search task conditions can be
fit using the same visual availability and crowding mechanisms with plausible parameter
adjustments, and the same mechanisms and parameters for eye and hand movements with only
SlipER adjustments. Likewise, the models fit both the aggregate and cluster data using the same
family of strategies: Basic Search, Fixed-eye, and Basic Search with Confirm-both and Limited-
fixations. At the subject cluster level, in each task the same strategies were followed by the
cluster models as in the aggregate data model, with one exception: in the Conjunction task, one
of the subject clusters was much slower and more accurate than the other clusters; this was
captured simply by using the Basic Search strategy in the model for that cluster.

6.3. Theoretical Implications

The basic goal of work with the present EPIC architecture is to determine how much can be
understood, explained, and predicted on the basis of models of human cognition and
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performance that perform strategy execution with no inherent central bottleneck or other
limitations, such as covert visual attention. This a priori theoretical approach forces models of
performance to include perceptual/motor characteristics and task strategies as the principal
explanatory constructs instead. The approach succeeded extremely well, both quantitatively and
qualitatively, in accounting for the observed effects on RT and ER of task type, stimulus
properties, and set size, at both at the aggregate and individual subject level.

Implications for covert attention theory. The success of the present models demonstrates that
other popular theoretical constructs, such as covert attention shifting and perceptual feature
binding (Treisman & Gelated, 1980; Wolfe et al., 1989) — which have been invoked previously
to account for data from simple visual search — are probably superfluous and irrelevant to a
correct account. Explanations based on these constructs would attribute the effects to these
hypothetical limitations without any reference to perceptual/motor or strategy mechanisms. In
contrast, the more fundamental and empirically-supported perceptual/motor mechanisms,
together with a remarkably simple cognitive strategy mechanism, completely suffices to explain
the effects in detail, with no such hypothetical attentional limit being required. It is a question for
historical research Why "attention"” has received so much attention in past visual search research,
while more concrete and essential mechanisms were ignored, is a question for historical research.

Alternative crowding mechanisms. Replacing the hypothetical covert-attention concept with
more justifiable mechanisms and processes raises other interesting issues. For example, a feature
of the present RT fits — as can be seen in results from the Shape task — is that the predicted RTs
tend to be more curvilinear than the data, especially on negative trials. This somewhat
exaggerated curvilinearity stems from the fact that, for higher set sizes, more objects are covered
by a single fixation because of the greater average object density. (The Shape task models do not
use the Limited-fixations option, which can also produce negatively accelerated RTs.) An issue
thus arises about whether there might be a plausible modification to the model that would reduce
the exaggerated curvilinearity in the predicted negative RTs.

A possible way to eliminate this curvilinearity would be for greater crowding to increase the
visual availability threshold as well as causing increased scrambling (cf. Section 3.3.1 above).
This elaboration of the crowding mechanism was briefly explored as part of the present project,
but not pursued extensively for three reasons: (1) additional parameter estimates from the data
would be required; (2) the very large confidence intervals around the negative RTs at larger set
sizes make the necessary reduction in RT curvilinearity uncertain; (3) the excellent goodness-of-
fit obtained with the simple crowding mechanism seems adequate for present purposes. In
combination, these reasons suggest that pursuing this approach could amount to overfitting the
data.

Implications for models of both RT and ER. The models presented here account precisely for
both RT and ER data. They do so in a way that sharply contrasts with conventional stochastic
information-processing accounts of speed-accuracy tradeoffs, especially those in which
information accumulation is modeled as a discrete random walk or a continuous diffusion
process that eventually crosses one or the other of two (ves or no) decision boundaries, yielding a
correct or incorrect response and the corresponding RT (Ratcliff, Smith, & McKoon, 2015). In
contrast to the present model, the stochastic processing approach was taken in Wolfe's (2007)
Guided Search 4.0 model.
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Such models like Guided Search 4.0 suffer from Newell's (1973) criticism in that they lack
an explicit control process. Also, even more critically, they produce only the superficial statistics
of speed-accuracy tradeoft phenomena, and do not describe architectural mechanisms underlying
them. That is, they do not provide answers to questions like: Exactly what information is being
accumulated? Where is this information stored? What examines it? How is it decided which
response to make and when?

In contrast, for the EPIC models presented here, these processes are represented in terms of
the computational mechanisms of the architecture. The information being accumulated consists
of the visual properties of the display objects that are detected by the early visual system. It
accumulates in the visual perceptual store as eye movements are made; the strategy rules
examine the information and choose additional eye movements. Ultimately the rules decide
when enough information has accumulated to justify a present or absent response.10

In some sense, the information processing by the present EPIC models corresponds to a
random walk during the course of a trial. However, the characteristics of the search are
determined by the interaction of fixed and general architectural mechanisms rather than simply
summarized in terms of a basic stochastic process like discrete random walks or continuous
diffusion. Thus the explanatory possibilities are far richer. In the EPIC models it is clear how
stochasticity of processing may occur; for example the random positions of the objects on the
display contribute substantially to the variability in predicted RT for a given search task and set
size. By taking advantage of this richer set of explanatory approaches, perhaps explicit cognitive
architecture models will provide a more principled approach to jointly accounting for RT and
ER in the future.

What determines SlipER? Related to errors and speed-accuracy tradeoffs in the EPIC models,
there is another specific issue involving the action slip mechanism and its possible
"controllability." We generally believe that a strategy is something that can be controlled;
presumably with experience people acquire and refine their procedure for performing a task. In
contrast, perceptual-motor parameters would not be under similar voluntary control; they are
somehow "built-in" to the perceptual/motor "hardware". However, the SlipER parameter seems
problematic for this distinction between controllable and fixed components of the architecture.

Specifically, the SlipER parameter was remarkably constant over search task conditions in
the aggregate data, but was strikingly different at the individual subject cluster level. It was often
very small when RTs were longer and more sloped, but often higher when the RTs are nearly or
essentially flat. How such differences in SlipER might arise is unclear. According to the models,
action slips occur at the final response-specification stage of manual movements. It is therefore
striking that visual factors associated with large sloped RTs were often accompanied by relatively
low slip error rates, and vice-versa, whereas higher slip error rates appeared in the context of
visual factors that led to shallow-sloped RTs. Furthermore, in the aggregate data, the False Alarm
rate tended to decrease slightly with increasing set size, which suggests that subjects might have
been reducing their SlipER somewhat when the trial was more difficult. Both of these patterns
suggest that action slip error rates might be either under cognitive control to some extent, or

10 Note that the present EPIC models in fact produce predicted RTs for incorrect responses, and could be modified to
contain additional error-producing mechanisms (such as fast guesses), but the Wolfe et al. (2010) data simply do not
contain enough error RTs across conditions to support rigorous testing.
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reflect more general individual characteristics such as impulsivity, as discussed by Dickman &
Meyer (1988).

6.4. Implications for Experimental Methodology

Individual differences in strategy choice and perceptual/motor parameters. As noted above,
there is a crucial, frequently-ignored problem in human performance experiments: if the
methodology does not clearly and strongly incentivize subjects to approach the task in any
particular way, they are likely to devise their own strategies for performing the task. As a result
their performance will reflect some combination of their individual architectural parameters and
their individually chosen strategies, which may vary haphazardly from one individual to the next.
It is unclear how to allocate aspects of individual performance between individual architectural
parameters and individual strategy choice. The present explanatory sequence methodology,
which gives priority to architectural-parameter-fitting before strategy-fitting, provides such an
allocation. Even so, as discussed more below, there are cases where a strategy-fit seems just as
good as a parameter-fit. How can we be more confident about what aspects of individual
performance are due to architecture parameters versus strategy choices?

There are only two ways to resolve this conundrum: First, measurements of individual
subject parameters with the same stimuli in relevant psychophysical tasks could provide a
valuable clarification of how visual factors affect visual search performance at the individual
level. Yet such attempts have been extremely rare in visual search work, even though they would
not be very difficult to accomplish. Second, using performance incentives to stabilize or
influence strategy choice would also clarify individual performance, especially for a task like the
Conjunction task, where the three subject clusters revealed by the present analysis differed
greatly in their apparent preferences for speed and tolerance of errors. Without the needed
clarification, multiple questions remain to be answered: Why would some subjects take their
time and be extremely accurate, while others in the very same task "bailed out" after only two
fixations? The best RT studies use an incentive scheme that sharply penalizes errors while
somewhat rewarding speed. Would using this scheme in visual search experiments result in
individuals producing performance more similar to each other?

Too often, the issue of individual difference has been swept under the rug. Cavalier
researchers have neither controlled for strategy differences nor examined whether individual
subjects' performance was consistent with their theories. Often they have failed to even consider
different strategies or how different underlying abilities would affect strategy choice. The present
results thus not only contribute to understanding how the visual/motor architecture and strategy
choice play roles in visual search tasks, but also suggest that future experimental work should
attempt to directly measure architectural parameters, adopt incentive methods to stabilize subject
strategies, and examine individual subject data for theoretically significant differences.

Eye tracking is the way forward. A final and paramount methodological recommendation also
follows from the present research. The EPIC models show that early visual processes and eye
movements controlled by task strategies account extremely well for the results from simple
visual search, contrary to the earlier belief that these aspects could be ignored. The obvious way
to support or refute either of these claims is for future studies of simple visual search to use eye-
tracking in addition to RT and ER measurements. Now that eye-tracking has become much less
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expensive and much easier to conduct, there is no reason not to use it, given the theoretical
stakes at hand

6.5. Implications for Modeling Methodology

Constructing explanatory sequences worked well. Early in the development of these models,
the EPIC Philosophy (Section 3.2.1 above) provided valuable general guidance — e.g. no
models using a new covert attention mechanism were attempted even when the temptation was
strong. However, initially the model development often seemed like a random walk through the
space of possible models consistent with this general guidance. The last stages of model
development were greatly accelerated when we introduced and systematically applied the
approach of constructing explanatory sequences with a rigorous priority order of adding
mechanisms.

In retrospect, as summarized above, the development of EPIC models has always followed
an explanatory sequence methodology with this same priority order, but did so implicitly and not
as systematically. The present paper has presented a systematic and well-defined explanatory
sequence process for model development. It seems quite likely that the same methodology would
be equally useful with other theoretical approaches. For example, this methodology would help
distinguish the roles and contributions of assumptions that are based more on empirical
phenomena versus those that are more hypothetical.

Priority of strategy modification versus parameter adjustment. The priority ordering for
explanatory sequences might need some modification. There were a few places in the model
development where a strategy modification and a parameter adjustment could account more-or-
less equally well for the data. These cases include are the above-mentioned ones in the aggregate
data for the Shape explanatory sequence, and in fitting the data for the third Shape cluster. In
each of these cases, either crowding effects, or the effects due to limiting the number of
fixations, could produce Miss errors that increase with set size and faster or negatively
accelerated RTs. Thus either a parameter modification to € and ¢, or a strategy change with a
specific value of Nfix, can produce similar predicted results. However, this is not a general result;
usually a particular strategy cannot match the data regardless of the parameter values (and vice-
versa) — other explanatory sequences reported above make that clear.

The priority ordering imposed by the EPIC Philosophy for modifying a model in an
explanatory sequence to improve its fit has strict constraints. There are strong reasons for this.
These constraints require first trying perceptual parameter adjustments because they are more
grounded in the empirical literature and thus less speculative than modifications to the task
strategy. Furthermore, we definitely know that individuals differ in fundamental perceptual
parameters such as visual acuity.

Nonetheless, it is also likely that people can devise highly adaptable strategies; it could be
argued that subjects' deciding to limit their fixations is a likely adaptation in the Shape task,
especially for large set sizes. So assuming they made such a choice might be more plausible than
the particular values of 6 and ¢ that would produce the same effects.

The problem is that we do not truly know whether particular values of 6 or ¢ are plausible.
As already mentioned, visual search researchers almost always use different stimuli in every
laboratory or experiment, and they very rarely measure the perceptual parameters of their stimuli
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in an independent psychophysical task. Thus we have no way of knowing whether the values for
0 and ¢ assumed in the present models to produce the observed effects are more, or less,
plausible than a strategy modification that produces the same effects. The bottom line is that until
more complete parametric data on perceptual mechanisms are available, the stated perceptual-
first/strategy-second priority order is the best we can do for now.
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